\(\newcommand{\W}[1]{ \; #1 \; }\) \(\newcommand{\R}[1]{ {\rm #1} }\) \(\newcommand{\B}[1]{ {\bf #1} }\) \(\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }\) \(\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }\) \(\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }\) \(\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }\)
unary_standard_math¶
The Unary Standard Math Functions¶
Possible Types¶
Base¶
If Base satisfies the base type requirements and argument x has prototype
const
Base & x
then the result y has prototype
Base y
AD<Base>¶
If the argument x has prototype
const AD
< Base >& x
then the result y has prototype
AD
< Base > y
VecAD<Base>¶
If the argument x has prototype
const VecAD
< Base >::reference&
x
then the result y has prototype
AD
< Base > y