
nose2
Release 0.11.0

unknown

Jun 10, 2022





CONTENTS

1 nose2 vs pytest 3

2 Quickstart 5

3 Full Docs 7

4 Versions and Support 9
4.1 Changelog and Version Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Python Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Contributing 11

6 User’s Guide 13
6.1 Getting started with nose2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Using nose2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.3 Configuring nose2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.4 Differences: nose2 vs nose vs unittest2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.5 Plugins for nose2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.6 Tools and Helpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.7 Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Plugin Developer’s Guide 89
7.1 Writing Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Documenting plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3 Event reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4 Hook reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5 Session reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.6 Plugin class reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Developer’s Guide 111
8.1 Contributing to nose2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9 Indices and tables 119

Python Module Index 121

Index 123

i



ii



nose2, Release 0.11.0

nose2 is the successor to nose.

It’s unittest with plugins.

nose2 is a new project and does not support all of the features of nose. See differences for a thorough rundown.

nose2’s purpose is to extend unittest to make testing nicer and easier to understand.

CONTENTS 1

https://results.pre-commit.ci/latest/github/nose-devs/nose2/main
https://github.com/nose-devs/nose2/actions?query=workflow%3Abuild
https://nose2.io/
https://pypi.org/project/nose2/
https://pypi.org/project/nose2/
https://groups.google.com/a/nose2.io/forum/#!forum/discuss
https://docs.nose2.io/en/latest/differences.html


nose2, Release 0.11.0

2 CONTENTS



CHAPTER

ONE

NOSE2 VS PYTEST

nose2 may or may not be a good fit for your project.

If you are new to python testing, we encourage you to also consider pytest, a popular testing framework.

3

http://pytest.readthedocs.io/en/latest/


nose2, Release 0.11.0

4 Chapter 1. nose2 vs pytest



CHAPTER

TWO

QUICKSTART

Because nose2 is based on unittest, you can start from the Python Standard Library’s documentation for unittest and
then use nose2 to add value on top of that.

nose2 looks for tests in python files whose names start with test and runs every test function it discovers.

Here’s an example of a simple test, written in typical unittest style:

# in test_simple.py
import unittest

class TestStrings(unittest.TestCase):
def test_upper(self):

self.assertEqual("spam".upper(), "SPAM")

You can then run this test like so:

$ nose2 -v
test_upper (test_simple.TestStrings) ... ok

----------------------------------------------------------------------
Ran 1 test in 0.000s

OK

However, nose2 supports more testing configuration and provides more tools than unittest on its own.

For example, this test exercises just a few of nose2’s features:

# in test_fancy.py
from nose2.tools import params

@params("Sir Bedevere", "Miss Islington", "Duck")
def test_is_knight(value):

assert value.startswith('Sir')

and then run this like so:

$ nose2 -v --pretty-assert
test_fancy.test_is_knight:1
'Sir Bedevere' ... ok
test_fancy.test_is_knight:2
'Miss Islington' ... FAIL
test_fancy.test_is_knight:3
'Duck' ... FAIL

(continues on next page)

5

https://docs.python.org/library/unittest.html


nose2, Release 0.11.0

(continued from previous page)

======================================================================
FAIL: test_fancy.test_is_knight:2
'Miss Islington'
----------------------------------------------------------------------
Traceback (most recent call last):

File "/mnt/ebs/home/sirosen/tmp/test_fancy.py", line 6, in test_is_knight
assert value.startswith('Sir')

AssertionError

>>> assert value.startswith('Sir')

values:
value = 'Miss Islington'
value.startswith = <built-in method startswith of str object at 0x7f3c3172f430>

======================================================================
FAIL: test_fancy.test_is_knight:3
'Duck'
----------------------------------------------------------------------
Traceback (most recent call last):

File "/mnt/ebs/home/sirosen/tmp/test_fancy.py", line 6, in test_is_knight
assert value.startswith('Sir')

AssertionError

>>> assert value.startswith('Sir')

values:
value = 'Duck'
value.startswith = <built-in method startswith of str object at 0x7f3c3172d490>

----------------------------------------------------------------------
Ran 3 tests in 0.001s

FAILED (failures=2)

6 Chapter 2. Quickstart



CHAPTER

THREE

FULL DOCS

Full documentation for nose2 is available at docs.nose2.io

7

https://docs.nose2.io/en/latest/


nose2, Release 0.11.0

8 Chapter 3. Full Docs



CHAPTER

FOUR

VERSIONS AND SUPPORT

4.1 Changelog and Version Scheme

nose2 versions are numbered 0.MAJOR.MINOR. Minor releases contain bugfixes or smaller features. Major features
or backwards incompatible changes are done in major releases.

For a full description of all past versions and changes, see the changelog.

4.2 Python Versions

nose2 supports all currently supported python versions.

It also will continue to support python2 for as long as it remains feasible and a significant percentage of nose2 users
are using python2.

9

https://docs.nose2.io/en/latest/changelog.html


nose2, Release 0.11.0

10 Chapter 4. Versions and Support



CHAPTER

FIVE

CONTRIBUTING

If you want to make contributions, please read the contributing guide.

11

https://github.com/nose-devs/nose2/blob/main/contributing.rst


nose2, Release 0.11.0

12 Chapter 5. Contributing



CHAPTER

SIX

USER’S GUIDE

6.1 Getting started with nose2

6.1.1 Installation

The recommended way to install nose2 is with pip

pip install nose2

6.1.2 Running tests

To run tests in a project, use the nose2 script that is installed with nose2:

nose2

This will find and run tests in all packages in the current working directory, and any sub-directories of the current
working directory whose names start with ‘test’.

To find tests, nose2 looks for modules whose names start with ‘test’. In those modules, nose2 will load tests from all
unittest.TestCase subclasses, as well as functions whose names start with ‘test’.

The nose2 script supports a number of command-line options, as well as extensive configuration via config files. For
more information see Using nose2 and Configuring nose2.

6.2 Using nose2

6.2.1 Naming Tests

nose2 will look in each directory under the starting directory, unless the configuration modifies the included paths.
Within directories and within any Python packages found in the starting directory and any source directories in the
starting directory, nose2 will discover test modules and load tests from them. “Test modules” means any modules
whose names start with “test”. See the Configuration section for ways to modify searching for tests.

Directories nose2 will look in:

• Directory that contains an __init__.py file (a Python package)

• Directory name that contains “test” after being lowercased.

• Directory name that is either lib or src

Each of the following test files will be run:

13

http://pypi.python.org/pypi/pip/1.0.2


nose2, Release 0.11.0

test.py
test_views.py
test_models.py
testThingy.py

These files will not be run:

not_a_test.py
myapp_test.py
some_test_file.py

Within test modules, nose2 will load tests from unittest.TestCase subclasses, and from test functions (functions
whose names begin with “test”).

6.2.2 Running Tests

In the simplest case, go to the directory that includes your project source and run nose2 there:

nose2

This will discover tests in packages and test directories under that directory, load them, and run them, then output
something like:

.............................................................................
----------------------------------------------------------------------
Ran 77 tests in 1.897s

OK

To change the place discovery starts, or to change the top-level importable directory of the project, use the -s and -t
options.

-s START_DIR, --start-dir START_DIR
Directory to start discovery. Defaults to the current working directory. This directory is where nose2 will start
looking for tests.

-t TOP_LEVEL_DIRECTORY, --top-level-directory TOP_LEVEL_DIRECTORY, --project-directory TOP_LEVEL_DIRECTORY
Top-level directory of the project. Defaults to the starting directory. This is the directory containing importable
modules and packages, and is always prepended to sys.path before test discovery begins.

Specifying Tests to Run

Pass test names to nose2 on the command line to run individual test modules, classes, or tests.

A test name consists of a python object part and, for generator or parameterized tests, an argument part. The python
object part is a dotted name, such as pkg1.tests.test_things.SomeTests.test_ok. The argument part
is separated from the python object part by a colon (“:”) and specifies the index of the generated test to select, starting
from 1. For example, pkg1.test.test_things.test_params_func:1 would select the first test generated
from the parameterized test test_params_func.

Plugins may provide other means of test selection.

14 Chapter 6. User’s Guide



nose2, Release 0.11.0

Running Tests with python setup.py test

nose2 supports distribute/setuptools’ python setup.py test standard for running tests. To use nose2 to run
your package’s tests, add the following to your setup.py:

setup(...
test_suite='nose2.collector.collector',
...
)

(Not literally. Don’t put the ‘. . . ’ parts in.)

Two warnings about running tests this way.

One: because the setuptools test command is limited, nose2 returns a “test suite” that actually takes over the test
running process completely, bypassing the test result and test runner that call it. This may be incompatible with some
packages.

Two: because the command line arguments to the test command may not match up properly with nose2’s arguments,
the nose2 instance started by the collector does not accept any command line arguments. This means that it always runs
all tests, and that you cannot configure plugins on the command line when running tests this way. As a workaround,
when running under the test command, nose2 will read configuration from setup.cfg if it is present, in addition to
unittest.cfg and nose2.cfg. This enables you to put configuration specific to the setuptools test command in
setup.cfg – for instance to activate plugins that you would otherwise activate via the command line.

6.2.3 Getting Help

Run:

nose2 -h

to get help for nose2 itself and all loaded plugins.

usage: nose2 [-s START_DIR] [-t TOP_LEVEL_DIRECTORY] [--config [CONFIG]]
[--no-user-config] [--no-plugins] [--verbose] [--quiet] [-B] [-D]
[--collect-only] [--log-capture] [-P] [-h]
[testNames [testNames ...]]

positional arguments:
testNames

optional arguments:
-s START_DIR, --start-dir START_DIR

Directory to start discovery ('.' default)
-t TOP_LEVEL_DIRECTORY, --top-level-directory TOP_LEVEL_DIRECTORY, --project-

↪→directory TOP_LEVEL_DIRECTORY
Top level directory of project (defaults to start dir)

--config [CONFIG], -c [CONFIG]
Config files to load, if they exist. ('unittest.cfg'
and 'nose2.cfg' in start directory default)

--no-user-config Do not load user config files
--no-plugins Do not load any plugins. Warning: nose2 does not do

anything if no plugins are loaded
--verbose, -v
--quiet
-h, --help Show this help message and exit

(continues on next page)

6.2. Using nose2 15



nose2, Release 0.11.0

(continued from previous page)

plugin arguments:
Command-line arguments added by plugins:

-B, --output-buffer Enable output buffer
-D, --debugger Enter pdb on test fail or error
--collect-only Collect but do not run tests. With '-v', this will output

↪→test names
--log-capture Enable log capture
-P, --print-hooks Print names of hooks in order of execution

6.3 Configuring nose2

6.3.1 Configuration Files

nose2 can be configured via standard, ini-style config files. The default files are unittest.cfg and nose2.cfg
in the start directory.

The ini format has sections marked off by brackets (“[unittest]”) and key = value pairs within those sections.
When the value is a list, put each value into its own line with proper indentation

key_expecting_list = value1
value2

Two command line options, -c and --no-user-config may be used to determine which config files are loaded.

-c CONFIG, --config CONFIG
Config files to load. Default behavior is to look for unittest.cfg and nose2.cfg in the start directory, as
well as any user config files (unless --no-user-config is selected).

--no-user-config
Do not load user config files. If not specified, in addition to the standard config files and any specified with -c,
nose2 will look for .unittest.cfg and .nose2.cfg in the user’s $HOME directory.

Configuring Test Discovery

The [unittest] section of nose2 config files is used to configure nose2 itself. The following options are available
to configure test discovery:

start-dir
This option configures the default directory to start discovery. The default value is "." (the current directory
where nose2 is executed). This directory is where nose2 will start looking for tests.

code-directories
This option configures nose2 to add the named directories to sys.path and the discovery path. Use this if your
project has code in a location other than the top level of the project, or the directories lib or src. The value
here may be a list: put each directory on its own line in the config file.

test-file-pattern
This option configures how nose detects test modules. It is a file glob.

test-method-prefix
This option configures how nose detects test functions and methods. The prefix set here will be matched (via
simple string matching) against the start of the name of each method in test cases and each function in test
modules.

16 Chapter 6. User’s Guide



nose2, Release 0.11.0

Examples:

[unittest]
start-dir = tests
code-directories = source

more_source
test-file-pattern = *_test.py
test-method-prefix = t

Specifying Plugins to Load

To avoid loading any plugins, use the --no-plugins option. Beware, though: nose2 does all test discovery and
loading via plugins, so unless you are patching in a custom test loader and runner, when run with --no-plugins,
nose2 will do nothing.

--no-plugins
Do not load any plugins. This kills the nose2.

To specify plugins to load beyond the builtin plugins automatically loaded, add a plugins entry under the
[unittest] section in a config file.

plugins
List of plugins to load. Put one plugin module on each line.

To exclude some plugins that would otherwise be loaded, add an exclude-plugins entry under the [unittest]
section in a config file.

exclude-plugins
List of plugins to exclude. Put one plugin module on each line.

Note: It bears repeating that in both plugins and exclude-plugins entries, you specify the plugin module,
not the plugin class. The module is specified by the (dot-separated) fully qualified name.

Examples:

[unittest]
plugins = myproject.plugins.frobulate

otherproject.contrib.plugins.derper

exclude-plugins = nose2.plugins.loader.functions
nose2.plugins.outcomes

6.3.2 Configuring Plugins

Most plugins specify a config file section that may be used to configure the plugin. If nothing else, any plugin that
specifies a config file section can be set to automatically register by including always-on = True in its config:

[my-plugin]
always-on = True

Plugins may accept any number of other config values, which may be booleans, strings, integers or lists. A polite
plugin will document these options somewhere. Plugins that want to make use of nose2’s Sphinx extension as detailed
in Documenting plugins must extract all of their config values in their __init__ methods.

6.3. Configuring nose2 17

http://sphinx.pocoo.org/


nose2, Release 0.11.0

6.3.3 Test Runner Tips and Tweaks

Running Tests in a Single Module

You can use nose2.main in the same way that unittest.main (and unittest2.main) have historically
worked: to run the tests in a single module. Just put a block like the following at the end of the module:

if __name__ == '__main__':
import nose2
nose2.main()

Then run the module directly – In other words, do not run the nose2 script.

Rolling Your Own Runner

You can take more control over the test runner by foregoing the nose2 script and rolling your own. To do that, you
just need to write a script that calls nose2.discover, for instance:

if __name__ == '__main__':
import nose2
nose2.discover()

You can pass several keyword arguments to nose2.discover, all of which are detailed in the documentation for
nose2.main.PluggableTestProgram.

Altering the Default Plugin Set

To add plugin modules to the list of those automatically loaded, you can pass a list of module names to
add (the plugins) argument or exclude (excludedPlugins). You can also subclass nose2.main.
PluggableTestProgram and set the class-level defaultPlugins and excludePlugins attributes to alter
plugin loading.

When Loading Plugins from Modules is not Enough

None of which will help if you need to register a plugin instance that you’ve loaded yourself. For that, use the
extraHooks keyword argument to nose2.discover. Here, you pass in a list of 2-tuples, each of which contains
a hook name and a plugin instance to register for that hook. This allows you to register plugins that need runtime
configuration that is not easily passed in through normal channels – and also to register objects that are not nose2
plugins as hook targets. Here’s a trivial example:

if __name__ == '__main__':
import nose2

class Hello(object):
def startTestRun(self, event):

print("hello!")

nose2.discover(extraHooks=[('startTestRun', Hello())])

This can come in handy when integrating with other systems that expect you to provide a test runner that they execute,
rather than executing tests yourself (django, for instance).

18 Chapter 6. User’s Guide



nose2, Release 0.11.0

6.4 Differences: nose2 vs nose vs unittest2

6.4.1 nose2 is not nose

What’s Different

Python Versions

nose supports Python 2.4 and above, but nose2 only supports Python versions currently supported by the Python team.

Test Discovery and Loading

nose loads test modules lazily: tests in the first-loaded module are executed before the second module is imported.
nose2 loads all tests first, then begins test execution. This has some important implications.

First, it means that nose2 does not need a custom importer. nose2 imports test modules with __import__().

Second, it means that nose2 does not support all of the test project layouts that nose does. Specifically, projects that
look like this will fail to load tests correctly with nose2:

.
`-- tests

|-- more_tests
| `-- test.py
`-- test.py

To nose’s loader, those two test modules look like different modules. But to nose2’s loader, they look the same, and
will not load correctly.

Test Fixtures

nose2 supports only the same levels of fixtures as unittest2. This means class level fixtures and module level fixtures
are supported, but package-level fixtures are not. In addition, unlike nose, nose2 does not attempt to order tests named
on the command-line to group those with the same fixtures together.

Parameterized and Generator Tests

nose2 supports more kinds of parameterized and generator tests than nose, and supports all test generators in test
functions, test classes, and in unittest TestCase subclasses. nose supports them only in test functions and test classes
that do not subclass unittest.TestCase. See: Loader: Test Generators and Loader: Parameterized Tests for more.

6.4. Differences: nose2 vs nose vs unittest2 19



nose2, Release 0.11.0

Configuration

nose expects plugins to make all of their configuration parameters available as command-line options. nose2 expects
almost all configuration to be done via configuration files. Plugins should generally have only one command-line
option: the option to activate the plugin. Other configuration parameters should be loaded from config files. This
allows more repeatable test runs and keeps the set of command-line options small enough for humans to read. See:
Configuring nose2 for more.

Plugin Loading

nose uses setuptools entry points to find and load plugins. nose2 does not. Instead, nose2 requires that all plugins be
listed in config files. This ensures that no plugin is loaded into a test system just by virtue of being installed somewhere,
and makes it easier to include plugins that are part of the project under test. See: Configuring nose2 for more.

Limited support for python setup.py test

nose2 supports setuptools’ python setup.py test command, but via very different means than nose. To avoid
the internal complexity forced on nose by the fact that the setuptools test command can’t be configured with a custom
test runner, when run this way, nose2 essentially hijacks the test running process. The “test suite” that nose2.
collector.collector() returns actually is a test runner, cloaked inside of a test case. It loads and runs tests as
normal, setting up its own test runner and test result, and calls sys.exit() itself – completely bypassing the test
runner and test result that setuptools/unittest create. This may be incompatible with some projects.

Plugin API

nose2 implements a new plugin API based on the work done by Michael Foord in unittest2’s plugins branch. This
API is greatly superior to the one in nose, especially in how it allows plugins to interact with each other. But it is
different enough from the API in nose that supporting nose plugins in nose2 is not practical: plugins must be rewritten
to work with nose2. See: Writing Plugins for more.

Missing Plugins

nose2 does not include some of the more commonly-used plugins in nose. Some of nose’s builtin plugins could not be
ported to nose2 due to differences in internals. See: Plugins for nose2 for information on the plugins built in to nose2.

Internals

nose wraps or replaces everything in unittest. nose2 does a bit less: it does not wrap TestCases, and does not wrap the
test result class with a result proxy. nose2 does subclass TestProgram, and install its own loader, runner, and result
classes. It does this unconditionally, rather than allowing arguments to TestProgram.__init__() to specify the
test loader and runner. See Internals for more information.

20 Chapter 6. User’s Guide



nose2, Release 0.11.0

License

While nose was LGPL, nose2 is BSD licensed. This change was made at the request of the majority of nose contribu-
tors.

What’s the Same

Philosophy

nose2 has the same goals as nose: to extend unittest to make testing nicer and easier to understand. It aims to give
developers flexibility, power and transparency, so that common test scenarios require no extra work, and uncommon
test scenarios can be supported with minimal fuss and magic.

6.4.2 nose2 is not (exactly) unittest2/plugins

nose2 is based on the unittest2 plugins branch, but differs from it in several substantial ways. The event api not
exactly the same because nose2 can’t replace unittest.TestCase, and does not configure the test run or plugin set
globally. nose2 also has a wholly different reporting API from unittest2’s plugins, to better support some common
cases (like adding extra information to error output). nose2 also defers more work to plugins than unittest2: the
test loader, runner and result are just plugin callers, and all of the logic of test discovery, running and reporting is
implemented in plugins. This means that unlike unittest2, nose2 includes a substantial set of plugins that are active
by default.

6.5 Plugins for nose2

6.5.1 Built in and Loaded by Default

These plugins are loaded by default. To exclude one of these plugins from loading, add the plugin’s fully qualified
module name to the exclude-plugins list in a config file’s [unittest] section, or pass the plugin module with
the --exclude-plugin argument on the command line. You can also pass plugin module names to exclude to a
nose2.main.PluggableTestProgram using the excludePlugins keyword argument.

Loader: Test discovery

Discovery-based test loader.

This plugin implements nose2’s automatic test module discovery. It looks for test modules in packages and directories
whose names start with test, then fires the loadTestsFromModule() hook for each one to allow other plugins
to load the actual tests.

It also fires handleFile() for every file that it sees, and matchPath() for every Python module, to allow other
plugins to load tests from other kinds of files and to influence which modules are examined for tests.

6.5. Plugins for nose2 21



nose2, Release 0.11.0

Configuration [discovery]

always-on

Default True

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[discovery]
always-on = True

Plugin class reference: DiscoveryLoader

class nose2.plugins.loader.discovery.DiscoveryLoader(*args, **kwargs)
Loader plugin that can discover tests

loadTestsFromName(event)
Load tests from module named by event.name

loadTestsFromNames(event)
Discover tests if no test names specified

Loader: Test Functions

Load tests from test functions in modules.

This plugin responds to loadTestsFromModule() by adding test cases for all test functions in the module to
event.extraTests. It uses session.testMethodPrefix to find test functions.

Functions that are generators, have param lists, or take arguments are not collected.

This plugin also implements loadTestsFromName() to enable loading tests from dotted function names passed
on the command line.

Fixtures

Test functions can specify setup and teardown fixtures as attributes on the function, for example:

x = 0

def test():
assert x

def setup():
global x
x = 1

def teardown():
global x
x = 1

(continues on next page)

22 Chapter 6. User’s Guide



nose2, Release 0.11.0

(continued from previous page)

test.setup = setup
test.teardown = teardown

The setup attribute may be named setup, setUp or setUpFunc. The teardown attribute may be named
teardown, tearDown or tearDownFunc.

Other attributes

The other significant attribute that may be set on a test function is paramList. When paramList is set, the
function will be collected by the parameterized test loader. The easiest way to set paramList is with the nose2.
tools.params() decorator.

Configuration [functions]

always-on

Default True

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[functions]
always-on = True

Plugin class reference: Functions

class nose2.plugins.loader.functions.Functions(*args, **kwargs)
Loader plugin that loads test functions

loadTestsFromModule(event)
Load test functions from event.module

loadTestsFromName(event)
Load test if event.name is the name of a test function

Loader: Test Generators

Load tests from generators.

This plugin implements loadTestFromTestCase(), loadTestsFromName() and
loadTestFromModule() to enable loading tests from generators.

Generators may be functions or methods in test cases. In either case, they must yield a callable and arguments for that
callable once for each test they generate. The callable and arguments may all be in one tuple, or the arguments may be
grouped into a separate tuple:

6.5. Plugins for nose2 23



nose2, Release 0.11.0

def test_gen():
yield check, 1, 2
yield check, (1, 2)

To address a particular generated test via a command-line test name, append a colon (‘:’) followed by the index
(starting from 1) of the generated case you want to execute.

Configuration [generators]

always-on

Default True

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[generators]
always-on = True

Plugin class reference: Generators

class nose2.plugins.loader.generators.Generators(*args, **kwargs)
Loader plugin that loads generator tests

getTestCaseNames(event)
Get generator test case names from test case class

loadTestsFromModule(event)
Load tests from generator functions in a module

loadTestsFromName(event)
Load tests from generator named on command line

loadTestsFromTestCase(event)
Load generator tests from test case

Loader: Parameterized Tests

Load tests from parameterized functions and methods.

This plugin implements getTestCaseNames(), loadTestsFromModule(), and loadTestsFromName()
to support loading tests from parameterized test functions and methods.

To parameterize a function or test case method, use nose2.tools.params().

To address a particular parameterized test via a command-line test name, append a colon (‘:’) followed by the index
(starting from 1) of the case you want to execute.

24 Chapter 6. User’s Guide



nose2, Release 0.11.0

Such And The Parameters Plugin

The parameters plugin can work with the Such DSL, as long as the first argument of the test function is the “case”
argument, followed by the other parameters:

from nose2.tools import such
from nose2.tools.params import params

with such.A('foo') as it:
@it.should('do bar')
@params(1,2,3)
def test(case, bar):

case.assertTrue(isinstance(bar, int))

@it.should('do bar and extra')
@params((1, 2), (3, 4) ,(5, 6))
def testExtraArg(case, bar, foo):

case.assertTrue(isinstance(bar, int))
case.assertTrue(isinstance(foo, int))

it.createTests(globals())

Configuration [parameters]

always-on

Default True

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[parameters]
always-on = True

Plugin class reference: Parameters

class nose2.plugins.loader.parameters.Parameters(*args, **kwargs)
Loader plugin that loads parameterized tests

getTestCaseNames(event)
Generate test case names for all parameterized methods

loadTestsFromModule(event)
Load tests from parameterized test functions in the module

loadTestsFromName(event)
Load parameterized test named on command line

6.5. Plugins for nose2 25



nose2, Release 0.11.0

Loader: Test Cases

Load tests from unittest.TestCase subclasses.

This plugin implements loadTestsFromName() and loadTestsFromModule() to load tests from
unittest.TestCase subclasses found in modules or named on the command line.

Configuration [testcases]

always-on

Default True

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[testcases]
always-on = True

Plugin class reference: TestCaseLoader

class nose2.plugins.loader.testcases.TestCaseLoader(*args, **kwargs)
Loader plugin that loads from test cases

loadTestsFromModule(event)
Load tests in unittest.TestCase subclasses

loadTestsFromName(event)
Load tests from event.name if it names a test case/method

Loader: Test Classes

Load tests from classes that are not unittest.TestCase subclasses.

This plugin responds to loadTestsFromModule() by adding test cases for test methods found in classes in the
module that are not sublcasses of unittest.TestCase, but whose names (lowercased) match the configured test
method prefix.

Test class methods that are generators or have param lists are not loaded here, but by the nose2.plugins.
loader.generators.Generators and nose2.plugins.loader.parameters.Parameters plug-
ins.

This plugin also implements loadTestsFromName() to enable loading tests from dotted class and method names
passed on the command line.

This plugin makes two additional plugin hooks available for other test loaders to use:

nose2.plugins.loader.testclasses.loadTestsFromTestClass(self, event)

Parameters event – A LoadFromTestClassEvent instance

26 Chapter 6. User’s Guide



nose2, Release 0.11.0

Plugins can use this hook to load tests from a class that is not a unittest.TestCase subclass. To prevent
other plugins from loading tests from the test class, set event.handled to True and return a test suite.
Plugins can also append tests to event.extraTests. Ususally, that’s what you want, since it allows other
plugins to load their tests from the test case as well.

nose2.plugins.loader.testclasses.getTestMethodNames(self, event)

Parameters event – A GetTestMethodNamesEvent instance

Plugins can use this hook to limit or extend the list of test case names that will be loaded from a class that
is not a unittest.TestCase subclass by the standard nose2 test loader plugins (and other plugins that
respect the results of the hook). To force a specific list of names, set event.handled to True and return a
list: this exact list will be the only test case names loaded from the test case. Plugins can also extend the list
of names by appending test names to event.extraNames, and exclude names by appending test names to
event.excludedNames.

About Test Classes

Test classes are classes that look test-like but are not subclasses of unittest.TestCase. Test classes support all
of the same test types and fixtures as test cases.

To “look test-like” a class must have a name that, lowercased, matches the configured test method prefix – “test” by
default. Test classes must also be able to be instantiated without arguments.

What are they useful for? Mostly the case where a test class can’t for some reason subclass unittest.TestCase.
Otherwise, test class tests and test cases are functionally equivalent in nose2, and test cases have broader support and
all of those helpful assert* methods – so when in doubt, you should use a unittest.TestCase.

Here’s an example of a test class:

class TestSomething(object):

def test(self):
assert self.something(), "Something failed!"

Configuration [test-classes]

always-on

Default True

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[test-classes]
always-on = True

6.5. Plugins for nose2 27



nose2, Release 0.11.0

Plugin class reference: TestClassLoader

class nose2.plugins.loader.testclasses.TestClassLoader(*args, **kwargs)
Loader plugin that loads test functions

loadTestsFromModule(event)
Load test classes from event.module

loadTestsFromName(event)
Load tests from event.name if it names a test class/method

register()
Install extra hooks

Adds the new plugin hooks:

• loadTestsFromTestClass

• getTestMethodNames

Loader: load_tests protocol

Loader that implements the load_tests protocol.

This plugin implements the load_tests protocol as detailed in the documentation for unittest2.

See the load_tests protocol documentation for more information.

Warning: Test suites using the load_tests protocol do not work correctly with the multiprocess plugin
as of nose2 04. This will be fixed in a future release.

Configuration [load_tests]

always-on

Default True

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[load_tests]
always-on = True

28 Chapter 6. User’s Guide

http://docs.python.org/library/unittest.html#load-tests-protocol


nose2, Release 0.11.0

Plugin class reference: LoadTestsLoader

class nose2.plugins.loader.loadtests.LoadTestsLoader(*args, **kwargs)
Loader plugin that implements load_tests.

handleDir(event)
Run load_tests in packages.

If a package itself matches the test file pattern, run load_tests in its __init__.py, and stop default
test discovery for that package.

moduleLoadedSuite(event)
Run load_tests in a module.

May add to or filter tests loaded in module.

Default filter: __test__

This plugin implements startTestRun(), which excludes all test objects that define a __test__ attribute that
evaluates to False.

Plugin class reference: DunderTestFilter

class nose2.plugins.dundertest.DunderTestFilter(*args, **kwargs)
Exclude all tests defining a __test__ attribute that evaluates to False.

startTestRun(event)
Recurse event.suite and remove all test suites and test cases that define a __test__ attribute that
evaluates to False.

Reporting test results

Collect and report test results.

This plugin implements the primary user interface for nose2. It collects test outcomes and reports on them to the
console, as well as firing several hooks for other plugins to do their own reporting.

To see this report, nose2 MUST be run with the verbose flag:

nose2 --verbose

This plugin extends standard unittest console reporting slightly by allowing custom report categories. To put events
into a custom reporting category, change the event.outcome to whatever you want. Note, however, that customer
categories are not treated as errors or failures for the purposes of determining whether a test run has succeeded.

Don’t disable this plugin, unless you (a) have another one doing the same job, or (b) really don’t want any test results
(and want all test runs to exit(1)).

6.5. Plugins for nose2 29



nose2, Release 0.11.0

Configuration [test-result]

always-on

Default True

Type boolean

descriptions

Default True

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[test-result]
always-on = True
descriptions = True

Plugin class reference: ResultReporter

class nose2.plugins.result.ResultReporter(*args, **kwargs)
Result plugin that implements standard unittest console reporting

afterTestRun(event)
Handle afterTestRun hook

• prints error lists

• prints summary

• fires summary reporting hooks (beforeErrorList(), beforeSummaryReport(), etc)

startTest(event)
Handle startTest hook

• prints test description if verbosity > 1

testOutcome(event)
Handle testOutcome hook

• records test outcome in reportCategories

• prints test outcome label

• fires reporting hooks (reportSuccess(), reportFailure(), etc)

30 Chapter 6. User’s Guide



nose2, Release 0.11.0

Buffering test output

Buffer stdout and/or stderr during test execution, appending any output to the error reports of failed tests.

This allows you to use print for debugging in tests without making your test runs noisy.

This plugin implements startTest(), stopTest(), setTestOutcome(), outcomeDetail(),
beforeInteraction() and afterInteraction() to manage capturing sys.stdout and/or sys.stderr into
buffers, attaching the buffered output to test error report detail, and getting out of the way when other plugins want to
talk to the user.

Configuration [output-buffer]

always-on

Default False

Type boolean

stderr

Default False

Type boolean

stdout

Default True

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[output-buffer]
always-on = False
stderr = False
stdout = True

Command-line options

-B DEFAULT, --output-buffer DEFAULT
Enable output buffer

Plugin class reference: OutputBufferPlugin

class nose2.plugins.buffer.OutputBufferPlugin(*args, **kwargs)
Buffer output during test execution

afterInteraction(event)
Start buffering again (does not clear buffers)

beforeInteraction(event)
Stop buffering so users can see stdout

6.5. Plugins for nose2 31



nose2, Release 0.11.0

outcomeDetail(event)
Add buffered output to event.extraDetail

setTestOutcome(event)
Attach buffer(s) to event.metadata

startTest(event)
Start buffering selected stream(s)

stopTest(event)
Stop buffering

Dropping Into the Debugger

Start a pdb.post_mortem() on errors and failures.

This plugin implements testOutcome() and will drop into pdb whenever it sees a test outcome that includes
exc_info.

It fires beforeInteraction() before launching pdb and afterInteraction() after. Other plugins may im-
plement beforeInteraction() to return False and set event.handled to prevent this plugin from launch-
ing pdb.

Configuration [debugger]

always-on

Default False

Type boolean

errors-only

Default False

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[debugger]
always-on = False
errors-only = False

Command-line options

-D DEFAULT, --debugger DEFAULT
Enter pdb on test fail or error

32 Chapter 6. User’s Guide



nose2, Release 0.11.0

Plugin class reference: Debugger

class nose2.plugins.debugger.Debugger(*args, **kwargs)
Enter pdb on test error or failure

pdb
For ease of mocking and using different pdb implementations, pdb is aliased as a class attribute.

pdb = <module 'pdb' from '/usr/lib64/python3.9/pdb.py'>

testOutcome(event)
Drop into pdb on unexpected errors or failures

Stopping After the First Error or Failure

Stop the test run after the first error or failure.

This plugin implements testOutcome() and sets event.result.shouldStop if it sees an outcome with
exc_info that is not expected.

Command-line options

-F DEFAULT, --fail-fast DEFAULT
Stop the test run after the first error or failure

Plugin class reference: FailFast

class nose2.plugins.failfast.FailFast(*args, **kwargs)
Stop the test run after error or failure

resultCreated(event)
Mark new result

testOutcome(event)
Stop on unexpected error or failure

Capturing log messages

Capture log messages during test execution, appending them to the error reports of failed tests.

This plugin implements startTestRun(), startTest(), stopTest(), setTestOutcome(), and
outcomeDetail() to set up a logging configuration that captures log messages during test execution, and appends
them to error reports for tests that fail or raise exceptions.

6.5. Plugins for nose2 33



nose2, Release 0.11.0

Configuration [log-capture]

always-on

Default False

Type boolean

clear-handlers

Default False

Type boolean

date-format

Default None

Type str

filter

Default [‘-nose’]

Type list

format

Default %(name)s: %(levelname)s: %(message)s

Type str

log-level

Default NOTSET

Type str

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[log-capture]
always-on = False
clear-handlers = False
filter = -nose
format = %(name)s: %(levelname)s: %(message)s
log-level = NOTSET

Command-line options

--log-capture DEFAULT
Enable log capture

34 Chapter 6. User’s Guide



nose2, Release 0.11.0

Plugin class reference: LogCapture

class nose2.plugins.logcapture.LogCapture(*args, **kwargs)
Capture log messages during test execution

outcomeDetail(event)
Append captured log messages to event.extraDetail

setTestOutcome(event)
Store captured log messages in event.metadata

startTest(event)
Set up handler for new test

startTestRun(event)
Set up logging handler

stopTest(event)
Clear captured messages, ready for next test

Test coverage reporting

Use this plugin to activate coverage report.

To use this plugin, you need to install nose2[coverage_plugin]. e.g.

$ pip install nose2[coverage_plugin]>=0.6.5

Then, you can enable coverage reporting with :

$ nose2 --with-coverage

Or with this lines in unittest.cfg :

[coverage]
always-on = True

You can further specify coverage behaviors with a .coveragerc file, as specified by Coverage Config. However,
when doing so you should also be aware of Differences From coverage.

Configuration [coverage]

always-on

Default False

Type boolean

coverage

Default []

Type list

coverage-config

Default

Type str

6.5. Plugins for nose2 35

http://coverage.readthedocs.io/en/latest/config.html


nose2, Release 0.11.0

coverage-report

Default []

Type list

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[coverage]
always-on = False
coverage =
coverage-config =
coverage-report =

Command-line options

--coverage PATH
Measure coverage for filesystem path (multi-allowed)

--coverage-report TYPE
Generate selected reports, available types: term, term-missing, annotate, html, xml (multi-allowed)

--coverage-config FILE
Config file for coverage, default: .coveragerc

-C DEFAULT, --with-coverage DEFAULT
Turn on coverage reporting

Plugin class reference: Coverage

class nose2.plugins.coverage.Coverage(*args, **kwargs)

afterSummaryReport(event)
Reporting data is collected, failure status determined and set. Now print any buffered error output saved
from beforeSummaryReport

beforeSummaryReport(event)
Only called if active so stop coverage and produce reports.

createTests(event)
Start coverage early to catch imported modules.

Only called if active so, safe to just start without checking flags

handleArgs(event)
Get our options in order command line, config file, hard coded.

wasSuccessful(event)
Mark full test run as successful or unsuccessful

36 Chapter 6. User’s Guide



nose2, Release 0.11.0

Differences From coverage

The coverage tool is the basis for nose2’s coverage reporting. nose2 will seek to emulate coverage behavior
whenever possible, but there are known cases where this is not feasible.

If you need the exact behaviors of coverage, consider having coverage invoke nose2.

Otherwise, please be aware of the following known differences:

• The fail_under parameter results in an exit status of 2 for coverage, but an exit status of 1 for nose2

Compatibility with mp plugin

The coverage and mp plugins may be used in conjuction to enable multiprocess testing with coverage reporting.

Special instructions:

• Due to the way the plugin is reloaded in subprocesses, command-line options for the coverage plugin have
no effect. If you need to change any coverage plugin options, use a configuration file.

• Do not use the concurrency option within a .coveragerc file ; this interferes with the coverage plugin,
which automatically handles multiprocess coverage reporting.

Use assert statements in tests

Make assert statements print pretty output, including source.

This makes assert x == y more usable, as an alternative to self.assertEqual(x, y)

This plugin implements outcomeDetail() and checks for event.exc_info If it finds that an AssertionError hap-
pened, it will inspect the traceback and add additional detail to the error report.

Configuration [pretty-assert]

always-on

Default False

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[pretty-assert]
always-on = False

6.5. Plugins for nose2 37



nose2, Release 0.11.0

Command-line options

--pretty-assert DEFAULT
Add pretty output for “assert” statements

Plugin class reference: PrettyAssert

class nose2.plugins.prettyassert.PrettyAssert(*args, **kwargs)
Add pretty output for “assert” statements

static addAssertDetail(extraDetail, exc, trace)
Add details to output regarding AssertionError and its context

extraDetail: a list of lines which will be joined with newlines and added to the output for this test failure –
defined as part of the event format

exc: the AssertionError exception which was thrown

trace: a traceback object for the exception

assert statement inspection

The prettyassert plugin works by inspecting the stack frame which raised an AssertionError. Unlike pytest’s assertion
rewriting code, it does not modify the built-in AssertionError.

As a result, it is somewhat limited in its capabilities – it can only report the bound values from that stack frame. That
means that this type of statement works well:

x = f()
y = g()
assert x == y

but this type of statement does not:

assert f() == g()

It will still run, but the prettyassert will tell you that f and g are functions, not what they evaluated to. This is probably
not what you want.

attribute resolution

The assertion inspection will resolve attributes, so that expressions like this will work as well:

assert x.foo == 1

But note that the attribute x.foo will be resolved twice in this case, if the assertion fails. Once when the assertion is
evaluated, and again when it is inspected.

As a result, properties with dynamic values may not behave as expected under prettyassert inspection.

38 Chapter 6. User’s Guide



nose2, Release 0.11.0

6.5.2 Built in but not Loaded by Default

These plugins are available as part of the nose2 package but are not loaded by default. To load one of these plugins, add
the plugin module name (as dot-separated, fully qualified name) to the plugins list in a config file’s [unittest]
section, or pass the plugin module with the --plugin argument on the command line. You can also pass plugin
module names to a nose2.main.PluggableTestProgram using the plugins keyword argument.

Outputting XML Test Reports

Note: New in version 0.2

Output test reports in junit-xml format.

This plugin implements startTest(), testOutcome() and stopTestRun() to compile and then output a
test report in junit-xml format. By default, the report is written to a file called nose2-junit.xml in the current
working directory.

You can configure the output filename by setting path in a [junit-xml] section in a config file. Unicode characters
which are invalid in XML 1.0 are replaced with the U+FFFD replacement character. In the case that your software
throws an error with an invalid byte string.

By default, the ranges of discouraged characters are replaced as well. This can be changed by setting the
keep_restricted configuration variable to True.

By default, the arguments of parametrized and generated tests are not printed. For instance, the following code:

# a.py

from nose2 import tools

def test_gen():
def check(a, b):

assert a == b, '{}!={}'.format(a,b)

yield check, 99, 99
yield check, -1, -1

@tools.params('foo', 'bar')
def test_params(arg):

assert arg in ['foo', 'bar', 'baz']

Produces this XML by default:

<testcase classname="a" name="test_gen:1" time="0.000171"
timestamp="2021-12-09T21:28:09.686611">

<system-out />
</testcase>
<testcase classname="a" name="test_gen:2" time="0.000202"
timestamp="2021-12-09T21:28:09.686813">

<system-out />
</testcase>
<testcase classname="a" name="test_params:1" time="0.000159"
timestamp="2021-12-09T21:28:09.686972">

<system-out />
</testcase>

(continues on next page)

6.5. Plugins for nose2 39



nose2, Release 0.11.0

(continued from previous page)

<testcase classname="a" name="test_params:2" time="0.000163"
timestamp="2021-12-09T21:28:09.687135">

<system-out />
</testcase>

But if test_fullname is True, then the following XML is produced:

<testcase classname="a" name="test_gen:1 (99, 99)" time="0.000213"
timestamp="2021-12-09T21:28:09.686611">

<system-out />
</testcase>
<testcase classname="a" name="test_gen:2 (-1, -1)" time="0.000194"
timestamp="2021-12-09T21:28:09.687105">

<system-out />
</testcase>
<testcase classname="a" name="test_params:1 ('foo')" time="0.000178"
timestamp="2021-12-09T21:28:09.687283">

<system-out />
</testcase>
<testcase classname="a" name="test_params:2 ('bar')" time="0.000187"
timestamp="2021-12-09T21:28:09.687470">

<system-out />
</testcase>

Enable this Plugin

This plugin is built-in, but not loaded by default.

Even if you specify always-on = True in the configuration, it will not run unless you also enable it. You can do
so by putting the following in a unittest.cfg or nose2.cfg file

[unittest]
plugins = nose2.plugins.junitxml

The plugins parameter may contain a list of plugin names, including nose2.plugins.junitxml

Configuration [junit-xml]

always-on

Default False

Type boolean

keep_restricted

Default False

Type boolean

path

Default nose2-junit.xml

Type str

test_fullname

40 Chapter 6. User’s Guide



nose2, Release 0.11.0

Default False

Type boolean

test_properties

Default None

Type str

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[junit-xml]
always-on = False
keep_restricted = False
path = nose2-junit.xml
test_fullname = False

Command-line options

--junit-xml-path FILE
Output XML filename

-X DEFAULT, --junit-xml DEFAULT
Generate junit-xml output report

Plugin class reference: JUnitXmlReporter

class nose2.plugins.junitxml.JUnitXmlReporter(*args, **kwargs)
Output junit-xml test report to file

handleArgs(event)
Read option from command line and override the value in config file when necessary

startTest(event)
Count test, record start time

stopTestRun(event)
Output xml tree to file

testOutcome(event)
Add test outcome to xml tree

Sample output

The XML test report for nose2’s sample scenario with tests in a package looks like this:

<testsuite errors="1" failures="5" name="nose2-junit" skips="1" tests="25" time="0.004
↪→">
<testcase classname="pkg1.test.test_things" name="test_gen:1" time="0.000141" />
<testcase classname="pkg1.test.test_things" name="test_gen:2" time="0.000093" />
<testcase classname="pkg1.test.test_things" name="test_gen:3" time="0.000086" />

(continues on next page)

6.5. Plugins for nose2 41



nose2, Release 0.11.0

(continued from previous page)

<testcase classname="pkg1.test.test_things" name="test_gen:4" time="0.000086" />
<testcase classname="pkg1.test.test_things" name="test_gen:5" time="0.000087" />
<testcase classname="pkg1.test.test_things" name="test_gen_nose_style:1" time="0.

↪→000085" />
<testcase classname="pkg1.test.test_things" name="test_gen_nose_style:2" time="0.

↪→000090" />
<testcase classname="pkg1.test.test_things" name="test_gen_nose_style:3" time="0.

↪→000085" />
<testcase classname="pkg1.test.test_things" name="test_gen_nose_style:4" time="0.

↪→000087" />
<testcase classname="pkg1.test.test_things" name="test_gen_nose_style:5" time="0.

↪→000086" />
<testcase classname="pkg1.test.test_things" name="test_params_func:1" time="0.000093

↪→" />
<testcase classname="pkg1.test.test_things" name="test_params_func:2" time="0.000098

↪→">
<failure message="test failure">Traceback (most recent call last):

File "nose2/plugins/loader/parameters.py", line 162, in func
return obj(*argSet)

File "nose2/tests/functional/support/scenario/tests_in_package/pkg1/test/test_
↪→things.py", line 64, in test_params_func

assert a == 1
AssertionError
</failure>

</testcase>
<testcase classname="pkg1.test.test_things" name="test_params_func_multi_arg:1"

↪→time="0.000094" />
<testcase classname="pkg1.test.test_things" name="test_params_func_multi_arg:2"

↪→time="0.000089">
<failure message="test failure">Traceback (most recent call last):

File "nose2/plugins/loader/parameters.py", line 162, in func
return obj(*argSet)

File "nose2/tests/functional/support/scenario/tests_in_package/pkg1/test/test_
↪→things.py", line 69, in test_params_func_multi_arg

assert a == b
AssertionError
</failure>

</testcase>
<testcase classname="pkg1.test.test_things" name="test_params_func_multi_arg:3"

↪→time="0.000096" />
<testcase classname="" name="test_fixt" time="0.000091" />
<testcase classname="" name="test_func" time="0.000084" />
<testcase classname="pkg1.test.test_things.SomeTests" name="test_failed" time="0.

↪→000113">
<failure message="test failure">Traceback (most recent call last):

File "nose2/tests/functional/support/scenario/tests_in_package/pkg1/test/test_
↪→things.py", line 17, in test_failed

assert False, "I failed"
AssertionError: I failed
</failure>

</testcase>
<testcase classname="pkg1.test.test_things.SomeTests" name="test_ok" time="0.000093

↪→" />
<testcase classname="pkg1.test.test_things.SomeTests" name="test_params_method:1"

↪→time="0.000099" />
<testcase classname="pkg1.test.test_things.SomeTests" name="test_params_method:2"

↪→time="0.000101">
(continues on next page)

42 Chapter 6. User’s Guide



nose2, Release 0.11.0

(continued from previous page)

<failure message="test failure">Traceback (most recent call last):
File "nose2/plugins/loader/parameters.py", line 144, in _method
return method(self, *argSet)

File "nose2/tests/functional/support/scenario/tests_in_package/pkg1/test/test_
↪→things.py", line 29, in test_params_method

self.assertEqual(a, 1)
AssertionError: 2 != 1
</failure>

</testcase>
<testcase classname="pkg1.test.test_things.SomeTests" name="test_skippy" time="0.

↪→000104">
<skipped />

</testcase>
<testcase classname="pkg1.test.test_things.SomeTests" name="test_typeerr" time="0.

↪→000096">
<error message="test failure">Traceback (most recent call last):

File "nose2/tests/functional/support/scenario/tests_in_package/pkg1/test/test_
↪→things.py", line 13, in test_typeerr

raise TypeError("oops")
TypeError: oops
</error>

</testcase>
<testcase classname="pkg1.test.test_things.SomeTests" name="test_gen_method:1" time=

↪→"0.000094" />
<testcase classname="pkg1.test.test_things.SomeTests" name="test_gen_method:2" time=

↪→"0.000090">
<failure message="test failure">Traceback (most recent call last):

File "nose2/plugins/loader/generators.py", line 145, in method
return func(*args)

File "nose2/tests/functional/support/scenario/tests_in_package/pkg1/test/test_
↪→things.py", line 24, in check

assert x == 1
AssertionError
</failure>

</testcase>
</testsuite>

Selecting tests with attributes

Note: New in version 0.2

Filter tests by attribute, excluding any tests whose attributes do not match any of the specified attributes.

Attributes may be simple values or lists, and may be attributes of a test method (or function), a test case class, or the
callable yielded by a generator test.

Given the following test module, the attrib plugin can be used to select tests in the following ways (and others!):

Note: All examples assume the attrib plugin has been activated in a config file:

[unittest]
plugins = nose2.plugins.attrib

6.5. Plugins for nose2 43



nose2, Release 0.11.0

import unittest

class Test(unittest.TestCase):
def test_fast(self):

pass

test_fast.fast = 1
test_fast.layer = 2
test_fast.flags = ["blue", "green"]

def test_faster(self):
pass

test_faster.fast = 1
test_faster.layer = 1
test_faster.flags = ["red", "green"]

def test_slow(self):
pass

test_slow.fast = 0
test_slow.slow = 1
test_slow.layer = 2

def test_slower(self):
pass

test_slower.slow = 1
test_slower.layer = 3
test_slower.flags = ["blue", "red"]

Select tests having an attribute

Running nose2 like this:

nose2 -v -A fast

Runs these tests:

test_fast (attrib_example.Test) ... ok
test_faster (attrib_example.Test) ... ok

This selects all tests that define the attribute as any True value.

44 Chapter 6. User’s Guide



nose2, Release 0.11.0

Select tests that do not have an attribute

Running nose2 like this:

nose2 -v -A '!fast'

Runs these tests:

test_slow (attrib_example.Test) ... ok
test_slower (attrib_example.Test) ... ok

This selects all tests that define the attribute as a False value, and those tests that do not have the attribute at all.

Select tests having an attribute with a particular value

Running nose2 like this:

nose2 -v -A layer=2

Runs these tests:

test_fast (attrib_example.Test) ... ok
test_slow (attrib_example.Test) ... ok

This selects all tests that define the attribute with a matching value. The attribute value of each test case is converted
to a string before comparison with the specified value. Comparison is case-insensitive.

Select tests having a value in a list attribute

Running nose2 like this:

nose2 -v -A flags=red

Runs these tests:

test_faster (attrib_example.Test) ... ok
test_slower (attrib_example.Test) ... ok

Since the flags attribute is a list, this test selects all tests with the value red in their flags attribute. Comparison
done after string conversion and is case-insensitive.

Select tests that do not have a value in a list attribute

Running nose2 like this:

nose2 -v -A '!flags=red'

Runs these tests:

test_fast (attrib_example.Test) ... ok

The result in this case can be somewhat counter-intuitive. What the attrib plugin selects when you negate an
attribute that is in a list are only those tests that have the list attribute but without the value specified. Tests that do not
have the attribute at all are not selected.

6.5. Plugins for nose2 45



nose2, Release 0.11.0

Select tests using Python expressions

For more complex cases, you can use the -E command-line option to pass a Python expression that will be evaluated
in the context of each test case. Only those test cases where the expression evaluates to True (and don’t raise an
exception) will be selected.

Running nose2 like this:

nose2 -v -E '"blue" in flags and layer > 2'

Runs only one test:

test_slower (attrib_example.Test) ... ok

Command-line options

-A DEFAULT, --attribute DEFAULT
Select tests with matching attribute

-E DEFAULT, --eval-attribute DEFAULT
Select tests for whose attributes the given Python expression evaluates to True

Plugin class reference: AttributeSelector

class nose2.plugins.attrib.AttributeSelector(*args, **kwargs)
Filter tests by attribute

handleArgs(args)
Register if any attribs defined

moduleLoadedSuite(event)
Filter event.suite by specified attributes

Running Tests in Parallel with Multiple Processes

Note: New in version 0.3

Use the mp plugin to enable distribution of tests across multiple processes. Doing this may speed up your test run if
your tests are heavily IO or CPU bound. But it imposes an overhead cost that is not trivial, and it complicates the use
of test fixtures and may conflict with plugins that are not designed to work with it.

Usage

To activate the plugin, include the plugin module in the plugins list in [unittest] section in a config file:

[unittest]
plugins = nose2.plugins.mp

Or pass the module with the --plugin command-line option:

46 Chapter 6. User’s Guide



nose2, Release 0.11.0

nose2 --plugin=nose2.plugins.mp

Then configure the number of processes to run. You can do that either with the -N option:

nose2 -N 2

or by setting processes in the [multiprocess] section of a config file:

[multiprocess]
processes = 2

Note: If you make the plugin always active by setting always-on in the [multiprocess] section of a config
file, but do not set processes or pass -N , the number of processes defaults to the number of CPUs available. Also
note that a value of 0 will set the actual number of processes to the number of CPUs on the computer.

Should one wish to specify the use of internet sockets for interprocess communications, specify the bind_address
setting in the [multiprocess] section of the config file, for example:

[multiprocess]
bind_address = 127.0.0.1:1024

This will bind to port 1024 of 127.0.0.1. Also:

[multiprocess]
bind_address = 127.1.2.3

will bind to any random open port on 127.1.2.3. Any internet address or host-name which python can recognize
as such, bind, and connect is acceptable. While 0.0.0.0 can be use for listening, it is not necessarily an address to
which the OS can connect. When the port address is 0 or omitted, a random open port is used. If the setting is omitted
or blank, then sockets are not used unless nose is being executed on Windows. In which case, an address on the loop
back interface and a random port are used. Whenever used, processes employ a random shared key for authentication.

Guidelines for Test Authors

Not every test suite will work well, or work at all, when run in parallel. For some test suites, parallel execution makes
no sense. For others, it will expose bugs and ordering dependencies in test cases and test modules.

Overhead Cost

Starting subprocesses and dispatching tests takes time. A test run that includes a relatively small number of tests that
are not I/O or CPU bound (or calling time.sleep()) is likely to be slower when run in parallel.

As of this writing, for instance, nose2’s test suite takes about 10 times as long to run when using multiprocessing,
due to the overhead cost.

6.5. Plugins for nose2 47



nose2, Release 0.11.0

Shared Fixtures

The individual test processes do not share state or data after launch. This means tests that share a fixture – tests that
are loaded from modules where setUpModule is defined, and tests in test classes that define setUpClass – must
all be dispatched to the same process at the same time. So if you use these kinds of fixtures, your test runs may be less
parallel than you expect.

Tests Load Twice

Test cases may not be pickleable, so nose2 can’t transmit them directly to its test runner processes. Tests are distributed
by name. This means that tests always load twice – once in the main process, during initial collection, and then again
in the test runner process, where they are loaded by name. This may be problematic for some test suites.

Random Execution Order

Tests do not execute in the same order when run in parallel. Results will be returned in effectively random order, and
tests in the same module (as long as they do not share fixtures) may execute in any order and in different processes.
Some test suites have ordering dependencies, intentional or not, and those that do will fail randomly when run with
this plugin.

Guidelines for Plugin Authors

The MultiProcess plugin is designed to work with other plugins, but other plugins may have to return the favor,
especially if they load tests or care about something that happens during test execution.

New Methods

The MultiProcess plugin adds a few plugin hooks that other plugins can use to set themselves up for multiprocess
test runs. Plugins don’t have to do anything special to register for these hooks; just implement the methods as normal.

registerInSubprocess(self, event)

Parameters event – nose2.plugins.mp.RegisterInSubprocessEvent

The registerInSubprocess hook is called after plugin registration to enable plugins that need to run in
subprocesses to register that fact. The most common thing to do, for plugins that need to run in subprocesses,
is:

def registerInSubprocess(self, event):
event.pluginClasses.append(self.__class__)

It is not required that plugins append their own class. If for some reason there is a different plugin class, or set
of classes, that should run in the test-running subprocesses, add that class or those classes instead.

startSubprocess(self, event)

Parameters event – nose2.plugins.mp.SubprocessEvent

The startSubprocess hook fires in each test-running subprocess after it has loaded its plugins but before
any tests are executed.

Plugins can customize test execution here in the same way as in startTestRun(), by setting event.
executeTests, and prevent test execution by setting event.handled to True and returning False.

48 Chapter 6. User’s Guide



nose2, Release 0.11.0

stopSubprocess(self, event)

Parameters event – nose2.plugins.mp.SubprocessEvent

The stopSubprocess event fires just before each test running subprocess shuts down. Plugins can use this
hook for any per-process finalization that they may need to do.

The same event instance is passed to startSubprocess and stopSubprocess, which enables plugins to
use that event’s metadata to communicate state or other information from the start to the stop hooks, if needed.

New Events

The MultiProcess plugin’s new hooks come with custom event classes.

class nose2.plugins.mp.RegisterInSubprocessEvent(**metadata)
Event fired to notify plugins that multiprocess testing will occur

pluginClasses
Add a plugin class to this list to cause the plugin to be instantiated in each test-running subprocess. The
most common thing to do, for plugins that need to run in subprocesses, is:

def registerInSubprocess(self, event):
event.pluginClasses.append(self.__class__)

class nose2.plugins.mp.SubprocessEvent(loader, result, runner, plugins, connection, **meta-
data)

Event fired at start and end of subprocess execution.

loader
Test loader instance

result
Test result

plugins
List of plugins loaded in the subprocess.

connection
The multiprocessing.Connection instance that the subprocess uses for communication with the
main process.

executeTests
Callable that will be used to execute tests. Plugins may set this attribute to wrap or otherwise change test
execution. The callable must match the signature:

def execute(suite, result):
...

Stern Warning

All event attributes, including ``event.metadata``, must be pickleable. If your plugin sets any event attributes or
puts anything into event.metadata, it is your responsibility to ensure that anything you can possibly put in is
pickleable.

6.5. Plugins for nose2 49



nose2, Release 0.11.0

Do I Really Care?

If you answer yes to any of the following questions, then your plugin will not work with multiprocess testing without
modification:

• Does your plugin load tests?

• Does your plugin capture something that happens during test execution?

• Does your plugin require user interaction during test execution?

• Does your plugin set executeTests in startTestRun?

Here’s how to handle each of those cases.

Loading Tests

• Implement registerInSubprocess() as suggested to enable your plugin in the test runner processes.

Capturing Test Execution State

• Implement registerInSubprocess() as suggested to enable your plugin in the test runner processes.

• Be wary of setting event.metadata unconditionally. Your plugin will execute in the main process and in
the test runner processes, and will see setTestOutcome() and testOutcome() events in both processes.
If you unconditionally set a key in event.metadata, the plugin instance in the main process will overwrite
anything set in that key by the instance in the subprocess.

• If you need to write something to a file, implement stopSubprocess() to write a file in each test runner
process.

Overriding Test Execution

• Implement registerInSubprocess() as suggested to enable your plugin in the test runner processes and
make a note that your plugin is running under a multiprocess session.

• When running multiprocess, do not set event.executeTests in startTestRun() – instead, set it in
startSubprocess() instead. This will allow the multiprocess plugin to install its test executor in the main
process, while your plugin takes over test execution in the test runner subprocesses.

Interacting with Users

• You are probably safe because as a responsible plugin author you are already firing the interaction hooks
(beforeInteraction(), afterInteraction()) around your interactive bits, and skipping them when
the beforeInteraction() hook returns False and sets event.handled.

If you’re not doing that, start!

50 Chapter 6. User’s Guide



nose2, Release 0.11.0

Possible Issues On Windows

On windows, there are a few known bugs with respect to multiprocessing.

First, on python 2.X or old versions of 3.X, if the __main__ module accessing nose2 is a __main__.py, an assertion in
python code module multiprocessing.forkingmay fail. The bug for 3.2 is http://bugs.python.org/issue10845.

Secondly, python on windows does not use fork(). It bootstraps from a separate interpreter invocation. In certain
contexts, the “value” for a parameter will be taken as a “count” and subprocess use this to build the flag for the
command-line. E.g., If this value is 2 billion (like a hash seed), subprocess.py may attempt to built a 2gig string, and
possibly throw a MemoryError exception. The related bug is http://bugs.python.org/issue20954.

Reference

Enable this Plugin

This plugin is built-in, but not loaded by default.

Even if you specify always-on = True in the configuration, it will not run unless you also enable it. You can do
so by putting the following in a unittest.cfg or nose2.cfg file

[unittest]
plugins = nose2.plugins.mp

The plugins parameter may contain a list of plugin names, including nose2.plugins.mp

Configuration [multiprocess]

always-on

Default False

Type boolean

bind_address

Default None

Type str

processes

Default 0

Type integer

test-run-timeout

Default 60.0

Type float

6.5. Plugins for nose2 51

http://bugs.python.org/issue10845
http://bugs.python.org/issue20954


nose2, Release 0.11.0

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[multiprocess]
always-on = False
processes = 0
test-run-timeout = 60.0

Command-line options

-N DEFAULT, --processes DEFAULT
Number of processes used to run tests (0 = auto)

Plugin class reference: MultiProcess

class nose2.plugins.mp.MultiProcess(*args, **kwargs)

property procs
Get the appropriate number of procs for self.procs if self._procs is 0.

Organizing Test Fixtures into Layers

Note: New in version 0.4

Layers allow more flexible organization of test fixtures than test-, class- and module- level fixtures. Layers in nose2
are inspired by and aim to be compatible with the layers used by Zope’s testrunner.

Using layers, you can do things like:

• Implement package-level fixtures by sharing a layer among all test cases in the package.

• Share fixtures across tests in different modules without having them run multiple times.

• Create a fixture tree deeper than three levels (test, class and module).

• Make fixtures available for other packages or projects to use.

A layer is a new-style class that implements at least a setUp classmethod:

class Layer(object):
@classmethod
def setUp(cls):

# ...

It may also implement tearDown, testSetUp and testTearDown, all as classmethods.

To assign a layer to a test case, set the test case’s layer property:

class Test(unittest.TestCase):
layer = Layer

Note that the layer class is assigned, not an instance of the layer. Typically layer classes are not instantiated.

52 Chapter 6. User’s Guide



nose2, Release 0.11.0

Sub-layers

Layers may subclass other layers:

class SubLayer(Layer):
@classmethod
def setUp(cls):

# ...

In this case, all tests that belong to the sub-layer also belong to the base layer. For example for this test case:

class SubTest(unittest.TestCase):
layer = SubLayer

The setUp methods from both SubLayer and Layer will run before any tests are run. The superclass’s setup
will always run before the subclass’s setup. For teardown, the reverse: the subclass’s teardown runs before the
superclass’s.

Warning: One important thing to note: layers that subclass other layers must not call their superclass’s setUp,
tearDown, etc. The test runner will take care of organizing tests so that the superclass’s methods are called in
the right order:

Layer.setUp ->
SubLayer.setUp ->
Layer.testSetUp ->

SubLayer.testSetUp ->
TestCase.setUp
TestCase.run

TestCase.tearDown
SubLayer.testTearDown <-

Layer.testTearDown <-
SubLayer.tearDown <-

Layer.tearDown <-

If a sublayer calls it superclass’s methods directly, those methods will be called twice.

Layer method reference

class Layer
Not an actual class, but reference documentation for the methods layers can implement. There is no layer base
class. Layers must be subclasses of object or other layers.

classmethod setUp(cls)
The layer’s setUpmethod is called before any tests belonging to that layer are executed. If no tests belong
to the layer (or one of its sub-layers) then the setUp method will not be called.

classmethod tearDown(cls)
The layer’s tearDown method is called after any tests belonging to the layer are executed, if the layer’s
setUp method was called and did not raise an exception. It will not be called if the layer has no setUp
method, or if that method did not run or did raise an exception.

classmethod testSetUp(cls[, test ])
The layer’s testSetUp method is called before each test belonging to the layer (and its sub-layers). If
the method is defined to accept an argument, the test case instance is passed to the method. The method
may also be defined to take no arguments.

6.5. Plugins for nose2 53



nose2, Release 0.11.0

classmethod testTearDown(cls[, test ])
The layer’s testTearDown method is called after each test belonging to the layer (and its sub-layers), if
the layer also defines a setUpTest method and that method ran successfully (did not raise an exception)
for this test case.

Layers DSL

nose2 includes a DSL for setting up layer-using tests called “such”. Read all about it here: Such: a Functional-Test
Friendly DSL.

Pretty reports

The layers plugin module includes a second plugin that alters test report output to make the layer groupings more clear.
When activated with the --layer-reporter command-line option (or via a config file), test output that normally
looks like this:

test (test_layers.NoLayer) ... ok
test (test_layers.Outer) ... ok
test (test_layers.InnerD) ... ok
test (test_layers.InnerA) ... ok
test (test_layers.InnerA_1) ... ok
test (test_layers.InnerB_1) ... ok
test (test_layers.InnerC) ... ok
test2 (test_layers.InnerC) ... ok

----------------------------------------------------------------------
Ran 8 tests in 0.001s

OK

Will instead look like this:

test (test_layers.NoLayer) ... ok
Base

test (test_layers.Outer) ... ok
LayerD
test (test_layers.InnerD) ... ok

LayerA
test (test_layers.InnerA) ... ok

LayerB
LayerC

test (test_layers.InnerC) ... ok
test2 (test_layers.InnerC) ... ok

LayerB_1
test (test_layers.InnerB_1) ... ok

LayerA_1
test (test_layers.InnerA_1) ... ok

----------------------------------------------------------------------
Ran 8 tests in 0.002s

OK

The layer reporter plugin can also optionally colorize the keywords (by default, ‘A’, ‘having’, and ‘should’) in output
from tests defined with the such DSL.

54 Chapter 6. User’s Guide



nose2, Release 0.11.0

If you would like to change how the layer is displayed, set the description attribute.

class LayerD(Layer):
description = '*** This is a very important custom layer description ***'

Now the output will be the following:

test (test_layers.NoLayer) ... ok
Base

test (test_layers.Outer) ... ok

*** This is a very important custom layer description ***
test (test_layers.InnerD) ... ok

LayerA
test (test_layers.InnerA) ... ok

LayerB
LayerC

test (test_layers.InnerC) ... ok
test2 (test_layers.InnerC) ... ok

LayerB_1
test (test_layers.InnerB_1) ... ok

LayerA_1
test (test_layers.InnerA_1) ... ok

----------------------------------------------------------------------
Ran 8 tests in 0.002s

OK

Warnings and Caveats

Test case order and module isolation

Test cases that use layers will not execute in the same order as test cases that do not. In order to execute the layers
efficiently, the test runner must reorganize all tests in the loaded test suite to group those having like layers together
(and sub-layers under their parents). If you share layers across modules this may result in tests from one module
executing interleaved with tests from a different module.

6.5. Plugins for nose2 55



nose2, Release 0.11.0

Mixing layers with setUpClass and module fixtures

Don’t cross the streams.

The implementation of class- and module-level fixtures in unittest2 depends on introspecting the class hierarchy in-
side of the unittest.TestSuite. Since the suites that the layers plugin uses to organize tests derive from
unittest.BaseTestSuite (instead of unittest.TestSuite), class- and module- level fixtures in Test-
Case classes that use layers will be ignored.

Mixing layers and multiprocess testing

In the initial release, test suites using layers are incompatible with the multiprocess plugin. This should be fixed in a
future release.

Plugin reference

Enable this Plugin

This plugin is built-in, but not loaded by default.

Even if you specify always-on = True in the configuration, it will not run unless you also enable it. You can do
so by putting the following in a unittest.cfg or nose2.cfg file

[unittest]
plugins = nose2.plugins.layers

The plugins parameter may contain a list of plugin names, including nose2.plugins.layers

Configuration [layer-reporter]

always-on

Default False

Type boolean

colors

Default False

Type boolean

highlight-words

Default [‘A’, ‘having’, ‘should’]

Type list

indent

Default

Type str

56 Chapter 6. User’s Guide



nose2, Release 0.11.0

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[layer-reporter]
always-on = False
colors = False
highlight-words = A

having
should

indent =

Command-line options

--layer-reporter DEFAULT
Add layer information to test reports

Plugin class reference: LayerReporter

class nose2.plugins.layers.LayerReporter(*args, **kwargs)

Plugin class reference: Layers

class nose2.plugins.layers.Layers(*args, **kwargs)

Loader: Doctests

Load tests from doctests.

This plugin implements handleFile() to load doctests from text files and python modules.

To disable loading doctests from text files, configure an empty extensions list:

[doctest]
extensions =

Enable this Plugin

This plugin is built-in, but not loaded by default.

Even if you specify always-on = True in the configuration, it will not run unless you also enable it. You can do
so by putting the following in a unittest.cfg or nose2.cfg file

[unittest]
plugins = nose2.plugins.doctests

The plugins parameter may contain a list of plugin names, including nose2.plugins.doctests

6.5. Plugins for nose2 57



nose2, Release 0.11.0

Configuration [doctest]

always-on

Default False

Type boolean

extensions

Default [‘.txt’, ‘.rst’]

Type list

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[doctest]
always-on = False
extensions = .txt

.rst

Command-line options

--with-doctest DEFAULT
Load doctests from text files and modules

Plugin class reference: DocTestLoader

class nose2.plugins.doctests.DocTestLoader(*args, **kwargs)

handleFile(event)
Load doctests from text files and modules

Mapping exceptions to test outcomes

Map exceptions to test outcomes.

This plugin implements setTestOutcome() to enable simple mapping of exception classes to existing test out-
comes.

By setting a list of exception classes in a nose2 config file, you can configure exceptions that would otherwise be
treated as test errors, to be treated as failures or skips instead:

[outcomes]
always-on = True
treat-as-fail = NotImplementedError
treat-as-skip = TodoError

IOError

58 Chapter 6. User’s Guide



nose2, Release 0.11.0

Enable this Plugin

This plugin is built-in, but not loaded by default.

Even if you specify always-on = True in the configuration, it will not run unless you also enable it. You can do
so by putting the following in a unittest.cfg or nose2.cfg file

[unittest]
plugins = nose2.plugins.outcomes

The plugins parameter may contain a list of plugin names, including nose2.plugins.outcomes

Configuration [outcomes]

always-on

Default False

Type boolean

treat-as-fail

Default []

Type list

treat-as-skip

Default []

Type list

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[outcomes]
always-on = False
treat-as-fail =
treat-as-skip =

Command-line options

--set-outcomes DEFAULT
Treat some configured exceptions as failure or skips

6.5. Plugins for nose2 59



nose2, Release 0.11.0

Plugin class reference: Outcomes

class nose2.plugins.outcomes.Outcomes(*args, **kwargs)
Map exceptions to other test outcomes

setTestOutcome(event)
Update outcome, exc_info and reason based on configured mappings

Collecting tests without running them

This plugin implements startTestRun(), setting a test executor (event.executeTests) that just collects
tests without executing them. To do so it calls result.startTest, result.addSuccess and result.stopTest for each test,
without calling the test itself.

Enable this Plugin

This plugin is built-in, but not loaded by default.

Even if you specify always-on = True in the configuration, it will not run unless you also enable it. You can do
so by putting the following in a unittest.cfg or nose2.cfg file

[unittest]
plugins = nose2.plugins.collect

The plugins parameter may contain a list of plugin names, including nose2.plugins.collect

Configuration [collect-only]

always-on

Default False

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[collect-only]
always-on = False

Command-line options

--collect-only DEFAULT
Collect but do not run tests. With ‘-v’, this will output test names

60 Chapter 6. User’s Guide



nose2, Release 0.11.0

Plugin class reference: CollectOnly

class nose2.plugins.collect.CollectOnly(*args, **kwargs)
Collect but don’t run tests

collectTests(suite, result)
Collect tests, but don’t run them

startTestRun(event)
Replace event.executeTests

Using Test IDs

Allow easy test selection with test ids.

Assigns (and, in verbose mode, prints) a sequential test id for each test executed. Ids can be fed back in as test names,
and this plugin will translate them back to full test names. Saves typing!

This plugin implements reportStartTest(), loadTestsFromName(), loadTestsFromNames() and
stopTest().

Enable this Plugin

This plugin is built-in, but not loaded by default.

Even if you specify always-on = True in the configuration, it will not run unless you also enable it. You can do
so by putting the following in a unittest.cfg or nose2.cfg file

[unittest]
plugins = nose2.plugins.testid

The plugins parameter may contain a list of plugin names, including nose2.plugins.testid

Configuration [testid]

always-on

Default False

Type boolean

id-file

Default .noseids

Type str

6.5. Plugins for nose2 61



nose2, Release 0.11.0

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[testid]
always-on = False
id-file = .noseids

Command-line options

-I DEFAULT, --with-id DEFAULT
Add test ids to output

Plugin class reference: TestId

class nose2.plugins.testid.TestId(*args, **kwargs)
Allow easy test select with ids

loadIds()
Load previously pickled ‘ids’ and ‘tests’ attributes.

loadTestsFromName(event)
Load tests from a name that is an id

If the name is a number, it might be an ID assigned by us. If we can find a test to which we have assigned
that ID, event.name is changed to the test’s real ID. In this way, tests can be referred to via sequential
numbers.

loadTestsFromNames(event)
Translate test ids into test names

nextId()
Increment ID and return it.

reportStartTest(event)
Record and possibly output test id

stopTestRun(event)
Write testids file

Profiling

Profile test execution using cProfile.

This plugin implements startTestRun() and replaces event.executeTests with cProfile.Profile.
runcall(). It implements beforeSummaryReport() to output profiling information before the final test sum-
mary time. Config file options filename, sort and restrict can be used to change where profiling information
is saved and how it is presented.

Load this plugin by running nose2 with the –plugin=nose2.plugins.prof option and activate it with the –profile op-
tion,or put the corresponding entries (plugin and always_on) in the respective sections of the configuration file.

62 Chapter 6. User’s Guide



nose2, Release 0.11.0

Enable this Plugin

This plugin is built-in, but not loaded by default.

Even if you specify always-on = True in the configuration, it will not run unless you also enable it. You can do
so by putting the following in a unittest.cfg or nose2.cfg file

[unittest]
plugins = nose2.plugins.prof

The plugins parameter may contain a list of plugin names, including nose2.plugins.prof

Configuration [profiler]

always-on

Default False

Type boolean

filename

Default

Type str

restrict

Default []

Type list

sort

Default cumulative

Type str

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[profiler]
always-on = False
filename =
restrict =
sort = cumulative

6.5. Plugins for nose2 63



nose2, Release 0.11.0

Command-line options

-P DEFAULT, --profile DEFAULT
Run tests under profiler

Plugin class reference: Profiler

class nose2.plugins.prof.Profiler(*args, **kwargs)
Profile the test run

beforeSummaryReport(event)
Output profiling results

startTestRun(event)
Set up the profiler

Tracing hook execution

This plugin is primarily useful for plugin authors who want to debug their plugins.

It prints each hook that is called to stderr, along with details of the event that was passed to the hook.

To do that, this plugin overrides nose2.events.Plugin.register() and, after registration, replaces all ex-
isting nose2.events.Hook instances in session.hooks with instances of a Hook subclass that prints infor-
mation about each call.

Enable this Plugin

This plugin is built-in, but not loaded by default.

Even if you specify always-on = True in the configuration, it will not run unless you also enable it. You can do
so by putting the following in a unittest.cfg or nose2.cfg file

[unittest]
plugins = nose2.plugins.printhooks

The plugins parameter may contain a list of plugin names, including nose2.plugins.printhooks

Configuration [print-hooks]

always-on

Default False

Type boolean

64 Chapter 6. User’s Guide



nose2, Release 0.11.0

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[print-hooks]
always-on = False

Command-line options

-P DEFAULT, --print-hooks DEFAULT
Print names of hooks in order of execution

Plugin class reference: PrintHooks

class nose2.plugins.printhooks.PrintHooks(*args, **kwargs)
Print hooks as they are called

register()
Override to inject noisy hook instances.

Replaces Hook instances in self.session.hooks.hooks with noisier objects.

Sample output

PrintHooks output for a test run that discovers one standard TestCase test in a python module.

Hooks that appear indented are called from within other hooks.

handleArgs: CommandLineArgsEvent(handled=False, args=Namespace(collect_only=None,
↪→config=['unittest.cfg', 'nose2.cfg'], debugger=None, fail_fast=None, load_
↪→plugins=True, log_level=30, print_hooks=None, profile=None, start_dir='.',
↪→testNames=[], top_level_directory=None, user_config=True, verbose=0, with_id=None))

createTests: CreateTestsEvent(loader=<PluggableTestLoader>, testNames=[], module=
↪→<module '__main__' from 'bin/nose2'>)

loadTestsFromNames: LoadFromNames(names=[], module=None)

handleFile: HandleFileEvent(handled=False, loader=<PluggableTestLoader>, name=
↪→'tests.py', path='nose2/tests/functional/support/scenario/one_test/tests.py',
↪→pattern='test*.py', topLevelDirectory='nose2/tests/functional/support/scenario/one_
↪→test')

matchPath: MatchPathEvent(handled=False, name='tests.py', path='nose2/tests/
↪→functional/support/scenario/one_test/tests.py', pattern='test*.py')

loadTestsFromModule: LoadFromModuleEvent(handled=False, loader=<PluggableTestLoader>
↪→, module=<module 'tests' from 'nose2/tests/functional/support/scenario/one_test/
↪→tests.py'>, extraTests=[])

loadTestsFromTestCase: LoadFromTestCaseEvent(handled=False, loader=
↪→<PluggableTestLoader>, testCase=<class 'tests.Test'>, extraTests=[])

getTestCaseNames: GetTestCaseNamesEvent(handled=False, loader=
↪→<PluggableTestLoader>, testCase=<class 'tests.Test'>, testMethodPrefix=None,
↪→extraNames=[], excludedNames=[], isTestMethod=<function isTestMethod at 0x1fccc80>)

(continues on next page)

6.5. Plugins for nose2 65



nose2, Release 0.11.0

(continued from previous page)

handleFile: HandleFileEvent(handled=False, loader=<PluggableTestLoader>, name=
↪→'tests.pyc', path='nose2/tests/functional/support/scenario/one_test/tests.pyc',
↪→pattern='test*.py', topLevelDirectory='nose2/tests/functional/support/scenario/one_
↪→test')

runnerCreated: RunnerCreatedEvent(handled=False, runner=<PluggableTestRunner>)

resultCreated: ResultCreatedEvent(handled=False, result=<PluggableTestResult>)

startTestRun: StartTestRunEvent(handled=False, runner=<PluggableTestRunner>, suite=
↪→<unittest2.suite.TestSuite tests=[<unittest2.suite.TestSuite tests=[<unittest2.
↪→suite.TestSuite tests=[<tests.Test testMethod=test>]>]>]>, result=
↪→<PluggableTestResult>, startTime=1327346684.77457, executeTests=<function <lambda>
↪→at 0x1fccf50>)

startTest: StartTestEvent(handled=False, test=<tests.Test testMethod=test>, result=
↪→<PluggableTestResult>, startTime=1327346684.774765)

reportStartTest: ReportTestEvent(handled=False, testEvent=<nose2.events.
↪→StartTestEvent object at 0x1fcd650>, stream=<nose2.util._WritelnDecorator object at
↪→0x1f97a10>)

setTestOutcome: TestOutcomeEvent(handled=False, test=<tests.Test testMethod=test>,
↪→result=<PluggableTestResult>, outcome='passed', exc_info=None, reason=None,
↪→expected=True, shortLabel=None, longLabel=None)

testOutcome: TestOutcomeEvent(handled=False, test=<tests.Test testMethod=test>,
↪→result=<PluggableTestResult>, outcome='passed', exc_info=None, reason=None,
↪→expected=True, shortLabel=None, longLabel=None)

reportSuccess: ReportTestEvent(handled=False, testEvent=<nose2.events.
↪→TestOutcomeEvent object at 0x1fcd650>, stream=<nose2.util._WritelnDecorator object
↪→at 0x1f97a10>)
.
stopTest: StopTestEvent(handled=False, test=<tests.Test testMethod=test>, result=
↪→<PluggableTestResult>, stopTime=1327346684.775064)

stopTestRun: StopTestRunEvent(handled=False, runner=<PluggableTestRunner>, result=
↪→<PluggableTestResult>, stopTime=1327346684.77513, timeTaken=0.00056004524230957031)

afterTestRun: StopTestRunEvent(handled=False, runner=<PluggableTestRunner>, result=
↪→<PluggableTestResult>, stopTime=1327346684.77513, timeTaken=0.00056004524230957031)

beforeErrorList: ReportSummaryEvent(handled=False, stopTestEvent=<nose2.events.
↪→StopTestRunEvent object at 0x1eb0d90>, stream=<nose2.util._WritelnDecorator object
↪→at 0x1f97a10>, reportCategories={'failures': [], 'skipped': [], 'errors': [],
↪→'unexpectedSuccesses': [], 'expectedFailures': []})
----------------------------------------------------------------------

beforeSummaryReport: ReportSummaryEvent(handled=False, stopTestEvent=<nose2.events.
↪→StopTestRunEvent object at 0x1eb0d90>, stream=<nose2.util._WritelnDecorator object
↪→at 0x1f97a10>, reportCategories={'failures': [], 'skipped': [], 'errors': [],
↪→'unexpectedSuccesses': [], 'expectedFailures': []})
Ran 1 test in 0.001s

(continues on next page)

66 Chapter 6. User’s Guide



nose2, Release 0.11.0

(continued from previous page)

wasSuccessful: ResultSuccessEvent(handled=False, result=<PluggableTestResult>,
↪→success=False)
OK

afterSummaryReport: ReportSummaryEvent(handled=False, stopTestEvent=<nose2.events.
↪→StopTestRunEvent object at 0x1eb0d90>, stream=<nose2.util._WritelnDecorator object
↪→at 0x1f97a10>, reportCategories={'failures': [], 'skipped': [], 'errors': [],
↪→'unexpectedSuccesses': [], 'expectedFailures': []})

Loader: Egg Test discovery

What is Egg Discovery

Sometimes Python Eggs are marked as zip-safe and they can be installed zipped, instead of unzipped in an .egg
folder. See http://peak.telecommunity.com/DevCenter/PythonEggs for more details. The normal nose2.plugins.
loader.discovery plugin ignores modules located inside zip files.

The Egg Discovery plugin allows nose2 to discover tests within these zipped egg files.

This plugin requires pkg_resources (from setuptools) to work correctly.

Usage

To activate the plugin, include the plugin module in the plugins list in [unittest] section in a config file:

[unittest]
plugins = nose2.plugins.loader.eggdiscovery

Or pass the module with the --plugin command-line option:

nose2 --plugin=nose2.plugins.loader.eggdiscovery module_in_egg

Reference

Egg-based discovery test loader.

This plugin implements nose2’s automatic test module discovery inside Egg Files. It looks for test modules in packages
whose names start with test, then fires the loadTestsFromModule() hook for each one to allow other plugins
to load the actual tests.

It also fires handleFile() for every file that it sees, and matchPath() for every Python module, to allow other
plugins to load tests from other kinds of files and to influence which modules are examined for tests.

6.5. Plugins for nose2 67

http://peak.telecommunity.com/DevCenter/PythonEggs


nose2, Release 0.11.0

Enable this Plugin

This plugin is built-in, but not loaded by default.

Even if you specify always-on = True in the configuration, it will not run unless you also enable it. You can do
so by putting the following in a unittest.cfg or nose2.cfg file

[unittest]
plugins = nose2.plugins.loader.eggdiscovery

The plugins parameter may contain a list of plugin names, including nose2.plugins.loader.
eggdiscovery

Configuration [discovery]

always-on

Default True

Type boolean

Sample configuration

The default configuration is equivalent to including the following in a unittest.cfg file.

[discovery]
always-on = True

Plugin class reference: EggDiscoveryLoader

class nose2.plugins.loader.eggdiscovery.EggDiscoveryLoader(*args, **kwargs)
Loader plugin that can discover tests inside Egg Files

loadTestsFromName(event)
Load tests from module named by event.name

loadTestsFromNames(event)
Discover tests if no test names specified

6.5.3 Third-party Plugins

If you are a plugin author, please add your plugin to the list on the nose2 wiki. If you are looking for more plugins,
check that list!

68 Chapter 6. User’s Guide

https://github.com/nose-devs/nose2/wiki/Plugins


nose2, Release 0.11.0

6.6 Tools and Helpers

6.6.1 Tools for Test Authors

Decorators

nose2 ships with various decorators that assist you to write your tests.

Setup & Teardown

nose2.tools.decorators.with_setup(setup)
A decorator that sets the setup() method to be executed before the test.

It currently works only for function test cases.

Parameters setup (function) – The method to be executed before the test.

nose2.tools.decorators.with_teardown(teardown)
A decorator that sets the teardown() method to be after before the test.

It currently works only for function test cases.

Parameters teardown (function) – The method to be executed after the test.

Parameterized tests

nose2.tools.params(*paramList)
Make a test function or method parameterized by parameters.

import unittest

from nose2.tools import params

@params(1, 2, 3)
def test_nums(num):

assert num < 4

class Test(unittest.TestCase):

@params((1, 2), (2, 3), (4, 5))
def test_less_than(self, a, b):

assert a < b

Parameters in the list may be defined as simple values, or as tuples. To pass a tuple as a simple value, wrap it in
another tuple.

See also: Loader: Parameterized Tests

6.6. Tools and Helpers 69



nose2, Release 0.11.0

Such: a Functional-Test Friendly DSL

Note: New in version 0.4

Such is a DSL for writing tests with expensive, nested fixtures – which typically means functional tests. It requires the
layers plugin (see Organizing Test Fixtures into Layers).

What does it look like?

Unlike some python testing DSLs, such is just plain old python.

import unittest

from nose2.tools import such

class SomeLayer(object):
@classmethod
def setUp(cls):

it.somelayer = True

@classmethod
def tearDown(cls):

del it.somelayer

#
# Such tests start with a declaration about the system under test
# and will typically bind the test declaration to a variable with
# a name that makes nice sentences, like 'this' or 'it'.
#
with such.A("system with complex setup") as it:

#
# Each layer of tests can define setup and teardown methods.
# setup and teardown methods defined here run around the entire
# group of tests, not each individual test.
#
@it.has_setup
def setup():

it.things = [1]

@it.has_teardown
def teardown():

it.things = []

#
# The 'should' decorator is used to mark tests.
#
@it.should("do something")
def test():

assert it.things
#
# Tests can use all of the normal unittest TestCase assert

(continues on next page)

70 Chapter 6. User’s Guide



nose2, Release 0.11.0

(continued from previous page)

# methods by calling them on the test declaration.
#
it.assertEqual(len(it.things), 1)

#
# The 'having' context manager is used to introduce a new layer,
# one that depends on the layer(s) above it. Tests in this
# new layer inherit all of the fixtures of the layer above.
#
with it.having("an expensive fixture"):

@it.has_setup # noqa: F811
def setup(): # noqa: F811

it.things.append(2)

#
# Tests that take an argument will be passed the
# unittest.TestCase instance that is generated to wrap
# them. Tests can call any and all TestCase methods on this
# instance.
#
@it.should("do more things") # noqa: F811
def test(case): # noqa: F811

case.assertEqual(it.things[-1], 2)

#
# Layers can be nested to any depth.
#
with it.having("another precondtion"):

@it.has_setup # noqa: F811
def setup(): # noqa: F811

it.things.append(3)

@it.has_teardown # noqa: F811
def teardown(): # noqa: F811

it.things.pop()

@it.should("do that not this") # noqa: F811
def test(case): # noqa: F811

it.things.append(4)
#
# Tests can add their own cleanup functions.
#
case.addCleanup(it.things.pop)
case.assertEqual(it.things[-1], 4, it.things)

@it.should("do this not that") # noqa: F811
def test(case): # noqa: F811

case.assertEqual(it.things[-1], 3, it.things[:])

#
# A layer may have any number of sub-layers.
#
with it.having("a different precondition"):

#
(continues on next page)

6.6. Tools and Helpers 71



nose2, Release 0.11.0

(continued from previous page)

# A layer defined with ``having`` can make use of
# layers defined elsewhere. An external layer
# pulled in with ``it.uses`` becomes a parent
# of the current layer (though it doesn't actually
# get injected into the layer's MRO).
#
it.uses(SomeLayer)

@it.has_setup # noqa: F811
def setup(): # noqa: F811

it.things.append(99)

@it.has_teardown # noqa: F811
def teardown(): # noqa: F811

it.things.pop()

#
# Layers can define setup and teardown methods that wrap
# each test case, as well, corresponding to TestCase.setUp
# and TestCase.tearDown.
#
@it.has_test_setup
def test_setup(case):

it.is_funny = True
case.is_funny = True

@it.has_test_teardown
def test_teardown(case):

delattr(it, "is_funny")
delattr(case, "is_funny")

@it.should("do something else") # noqa: F811
def test(case): # noqa: F811

assert it.things[-1] == 99
assert it.is_funny
assert case.is_funny

@it.should("have another test") # noqa: F811
def test(case): # noqa: F811

assert it.is_funny
assert case.is_funny

@it.should("have access to an external fixture") # noqa: F811
def test(case): # noqa: F811

assert it.somelayer

with it.having("a case inside the external fixture"):

@it.should("still have access to that fixture") # noqa: F811
def test(case): # noqa: F811

assert it.somelayer

#
# To convert the layer definitions into test cases, you have to call
# `createTests` and pass in the module globals, so that the test cases
# and layer objects can be inserted into the module.

(continues on next page)

72 Chapter 6. User’s Guide



nose2, Release 0.11.0

(continued from previous page)

#
it.createTests(globals())

#
# Such tests and normal tests can coexist in the same modules.
#
class NormalTest(unittest.TestCase):

def test(self):
pass

The tests it defines are unittest tests, and can be used with nose2 with just the layers plugin. You also have the option of
activating a reporting plugin (nose2.plugins.layers.LayerReporter) to provide a more discursive brand
of output:

test (test_such.NormalTest) ... ok
A system with complex setup

should do something ... ok
having an expensive fixture
should do more things ... ok
having another precondtion

should do that not this ... ok
should do this not that ... ok

having a different precondition
should do something else ... ok
should have another test ... ok

----------------------------------------------------------------------
Ran 7 tests in 0.002s

OK

How does it work?

Such uses the things in python that are most like anonymous code blocks to allow you to construct tests with mean-
ingful names and deeply-nested fixtures. Compared to DSLs in languages that do allow blocks, it is a little bit more
verbose – the block-like decorators that mark fixture methods and test cases need to decorate something, so each fixture
and test case has to have a function definition. You can use the same function name over and over here, or give each
function a meaningful name.

The set of tests begins with a description of the system under test as a whole, marked with the A context manager:

from nose2.tools import such

with such.A('system described here') as it:
# ...

Groups of tests are marked by the having context manager:

with it.having('a description of a group'):
# ...

Within a test group (including the top-level group), fixtures are marked with decorators:

6.6. Tools and Helpers 73



nose2, Release 0.11.0

@it.has_setup
def setup():

# ...

@it.has_test_setup
def setup_each_test_case():

# ...

And tests are likewise marked with the should decorator:

@it.should('exhibit the behavior described here')
def test(case):

# ...

Test cases may optionally take one argument. If they do, they will be passed the unittest.TestCase instance
generated for the test. They can use this TestCase instance to execute assert methods, among other things. Test
functions can also call assert methods on the top-level scenario instance, if they don’t take the case argument:

@it.should("be able to use the scenario's assert methods")
def test():

it.assertEqual(something, 'a value')

@it.should("optionally take an argument")
def test(case):

case.assertEqual(case.attribute, 'some value')

Finally, to actually generate tests, you must call createTests on the top-level scenario instance:

it.createTests(globals())

This call generates the unittest.TestCase instances for all of the tests, and the layer classes that hold the fixtures
defined in the test groups. See Organizing Test Fixtures into Layers for more about test layers.

Running tests

Since order is often significant in functional tests, such DSL tests always execute in the order in which they are
defined in the module. Parent groups run before child groups, and sibling groups and sibling tests within a group
execute in the order in which they are defined.

Otherwise, tests written in the such DSL are collected and run just like any other tests, with one exception: their
names. The name of a such test case is the name of its immediately surrounding group, plus the description of the test,
prepended with test ####:, where #### is the test’s (0 -indexed) position within its group.

To run a case individually, you must pass in this full name – usually you’ll have to quote it. For example, to run the
case should do more things defined above (assuming the layers plugin is activated by a config file, and the
test module is in the normal path of test collection), you would run nose2 like this:

nose2 "test_such.having an expensive fixture.test 0000: should do more things"

That is, for the generated test case, the group description is the class name, and the test case description is the test
case name. As you can see if you run an individual test with the layer reporter active, all of the group fixtures execute
in proper order when a test is run individually:

$ nose2 "test_such.having an expensive fixture.test 0000: should do more things"
A system with complex setup

(continues on next page)

74 Chapter 6. User’s Guide



nose2, Release 0.11.0

(continued from previous page)

having an expensive fixture
should do more things ... ok

----------------------------------------------------------------------
Ran 1 test in 0.000s

OK

Reference

nose2.tools.such.A(description)
Test scenario context manager.

Returns a nose2.tools.such.Scenario instance, which by convention is bound to it:

with such.A('test scenario') as it:
# tests and fixtures

class nose2.tools.such.Scenario(description)
A test scenario.

A test scenario defines a set of fixtures and tests that depend on those fixtures.

createTests(mod)
Generate test cases for this scenario.

Warning: You must call this, passing in globals(), to generate tests from the scenario. If you
don’t, no tests will be created.

it.createTests(globals())

has_setup(func)
Add a setup() method to this group.

The setup() method will run once, before any of the tests in the containing group.

A group may define any number of setup() functions. They will execute in the order in which they are
defined.

@it.has_setup
def setup():

# ...

has_teardown(func)
Add a teardown() method to this group.

The teardown() method will run once, after all of the tests in the containing group.

A group may define any number of teardown() functions. They will execute in the order in which they
are defined.

@it.has_teardown
def teardown():

# ...

6.6. Tools and Helpers 75



nose2, Release 0.11.0

has_test_setup(func)
Add a test case setup() method to this group.

The setup() method will run before each of the tests in the containing group.

A group may define any number of test case setup() functions. They will execute in the order in which
they are defined.

Test setup() functions may optionally take one argument. If they do, they will be passed the
unittest.TestCase instance generated for the test.

@it.has_test_setup
def setup(case):

# ...

has_test_teardown(func)
Add a test case teardown() method to this group.

The teardown() method will run before each of the tests in the containing group.

A group may define any number of test case teardown() functions. They will execute in the order in
which they are defined.

Test teardown() functions may optionally take one argument. If they do, they will be passed the
unittest.TestCase instance generated for the test.

@it.has_test_teardown
def teardown(case):

# ...

having(description)
Define a new group under the current group.

Fixtures and tests defined within the block will belong to the new group.

with it.having('a description of this group'):
# ...

should(desc)
Define a test case.

Each function marked with this decorator becomes a test case in the current group.

The decorator takes one optional argument, the description of the test case: what it should do. If this
argument is not provided, the docstring of the decorated function will be used as the test case description.

Test functions may optionally take one argument. If they do, they will be passed the unittest.
TestCase instance generated for the test. They can use this TestCase instance to execute assert methods,
among other things.

@it.should('do this')
def dothis(case):

# ....

@it.should
def dothat():

"do that also"
# ....

76 Chapter 6. User’s Guide



nose2, Release 0.11.0

6.7 Changelog

nose2 uses semantic versioning (currently in 0.x) and the popular “keep a changelog” format (v1.0.0).

nose2 tries not to break backwards compatibility in any release. Until v1.0, versions are numbered 0.MAJOR.MINOR.
Major releases introduce new functionality or contain necessary breaking changes. Minor releases are primarily used
for bugfix or small features which are unlikely to break users’ testsuites.

6.7.1 0.11.0 (2022-02-12)

This is the first version of nose2 using sphinx-issues to credit contributors in the changelog.

Added

• Test classes now have their short description (first line of docstring) printed in verbose output

• The junitxml plugin now sets timestamp on each testcase node as an ISO-8601 timestamp. Thanks to
:user:`deeplow` for the contribution!

Changed

• Drop support for Python 3.5

• Python 3.10 is now officially supported. Python 3.11-dev will be supported on a best-effort basis. Thanks to
:user:`hugovk` and :user:`tirkarthi` for their contributions!

• nose2 source code is now autoformatted with black and isort

• nose2 has switched its main development branch from master to main

• Releases are now published using build

Fixed

• Add support for test classes when running with the multiprocessing plugin. Thanks to :user:`ltfish` for the
initial contribution and :user:`stefanholek` for the refinement to this change!

• Various documentation fixes

6.7.2 0.10.0 (2021-01-27)

Added

• Support for subtests!

Notes for plugin authors about subtest support:

• Subtest failures will produce a TestOutcomeEvent with outcome = "subtest"

• Subtest events can be failures, but they do not indicate success – the containing test will send a success event if
no subtests fail

6.7. Changelog 77

https://github.com/pypa/build


nose2, Release 0.11.0

Changed

• Drop support for Python 3.4

• Python 3.8 and 3.9 are now officially supported

• Improve helptext for the multiprocess plugin’s -N option

• When run with reduced verbosity (e.g. with -q), nose2 will no longer print an empty line before test reports

Fixed

• The plugin registry will no longer contain duplicate plugins and or base event.Plugin instances

• Fix function test case implementation of id, __str__, and __repr__. This removes the injected
transplant_class.<locals> from reporting output

• Doctest loading will now skip setup.py files in the project root

• Class methods decorated (e.g. with mock.patch) are no longer incorrectly picked up by the function loader

6.7.3 0.9.2 (2020-02-02)

Added

• Add --junit-xml-path to the junit plugin argument list

Fixed

• It is now possible to use the multiprocess and coverage plugins together, as long as all of the coverage config is
put into the config file

• Minor changes to be compatible with newer pythons (3.8, 3.9)

6.7.4 0.9.1 (2019-04-02)

Changed

• the prof plugin now uses cProfile instead of hotshot for profiling, and therefore now supports python
versions which do not include hotshot

• skipped tests now include the user’s reason in junit XML’s message field

Fixed

• the prettyassert plugin mishandled multi-line function definitions

• Using a plugin’s CLI flag when the plugin is already enabled via config no longer errors – it is a no-op instead

78 Chapter 6. User’s Guide



nose2, Release 0.11.0

6.7.5 0.9.0 (2019-03-17)

Added

• nose2.plugins.prettyassert, enabled with --pretty-assert, which pretty-prints AssertionErrors generated
by assert statements

Changed

• Update trove classifier to “beta” from “alpha” status

• Cleanup code for EOLed python versions

Removed

• Dropped support for distutils. Installation now requires setuptools

Fixed

• Result reporter respects failure status set by other plugins

• JUnit XML plugin now includes the skip reason in its output

6.7.6 0.8.0 (2018-07-31)

Added

• Add code to enable plugins to documentation

Removed

• Dropped support for python 3.3

Fixed

• For junitxml plugin use test module in place of classname if no classname exists

6.7.7 0.7.4 (2018-02-17)

Added

• Setup tools invocation now handles coverage

6.7. Changelog 79



nose2, Release 0.11.0

Changed

• Running nose2 via setuptools will now trigger CreateTestsEvent and
CreatedTestSuiteEvent

Fixed

• Respect fail_under in converage config

• Avoid infinite recursion when loading setuptools from zipped egg

• Manpage now renders reproducibly

• MP doc build now reproducible

6.7.8 0.7.3 (2017-12-13)

Added

• support for python 3.6.

Fixed

• Tests failing due to .coveragerc not in MANIFEST

6.7.9 0.7.2 (2017-11-14)

Includes changes from version 0.7.1, never released.

Fixed

• Proper indentation of test with docstring in layers

• MP plugin now calls startSubprocess in subprocess

Changed

• Add Makefile to enable “quickstart” workflow

• Removed bootstrap.sh and test.sh

Fixed

• Automatically create .coverage file during coverage reporting

• Better handling of import failures

80 Chapter 6. User’s Guide



nose2, Release 0.11.0

6.7.10 0.7.0 (2017-11-05)

Note: v0.7.0 drops several unsupported python versions

Added

• Add layer fixture events and hooks

• junit-xml: add logs in “system-out”

• Give full exc_info to loader.failedLoadTests

Changed

• Replace cov-core with coverage in the coverage plugin

• Give better error when cannot import a testname

• Better errors when tests fail to load

• Allow combination of MP and OutputBuffer plugins on Python 3

Removed

• Dropped unsupported Python 2.6, 3.2, 3.3

• nose2.compat is removed because it is no longer needed. If you have from nose2.compat import
unittest in your code, you will need to replace it with import unittest.

Fixed

• Prevent crashing from UnicodeDecodeError

• Fix unicode stream encoding

6.7.11 0.6.5 (2016-06-29)

Added

• Add nose2.__version__

6.7.12 0.6.4 (2016-03-15)

Fixed

• MP will never spawn more processes than there are tests. e.g. When running only one test, only one process is
spawned

6.7. Changelog 81



nose2, Release 0.11.0

6.7.13 0.6.3 (2016-03-01)

Changed

• Add support for python 3.4, 3.5

6.7.14 0.6.2 (2016-02-24)

Fixed

• fix the coverage plugin tests for coverage==3.7.1

6.7.15 0.6.1 (2016-02-23)

Fixed

• missing test files added to package.

6.7.16 0.6.0 (2016-02-21)

Added

• Junit XML report support properties

• Add a createdTestSuite event, fired after test loading

Changed

• Improve test coverage

• Improve CI

• When test loading fails, print the traceback

Fixed

• Junit-xml plugin fixed on windows

• Ensure tests are importable before trying to load them

• Fail test instead of skipping it, when setup fails

• Make the collect plugin work with layers

• Fix coverage plugin to take import-time coverage into account

82 Chapter 6. User’s Guide



nose2, Release 0.11.0

6.7.17 0.5.0 (2014-09-14)

Added

• with_setup and with_teardown decorators to set the setup & teardown on a function

• dundertests plugin to skip tests with __test__ == False

• cartesian_params decorator

• coverage plugin

• EggDiscoveryLoader for discovering tests within Eggs

• Support params with such

• Include logging output in junit XML

Changed

• such errors early if Layers plugin is not loaded

• Allow use of nose2.main() from within a test module

Fixed

• Such DSL ignores two such.A with the same description

• Record skipped tests as ‘skipped’ instead of ‘skips’

• Result output failed on unicode characters

• Fix multiprocessing plugin on Windows

• Ensure plugins write to the event stream

• multiprocessing could lock master proc and fail to exit

• junit report path was sensitive to changes in cwd

• Test runs would crash if a TestCase __init__ threw an exception

• Plugin failures no longer crash the whole test run

• Handle errors in test setup and teardown

• Fix reporting of xfail tests

• Log capture was waiting too long to render mutable objects to strings

• Layers plugin was not running testSetUp/testTearDown from higher such layers

6.7. Changelog 83



nose2, Release 0.11.0

6.7.18 0.4.7 (2013-08-13)

Added

• start-dir config option. Thanks to Stéphane Klein.

• Help text for verbose flag. Thanks to Tim Sampson.

• Added badges to README. Thanks to Omer Katz.

Changed

• Updated six version requirement to be less Restrictive. Thanks to Stéphane Klein.

• Cleaned up numerous PEP8 violations. Thanks to Omer Katz.

Fixed

• Fixed broken import in collector.py. Thanks to Shaun Crampton.

• Fixed processes command line option in mp plugin. Thanks to Tim Sampson.

• Fixed handling of class fixtures in multiprocess plugin. Thanks to Tim Sampson.

• Fixed intermittent test failure caused by nondeterministic key ordering. Thanks to Stéphane Klein.

• Fixed syntax error in printhooks. Thanks to Tim Sampson.

• Fixed formatting in changelog. Thanks to Omer Katz.

• Fixed typos in docs and examples. Thanks to Tim Sampson.

6.7.19 0.4.6 (2013-04-07)

Changed

• Docs note support for python 3.3. Thanks Omer Katz for the bug report.

Fixed

• Fixed DeprecationWarning for compiler package on python 2.7. Thanks Max Arnold.

• Fixed lack of timing information in junitxml exception reports. Thanks Viacheslav Dukalskiy.

• Cleaned up junitxml xml output. Thanks Philip Thiem.

84 Chapter 6. User’s Guide



nose2, Release 0.11.0

6.7.20 0.4.5 (2012-12-16)

Fixed

• Fixed broken interaction between attrib and layers plugins. They can now be used together. Thanks @fajpunk.

• Fixed incorrect calling order of layer setup/teardown and test setup/test teardown methods. Thanks again @fa-
jpunk for tests and fixes.

6.7.21 0.4.4 (2012-11-26)

Fixed

• Fixed sort key generation for layers.

6.7.22 0.4.3 (2012-11-21)

Fixed

• Fixed packaging for non-setuptools, pre-python 2.7. Thanks to fajpunk for the patch.

6.7.23 0.4.2 (2012-11-19)

Added

• Added uses method to such.Scenario to allow use of externally-defined layers in such DSL tests.

Fixed

• Fixed unpredictable ordering of layer tests.

6.7.24 0.4.1 (2012-06-18)

Includes changes from version 0.4, never released.

Fixed

• Fixed packaging bug.

6.7. Changelog 85



nose2, Release 0.11.0

Added

• nose2.plugins.layers to support Zope testing style fixture layers.

• nose2.tools.such, a spec-like DSL for writing tests with layers.

• nose2.plugins.loader.loadtests to support the unittest2 load_tests protocol.

6.7.25 0.3 (2012-04-15)

Added

• nose2.plugins.mp to support distributing test runs across multiple processes.

• nose2.plugins.testclasses to support loading tests from ordinary classes that are not subclasses of
unittest.TestCase.

• nose2.main.PluggableTestProgram now accepts an extraHooks keyword argument, which allows
attaching arbitrary objects to the hooks system.

Changed

• The default script target was changed from nose2.main to nose2.discover. The former may still be
used for running a single module of tests, unittest-style. The latter ignores the module argument. Thanks to
@dtcaciuc for the bug report (#32).

Fixed

• Fixed bug that caused Skip reason to always be set to None.

6.7.26 0.2 (2012-02-06)

Added

• nose2.plugins.junitxml to support jUnit XML output

• nose2.plugins.attrib to support test filtering by attributes

Changed

• Added afterTestRun hook and moved result report output calls to that hook. This prevents plugin ordering issues
with the stopTestRun hook (which still exists, and fires before afterTestRun).

86 Chapter 6. User’s Guide



nose2, Release 0.11.0

Fixed

• Fixed bug in loading of tests by name that caused ImportErrors to be silently ignored.

• Fixed missing __unittest flag in several modules. Thanks to Wouter Overmeire for the patch.

• Fixed module fixture calls for function, generator and param tests.

• Fixed passing of command-line argument values to list options. Before this fix, lists of lists would be appended
to the option target. Now, the option target list is extended with the new values. Thanks to memedough for the
bug report.

6.7.27 0.1 (2012-01-19)

Initial release.

6.7. Changelog 87



nose2, Release 0.11.0

88 Chapter 6. User’s Guide



CHAPTER

SEVEN

PLUGIN DEVELOPER’S GUIDE

7.1 Writing Plugins

nose2 supports plugins for test collection, selection, observation and reporting – among other things. There are two
basic rules for plugins:

• Plugin classes must subclass nose2.events.Plugin.

• Plugins may implement any of the methods described in the Hook reference.

7.1.1 Hello World

Here’s a basic plugin. It doesn’t do anything besides log a message at the start of a test run.

import logging
import os

from nose2.events import Plugin

log = logging.getLogger('nose2.plugins.helloworld')

class HelloWorld(Plugin):
configSection = 'helloworld'
commandLineSwitch = (None, 'hello-world', 'Say hello!')

def startTestRun(self, event):
log.info('Hello pluginized world!')

To see this plugin in action, save it into an importable module, then add that module to the plugins key in the
[unittest] section of a config file loaded by nose2, such as unittest.cfg. Then run nose2:

nose2 --log-level=INFO --hello-world

And you should see the log message before the first dot appears.

89



nose2, Release 0.11.0

7.1.2 Loading plugins

As mentioned above, for nose2 to find a plugin, it must be in an importable module, and the module must be listed
under the plugins key in the [unittest] section of a config file loaded by nose2:

[unittest]
plugins = mypackage.someplugin

otherpackage.thatplugin
thirdpackage.plugins.metoo

As you can see, plugin modules are listed, one per line. All plugin classes in those modules will be loaded – but not
necessarily active. Typically plugins do not activate themselves (“register”) without seeing a command-line flag, or
always-on = True in their config file section.

7.1.3 Command-line Options

nose2 uses argparse for command-line argument parsing. Plugins may enable command-line options that register them
as active, or take arguments or flags controlling their operation.

The most basic thing to do is to set the plugin’s commandLineSwitch attribute, which will automatically add a
command-line flag that registers the plugin.

To add other flags or arguments, you can use the Plugin methods nose2.events.Plugin.addFlag(),
nose2.events.Plugin.addArgument() or nose2.events.Plugin.addOption(). If those don’t of-
fer enough flexibility, you can directly manipulate the argument parser by accessing self.session.argparse
or the plugin option group by accessing self.session.pluginargs.

Please note though that the majority of your plugin’s configuration should be done via config file options, not command
line options.

7.1.4 Config File Options

Plugins may specify a config file section that holds their configuration by setting their configSection attribute. All
plugins, regardless of whether they specify a config section, have a config attribute that holds a nose2.config.
Config instance. This will be empty of values if the plugin does not specify a config section or if no loaded config
file includes that section.

Plugins should extract the user’s configuration selections from their config attribute in their __init__ methods.
Plugins that want to use nose2’s Sphinx extension to automatically document themselves must do so.

Config file options may be extracted as strings, ints, booleans or lists.

You should provide reasonable defaults for all config options.

7.1.5 Guidelines

Events

nose2’s plugin API is based on the API in unittest2’s plugins branch (under-development). Its differs from nose’s
in one major area: what it passes to hooks. Where nose passes a variety of arguments, nose2 always passes an event.
The events are listed in the Event reference.

Here’s the key thing about that: event attributes are read-write. Unless stated otherwise in the documentation for a
hook, you can set a new value for any event attribute, and this will do something. Plugins and nose2 systems will see

90 Chapter 7. Plugin Developer’s Guide

http://pypi.python.org/pypi/argparse/1.2.1
http://sphinx.pocoo.org/


nose2, Release 0.11.0

that new value and either use it instead of what was originally set in the event (example: the reporting stream or test
executor), or use it to supplement something they find elsewhere (example: extraTests on a test loading event).

“Handling” events

Many hooks give plugins a chance to completely handle events, bypassing other plugins and any core nose2 operations.
To do this, a plugin sets event.handled to True and, generally, returns an appropriate value from the hook method.
What is an appropriate value varies by hook, and some hooks can’t be handled in this way. But even for hooks where
handling the event doesn’t stop all processing, it will stop subsequently-loaded plugins from seeing the event.

Logging

nose2 uses the logging classes from the standard library. To enable users to view debug messages easily, plugins
should use logging.getLogger() to acquire a logger in the nose2.plugins namespace.

7.1.6 Recipes

• Writing a plugin that monitors or controls test result output

Implement any of the report* hook methods, especially if you want to output to the console. If outputting to
file or other system, you might implement testOutcome() instead.

Example: nose2.plugins.result.ResultReporter

• Writing a plugin that handles exceptions

If you just want to handle some exceptions as skips or failures instead of errors, see nose2.plugins.
outcomes.Outcomes, which offers a simple way to do that. Otherwise, implement setTestOutcome()
to change test outcomes.

Example: nose2.plugins.outcomes.Outcomes

• Writing a plugin that adds detail to error reports

Implement testOutcome() and put your extra information into event.metadata, then implement
outcomeDetail() to extract it and add it to the error report.

Examples: nose2.plugins.buffer.OutputBufferPlugin, nose2.plugins.logcapture.
LogCapture

• Writing a plugin that loads tests from files other than python modules

Implement handleFile().

Example: nose2.plugins.doctests.DocTestLoader

• Writing a plugin that loads tests from python modules

Implement at least loadTestsFromModule().

Warning: One thing to beware of here is that if you return tests as dynamically-generated test cases, or
instances of a testcase class that is defined anywhere but the module being loaded, you must use nose2.
util.transplant_class() to make the test case class appear to have originated in that module.
Otherwise, module-level fixtures will not work for that test, and may be ignored entirely for the module if
there are no test cases that are or appear to be defined there.

7.1. Writing Plugins 91



nose2, Release 0.11.0

• Writing a plugin that prints a report

Implement beforeErrorList(), beforeSummaryReport() or afterSummaryReport()

Example: nose2.plugins.prof.Profiler

• Writing a plugin that selects or rejects tests

Implement matchPath or getTestCaseNames.

Example: nose2.plugins.loader.parameters.Parameters

7.2 Documenting plugins

You should do it. Nobody will use your plugins if you don’t. Or if they do use them, they will curse you whenever
things go wrong.

One easy way to document your plugins is to use nose2’s Sphinx extension, which provides an autoplugin directive
that will produce decent reference documentation from your plugin classes.

To use it, add nose2.sphinxext to the extensions list in the conf.py file in your docs directory.

Then add an autoplugin directive to a *.rst file, like this:

.. autoplugin :: mypackage.plugins.PluginClass

This will produce output that includes the config vars your plugin loads in __init__, as well as any command line
options your plugin registers. This is why you really should extract config vars and register command-line options in
__init__.

The output will also include an autoclass section for your plugin class, so you can put more narrative documenta-
tion in the plugin’s docstring for users to read.

Of course you can, and should, write some words before the reference docs explaining what your plugin does and how
to use it. You can put those words in the *.rst file itself, or in the docstring of the module where your plugin lives.

7.3 Event reference

class nose2.events.CommandLineArgsEvent(args, **kw)
Event fired after parsing of command line arguments.

Plugins can respond to this event by configuring themselves or other plugins or modifying the parsed arguments.

Note: Many plugins register options with callbacks. By the time this event fires, those callbacks have already
fired. So you can’t use this event to reliably influence all plugins.

args
Args object returned by argparse.

class nose2.events.CreateTestsEvent(loader, testNames, module, **kw)
Event fired before test loading.

Plugins can take over test loading by returning a test suite and setting handled on this event.

loader
Test loader instance

92 Chapter 7. Plugin Developer’s Guide

http://sphinx.pocoo.org/


nose2, Release 0.11.0

names
List of test names. May be empty or None.

module
Module to load from. May be None. If not None, names should be considered relative to this module.

class nose2.events.CreatedTestSuiteEvent(suite, **kw)
Event fired after test loading.

Plugins can replace the loaded test suite by returning a test suite and setting handled on this event.

suite
Test Suite instance

class nose2.events.DescribeTestEvent(test, description=None, errorList=False, **kw)
Event fired to get test description.

test
The test case

description
Description of the test case. Plugins can set this to change how tests are described in output to users.

errorList
Is the event fired as part of error list output?

class nose2.events.Event(**metadata)
Base class for all events.

metadata
Storage for arbitrary information attached to an event.

handled
Set to True to indicate that a plugin has handled the event, and no other plugins or core systems should
process it further.

version
Version of the event API. This will be incremented with each release of nose2 that changes the API.

version = '0.4'

class nose2.events.GetTestCaseNamesEvent(loader, testCase, isTestMethod, **kw)
Event fired to find test case names in a test case.

Plugins may return a list of names and set handled on this event to force test case name selection.

loader
Test loader instance

testCase
The unittest.TestCase instance being loaded.

testMethodPrefix
Set this to change the test method prefix. Unless set by a plugin, it is None.

extraNames
A list of extra test names to load from the test case. To cause extra tests to be loaded from the test case,
append the names to this list. Note that the names here must be attributes of the test case.

excludedNames
A list of names to exclude from test loading. Add names to this list to prevent other plugins from loading
the named tests.

7.3. Event reference 93



nose2, Release 0.11.0

isTestMethod
Callable that plugins can use to examine test case attributes to determine whether nose2 thinks they are
test methods.

class nose2.events.HandleFileEvent(loader, name, path, pattern, topLevelDirectory, **kw)
Event fired when a non-test file is examined.

Note: This event is fired for all processed python files and modules including but not limited to the ones that
match the test file pattern.

loader
Test loader instance

name
File basename

path
Full path to file

pattern
Current test file match pattern

topLevelDirectory
Top-level directory of the test run

extraTests
A list of extra tests loaded from the file. To load tests from a file without interfering with other plugins’
loading activities, append tests to extraTests.

Plugins may set handled on this event and return a test suite to prevent other plugins from loading tests from
the file. If any plugin sets handled to True, extraTests will be ignored.

class nose2.events.LoadFromModuleEvent(loader, module, **kw)
Event fired when a test module is loaded.

loader
Test loader instance

module
The module whose tests are to be loaded

extraTests
A list of extra tests loaded from the module. To load tests from a module without interfering with other
plugins’ loading activities, append tests to extraTests.

Plugins may set handled on this event and return a test suite to prevent other plugins from loading tests from
the module. If any plugin sets handled to True, extraTests will be ignored.

class nose2.events.LoadFromNameEvent(loader, name, module, **kw)
Event fired to load tests from test names.

loader
Test loader instance

name
Test name to load

module
Module to load from. May be None. If not None, names should be considered relative to this module.

94 Chapter 7. Plugin Developer’s Guide



nose2, Release 0.11.0

extraTests
A list of extra tests loaded from the name. To load tests from a test name without interfering with other
plugins’ loading activities, append tests to extraTests.

Plugins may set handled on this event and return a test suite to prevent other plugins from loading tests from
the test name. If any plugin sets handled to True, extraTests will be ignored.

class nose2.events.LoadFromNamesEvent(loader, names, module, **kw)
Event fired to load tests from test names.

loader
Test loader instance

names
List of test names. May be empty or None.

module
Module to load from. May be None. If not None, names should be considered relative to this module.

extraTests
A list of extra tests loaded from the tests named. To load tests from test names without interfering with
other plugins’ loading activities, append tests to extraTests.

Plugins may set handled on this event and return a test suite to prevent other plugins from loading tests from
the test names. If any plugin sets handled to True, extraTests will be ignored.

class nose2.events.LoadFromTestCaseEvent(loader, testCase, **kw)
Event fired when tests are loaded from a test case.

loader
Test loader instance

testCase
The unittest.TestCase instance being loaded.

extraTests
A list of extra tests loaded from the module. To load tests from a test case without interfering with other
plugins’ loading activities, append tests to extraTests.

Plugins may set handled on this event and return a test suite to prevent other plugins from loading tests from
the test case. If any plugin sets handled to True, extraTests will be ignored.

class nose2.events.MatchPathEvent(name, path, pattern, **kw)
Event fired during file matching.

Plugins may return False and set handled on this event to prevent a file from being matched as a test file,
regardless of other system settings.

path
Full path to the file

name
File basename

pattern
Current test file match pattern

class nose2.events.ModuleSuiteEvent(loader, module, suite, **kw)

class nose2.events.OutcomeDetailEvent(outcomeEvent, **kw)
Event fired to acquire additional details about test outcome.

outcomeEvent
A nose2.events.TestOutcomeEvent instance holding the test outcome to be described.

7.3. Event reference 95



nose2, Release 0.11.0

extraDetail
Extra detail lines to be appended to test outcome output. Plugins can append lines (of strings) to this list
to include their extra information in the error list report.

class nose2.events.PluginsLoadedEvent(pluginsLoaded, **kw)
Event fired after all plugin classes are loaded.

pluginsLoaded
List of all loaded plugin classes

class nose2.events.ReportSummaryEvent(stopTestEvent, stream, reportCategories, **kw)
Event fired before and after summary report.

stopTestEvent
A nose2.events.StopTestEvent instance.

stream
The output stream. Plugins can set this to change or capture output.

reportCategories
Dictionary of report category and test events captured in that category. Default categories include ‘errors’,
‘failures’, ‘skipped’, ‘expectedFails’, and ‘unexpectedSuccesses’. Plugins may add their own categories.

class nose2.events.ReportTestEvent(testEvent, stream, **kw)
Event fired to report a test event.

Plugins can respond to this event by producing output for the user.

testEvent
A test event. In most cases, a nose2.events.TestOutcomeEvent instance. For startTest, a
nose2.events.StartTestEvent instance.

stream
The output stream. Plugins can set this to change or capture output.

class nose2.events.ResultCreatedEvent(result, **kw)
Event fired when test result handler is created.

result
Test result handler instance. Plugins may replace the test result by setting this attribute to a new test result
instance.

class nose2.events.ResultStopEvent(result, shouldStop, **kw)
Event fired when a test run is told to stop.

Plugins can use this event to prevent other plugins from stopping a test run.

result
Test result

shouldStop
Set to True to indicate that the test run should stop.

class nose2.events.ResultSuccessEvent(result, success, **kw)
Event fired at end of test run to determine success.

This event fires at the end of the test run and allows plugins to determine whether the test run was successful.

result
Test result

success
Set this to True to indicate that the test run was successful. If no plugin sets the success to True, the

96 Chapter 7. Plugin Developer’s Guide



nose2, Release 0.11.0

test run fails. Should be initialized to None to indicate that the status has not been set yet (so that plugins
can always differentiate an explicit failure in an earlier hook from no pass/fail status having been set yet.

class nose2.events.RunnerCreatedEvent(runner, **kw)
Event fired when test runner is created.

runner
Test runner instance. Plugins may replace the test runner by setting this attribute to a new test runner
instance.

class nose2.events.StartLayerSetupEvent(layer, **kw)
Event fired before running a layer setup.

layer
The current layer instance, for which setup is about to run.

class nose2.events.StartLayerSetupTestEvent(layer, test, **kw)
Event fired before test cases setups in layers.

layer
The current layer instance.

test
The test instance for which the setup is about to run.

class nose2.events.StartLayerTeardownEvent(layer, **kw)
Event fired before running a layer teardown.

layer
The current layer instance, for which teardown is about to run.

class nose2.events.StartLayerTeardownTestEvent(layer, test, **kw)
Event fired before test cases teardowns in layers.

layer
The current layer instance.

test
The test instance for which teardown is about to run.

class nose2.events.StartTestEvent(test, result, startTime, **kw)
Event fired before a test is executed.

test
The test case

result
Test result

startTime
Timestamp of test start

class nose2.events.StartTestRunEvent(runner, suite, result, startTime, executeTests, **kw)
Event fired when test run is about to start.

Test collection is complete before this event fires, but no tests have yet been executed.

runner
Test runner

suite
Top-level test suite to execute. Plugins can filter this suite, or set event.suite to change which tests execute
(or how they execute).

7.3. Event reference 97



nose2, Release 0.11.0

result
Test result

startTime
Timestamp of test run start

executeTests
Callable that will be used to execute tests. Plugins may set this attribute to wrap or otherwise change test
execution. The callable must match the signature:

def execute(suite, result):
...

To prevent normal test execution, plugins may set handled on this event to True. When handled is true,
the test executor does not run at all.

class nose2.events.StopLayerSetupEvent(layer, **kw)
Event fired after running a layer setup.

layer
The current layer instance, for which setup just ran.

class nose2.events.StopLayerSetupTestEvent(layer, test, **kw)
Event fired after test cases setups in layers.

layer
The current layer instance.

test
The test instance for which the setup just finished.

class nose2.events.StopLayerTeardownEvent(layer, **kw)
Event fired after running a layer teardown.

layer
The current layer instance, for which teardown just ran.

class nose2.events.StopLayerTeardownTestEvent(layer, test, **kw)
Event fired after test cases teardowns in layers.

layer
The current layer instance.

test
The test instance for which teardown just ran.

class nose2.events.StopTestEvent(test, result, stopTime, **kw)
Event fired after a test is executed.

test
The test case

result
Test result

stopTime
Timestamp of test stop

class nose2.events.StopTestRunEvent(runner, result, stopTime, timeTaken, **kw)
Event fired when test run has stopped.

runner
Test runner

98 Chapter 7. Plugin Developer’s Guide



nose2, Release 0.11.0

result
Test result

stopTime
Timestamp of test run stop

timeTaken
Number of seconds test run took to execute

class nose2.events.TestOutcomeEvent(test, result, outcome, exc_info=None, reason=None,
expected=False, shortLabel=None, longLabel=None,
**kw)

Event fired when a test completes.

test
The test case

result
Test result

outcome
Description of test outcome. Typically will be one of ‘error’, ‘failed’, ‘skipped’, ‘passed’, or ‘subtest’.

exc_info
If the test resulted in an exception, the tuple of (exception class, exception value, traceback) as returned by
sys.exc_info(). If the test did not result in an exception, None.

reason
For test outcomes that include a reason (Skips, for example), the reason.

expected
Boolean indicating whether the test outcome was expected. In general, all tests are expected to pass, and
any other outcome will have expected as False. The exceptions to that rule are unexpected successes and
expected failures.

shortLabel
A short label describing the test outcome. (For example, ‘E’ for errors).

longLabel
A long label describing the test outcome (for example, ‘ERROR’ for errors).

Plugins may influence how the rest of the system sees the test outcome by setting outcome or exc_info
or expected. They may influence how the test outcome is reported to the user by setting shortLabel or
longLabel.

class nose2.events.UserInteractionEvent(**kw)
Event fired before and after user interaction.

Plugins that capture stdout or otherwise prevent user interaction should respond to this event.

To prevent the user interaction from occurring, return False and set handled. Otherwise, turn off whatever
you are doing that prevents users from typing/clicking/touching/psionics/whatever.

7.3. Event reference 99



nose2, Release 0.11.0

7.4 Hook reference

Note: Hooks are listed here in order of execution.

7.4.1 Pre-registration Hooks

pluginsLoaded(self, event)

Parameters event – nose2.events.PluginsLoadedEvent

The pluginsLoaded hook is called after all config files have been read, and all plugin classes loaded. Plugins
that register automatically (those that call nose2.events.Plugin.register() in __init__ or have
always-on = True set in their config file sections) will have already been registered with the hooks they
implement. Plugins waiting for command-line activation will not yet be registered.

Plugins can use this hook to examine or modify the set of loaded plugins, inject their own hook methods using
nose2.events.PluginInterface.addMethod(), or take other actions to set up or configure them-
selves or the test run.

Since pluginsLoaded is a pre-registration hook, it is called for all plugins that implement the method,
whether they have registered or not. Plugins that do not automatically register themselves should limit their
actions in this hook to configuration, since they may not actually be active during the test run.

handleArgs(self, event)

Parameters event – nose2.events.CommandLineArgsEvent

The handleArgs hook is called after all arguments from the command line have been parsed. Plugins can
use this hook to handle command-line arguments in non-standard ways. They should not use it to try to modify
arguments seen by other plugins, since the order in which plugins execute in a hook is not guaranteed.

Since handleArgs is a pre-registration hook, it is called for all plugins that implement the method, whether
they have registered or not. Plugins that do not automatically register themselves should limit their actions in
this hook to configuration, since they may not actually be active during the test run.

7.4.2 Standard Hooks

These hooks are called for registered plugins only.

createTests(self, event)

Parameters event – A nose2.events.CreateTestsEvent instance

Plugins can take over test loading by returning a test suite and setting event.handled to True.

loadTestsFromNames(self, event)

Parameters event – A nose2.events.LoadFromNamesEvent instance

Plugins can return a test suite or list of test suites and set event.handled to True to prevent other plugins
from loading tests from the given names, or append tests to event.extraTests. Plugins can also remove
names from event.names to prevent other plugins from acting on those names.

loadTestsFromName(self, event)

Parameters event – A nose2.events.LoadFromNameEvent instance

100 Chapter 7. Plugin Developer’s Guide



nose2, Release 0.11.0

Plugins can return a test suite and set event.handled to True to prevent other plugins from loading tests
from the given name, or append tests to event.extraTests.

handleFile(self, event)

Parameters event – A nose2.events.HandleFileEvent instance

Plugins can use this hook to load tests from files that are not Python modules. Plugins may either append tests to
event.extraTest, or, if they want to prevent other plugins from processing the file, set event.handled
to True and return a test case or test suite.

matchPath(self, event)

Parameters event – A nose2.events.MatchPathEvent instance

Plugins can use this hook to prevent python modules from being loaded by the test loader or force them to be
loaded by the test loader. Set event.handled to True and return False to cause the loader to skip the
module. Set event.handled to True and return True to cause the loader to load the module.

loadTestsFromModule(self, event)

Parameters event – A nose2.events.LoadFromModuleEvent instance

Plugins can use this hook to load tests from test modules. To prevent other plugins from loading from the
module, set event.handled and return a test suite. Plugins can also append tests to event.extraTests
– usually that’s what you want to do, since that will allow other plugins to load their tests from the module as
well.

See also this warning about test cases not defined in the module.

loadTestsFromTestCase(self, event)

Parameters event – A nose2.events.LoadFromTestCaseEvent instance

Plugins can use this hook to load tests from a unittest.TestCase. To prevent other plugins from loading
tests from the test case, set event.handled to True and return a test suite. Plugins can also append tests
to event.extraTests – usually that’s what you want to do, since that will allow other plugins to load their
tests from the test case as well.

getTestCaseNames(self, event)

Parameters event – A nose2.events.GetTestCaseNamesEvent instance

Plugins can use this hook to limit or extend the list of test case names that will be loaded from a unittest.
TestCase by the standard nose2 test loader plugins (and other plugins that respect the results of the hook). To
force a specific list of names, set event.handled to True and return a list: this exact list will be the only
test case names loaded from the test case. Plugins can also extend the list of names by appending test names to
event.extraNames, and exclude names by appending test names to event.excludedNames.

runnerCreated(self, event)

Parameters event – A nose2.events.RunnerCreatedEvent instance

Plugins can use this hook to wrap, capture or replace the test runner. To replace the test runner, set event.
runner.

resultCreated(self, event)

Parameters event – A nose2.events.ResultCreatedEvent instance

Plugins can use this hook to wrap, capture or replace the test result. To replace the test result, set event.
result.

startTestRun(self, event)

Parameters event – A nose2.events.StartTestRunEvent instance

7.4. Hook reference 101



nose2, Release 0.11.0

Plugins can use this hook to take action before the start of the test run, and to replace or wrap the test executor.
To replace the executor, set event.executeTests. This must be a callable that takes two arguments: the
top-level test and the test result.

To prevent the test executor from running at all, set event.handled to True.

startLayerSetup(self, event)

Parameters event – A nose2.events.StartLayerSetupEvent instance (only available
in suites with layers).

Plugins can use this hook to take action before the start of the setUp in a layer.

stopLayerSetup(self, event)

Parameters event – A nose2.events.StopLayerSetupEvent instance (only available in
suites with layers).

Plugins can use this hook to take action after setUp finishes, in a layer.

startLayerSetupTest(self, event)

Parameters event – A nose2.events.StartLayerSetupTestEvent instance (only
available in suites with layers).

Plugins can use this hook to take action before the start of testSetUp in a layer.

stopLayerSetupTest(self, event)

Parameters event – A nose2.events.StopLayerSetupTestEvent instance (only avail-
able in suites with layers).

Plugins can use this hook to take action after testSetUp finishes, in a layer.

startTest(self, event)

Parameters event – A nose2.events.StartTestEvent instance

Plugins can use this hook to take action immediately before a test runs.

reportStartTest(self, event)

Parameters event – A nose2.events.ReportTestEvent instance

Plugins can use this hook to produce output for the user at the start of a test. If you want to print to the console,
write to event.stream. Remember to respect self.session.verbositywhen printing to the console.
To prevent other plugins from reporting to the user, set event.handled to True.

describeTest(self, event)

Parameters event – A nose2.events.DescribeTestEvent instance

Plugins can use this hook to alter test descriptions. To return a nonstandard description for a test, set event.
description. Be aware that other plugins may have set this also!

setTestOutcome(self, event)

Parameters event – A nose2.events.TestOutcomeEvent instance

Plugins can use this hook to alter test outcomes. Plugins can event.outcome to change the outcome of the
event, tweak, change or remove event.exc_info, set or clear event.expected, and so on.

testOutcome(self, event)

Parameters event – A nose2.events.TestOutcomeEvent instance

102 Chapter 7. Plugin Developer’s Guide



nose2, Release 0.11.0

Plugins can use this hook to take action based on the outcome of tests. Plugins must not alter test outcomes in
this hook: that’s what setTestOutcome() is for. Here, plugins may only react to the outcome event, not
alter it.

reportSuccess(self, event)

Parameters event – A nose2.events.LoadFromNamesEvent instance

Plugins can use this hook to report test success to the user. If you want to print to the console, write to event.
stream. Remember to respect self.session.verbosity when printing to the console. To prevent other
plugins from reporting to the user, set event.handled to True.

reportError(self, event)

Parameters event – A nose2.events.ReportTestEvent instance

Plugins can use this hook to report a test error to the user. If you want to print to the console, write to event.
stream. Remember to respect self.session.verbosity when printing to the console. To prevent other
plugins from reporting to the user, set event.handled to True.

reportFailure(self, event)

Parameters event – A nose2.events.ReportTestEvent instance

Plugins can use this hook to report test failure to the user. If you want to print to the console, write to event.
stream. Remember to respect self.session.verbosity when printing to the console. To prevent other
plugins from reporting to the user, set event.handled to True.

reportSkip(self, event)

Parameters event – A nose2.events.ReportTestEvent instance

Plugins can use this hook to report a skipped test to the user. If you want to print to the console, write to
event.stream. Remember to respect self.session.verbosity when printing to the console. To
prevent other plugins from reporting to the user, set event.handled to True.

reportExpectedFailure(self, event)

Parameters event – A nose2.events.ReportTestEvent instance

Plugins can use this hook to report an expected failure to the user. If you want to print to the console, write
to event.stream. Remember to respect self.session.verbosity when printing to the console. To
prevent other plugins from reporting to the user, set event.handled to True.

reportUnexpectedSuccess(self, event)

Parameters event – A nose2.events.ReportTestEvent instance

Plugins can use this hook to report an unexpected success to the user. If you want to print to the console, write
to event.stream. Remember to respect self.session.verbosity when printing to the console. To
prevent other plugins from reporting to the user, set event.handled to True.

reportOtherOutcome(self, event)

Parameters event – A nose2.events.ReportTestEvent instance

Plugins can use this hook to report a custom test outcome to the user. If you want to print to the console, write
to event.stream. Remember to respect self.session.verbosity when printing to the console. To
prevent other plugins from reporting to the user, set event.handled to True.

nose2 will never produce this event by itself. It only gets triggered if a plugin creates a test result with an
unrecognized outcome.

stopTest(self, event)

Parameters event – A nose2.events.StopTestEvent instance

7.4. Hook reference 103



nose2, Release 0.11.0

Plugins can use this hook to take action after a test has completed running and reported its outcome.

startLayerTeardownTest(self, event)

Parameters event – A nose2.events.StartLayerTeardownTestEvent instance (only
available in suites with layers).

Plugins can use this hook to take action before the start of testTearDown() in a layer.

stopLayerTeardownTest(self, event)

Parameters event – A nose2.events.StopLayerTeardownTestEvent instance (only
available in suites with layers).

Plugins can use this hook to take action after testTearDown() finishes, in a layer.

startLayerTeardown(self, event)

Parameters event – A nose2.events.StartLayerTeardownEvent instance (only avail-
able in suites with layers).

Plugins can use this hook to take action before the start of the tearDown() in a layer.

stopLayerTeardown(self, event)

Parameters event – A nose2.events.StopLayerTeardownEvent instance (only avail-
able in suites with layers).

Plugins can use this hook to take action after tearDown() finishes, in a layer.

stopTestRun(self, event)

Parameters event – A nose2.events.StopTestRunEvent instance

Plugins can use this hook to take action at the end of a test run.

afterTestRun(self, event)

Parameters event – A nose2.events.StopTestRunEvent instance

Note: New in version 0.2

Plugins can use this hook to take action after the end of a test run, such as printing summary reports like the
builtin result reporter plugin nose2.plugins.result.ResultReporter.

resultStop(self, event)

Parameters event – A nose2.events.ResultStopEvent instance

Plugins can use this hook to prevent other plugins from stopping a test run. This hook fires when something
calls nose2.result.PluggableTestResult.stop(). If you want to prevent this from stopping the
test run, set event.shouldStop to False.

beforeErrorList(self, event)

Parameters event – A nose2.events.ReportSummaryEvent instance

Plugins can use this hook to output or modify summary information before the list of errors and failures
is output. To modify the categories of outcomes that will be reported, plugins can modify the event.
reportCategories dictionary. Plugins can set, wrap, or capture the output stream by reading or setting
event.stream. If you want to print to the console, write to event.stream. Remember to respect self.
session.verbosity when printing to the console.

outcomeDetail(self, event)

104 Chapter 7. Plugin Developer’s Guide



nose2, Release 0.11.0

Parameters event – A nose2.events.OutcomeDetailEvent instance

Plugins can use this hook to add additional elements to error list output. Append extra detail lines to event.
extraDetail; these will be joined together with newlines before being output as part of the detailed er-
ror/failure message, after the traceback.

beforeSummaryReport(self, event)

Parameters event – A nose2.events.ReportSummaryEvent instance

Plugins can use this hook to output or modify summary information before the summary lines are output. To
modify the categories of outcomes that will be reported in the summary, plugins can modify the event.
reportCategories dictionary. Plugins can set, wrap or capture the output stream by reading or setting
event.stream. If you want to print to the console, write to event.stream. Remember to respect self.
session.verbosity when printing to the console.

wasSuccessful(self, event)

Parameters event – A nose2.events.ResultSuccessEvent instance

Plugins can use this hook to mark a test run as successful or unsuccessful. If not plugin marks the run as
successful, the default state is failure. To mark a run as successful, set event.success to True. Be ware
that other plugins may set this attribute as well!

afterSummaryReport(self, event)

Parameters event – A nose2.events.ReportSummaryEvent instance

Plugins can use this hook to output a report to the user after the summary line is output. If you want to print to
the console, write to event.stream. Remember to respect self.session.verbosity when printing
to the console.

7.4.3 User Interaction Hooks

These hooks are called when plugins want to interact with the user.

beforeInteraction(event)

Parameters event – A nose2.events.UserInteractionEvent

Plugins should respond to this hook by getting out of the way of user interaction, if the need to, or setting
event.handled and returning False, if they need to but can’t.

afterInteraction(event)

Parameters event – A nose2.events.UserInteractionEvent

Plugins can respond to this hook by going back to whatever they were doing before the user stepped in and
started poking around.

7.5 Session reference

7.5.1 Session

In nose2, all configuration for a test run is encapsulated in a Session instance. Plugins always have the session
available as self.session.

7.5. Session reference 105



nose2, Release 0.11.0

class nose2.session.Session
Configuration session.

Encapsulates all configuration for a given test run.

argparse
An instance of argparse.ArgumentParser. Plugins can use this directly to add arguments and
argument groups, but must do so in their __init__ methods.

pluginargs
The argparse argument group in which plugins (by default) place their command-line arguments. Plugins
can use this directly to add arguments, but must do so in their __init__ methods.

hooks
The nose2.events.PluginInterface instance contains all available plugin methods and hooks.

plugins
The list of loaded – but not necessarily active – plugins.

verbosity
Current verbosity level. Default: 1.

startDir
Start directory of test run. Test discovery starts here. Default: current working directory.

topLevelDir
Top-level directory of test run. This directory is added to sys.path. Default: starting directory.

libDirs
Names of code directories, relative to starting directory. Default: [‘lib’, ‘src’]. These directories are added
to sys.path and discovery if the exist.

testFilePattern
Pattern used to discover test module files. Default: test*.py

testMethodPrefix
Prefix used to discover test methods and functions: Default: ‘test’.

unittest
The config section for nose2 itself.

configClass
alias of nose2.config.Config

get(section)
Get a config section.

Parameters section – The section name to retreive.

Returns instance of self.configClass.

isPluginLoaded(pluginName)
Returns True if a given plugin is loaded.

Parameters pluginName – the name of the plugin module: e.g. “nose2.plugins.layers”.

loadConfigFiles(*filenames)
Load config files.

Parameters filenames – Names of config files to load.

Loads all names files that exist into self.config.

loadPlugins(modules=None, exclude=None)
Load plugins.

106 Chapter 7. Plugin Developer’s Guide



nose2, Release 0.11.0

Parameters modules – List of module names from which to load plugins.

loadPluginsFromModule(module)
Load plugins from a module.

Parameters module – A python module containing zero or more plugin classes.

prepareSysPath()
Add code directories to sys.path

registerPlugin(plugin)
Register a plugin.

Parameters plugin – A nose2.events.Plugin instance.

Register the plugin with all methods it implements.

setStartDir(args_start_dir=None)
start dir comes from config and may be overridden by an argument

setVerbosity(args_verbosity, args_verbose, args_quiet)
Determine verbosity from various (possibly conflicting) sources of info

Parameters

• args_verbosity – The –verbosity argument value

• args_verbose – count of -v options

• args_quiet – count of -q options

start with config, override with any given –verbosity, then adjust up/down with -vvv -qq, etc

7.5.2 Config

Configuration values loaded from config file sections are made available to plugins in Config instances. Plugins that
set configSection will have a Config instance available as self.config.

class nose2.config.Config(items)
Configuration for a plugin or other entities.

Encapsulates configuration for a single plugin or other element. Corresponds to a ConfigParser.Section
but provides an extended interface for extracting items as a certain type.

as_bool(key, default=None)
Get key value as boolean

1, t, true, on, yes and y (case insensitive) are accepted as True values. All other values are False.

as_float(key, default=None)
Get key value as float

as_int(key, default=None)
Get key value as integer

as_list(key, default=None)
Get key value as list.

The value is split into lines and returned as a list. Lines are stripped of whitespace, and lines beginning
with # are skipped.

as_str(key, default=None)
Get key value as str

7.5. Session reference 107



nose2, Release 0.11.0

get(key, default=None)
Get key value

7.6 Plugin class reference

The plugin system in nose2 is based on the plugin system in unittest2’s plugins branch.

7.6.1 Plugin base class

class nose2.events.Plugin(*args, **kwargs)
Base class for nose2 plugins

All nose2 plugins must subclass this class.

session
The nose2.session.Session under which the plugin has been loaded.

config
The nose2.config.Config representing the plugin’s config section as loaded from the session’s
config files.

commandLineSwitch
A tuple of (short opt, long opt, help text) that defines a command line flag that activates this plugin. The
short opt may be None. If defined, it must be a single upper-case character. Both short and long opt must
not start with dashes.

Example:

commandLineSwitch = ('B', 'buffer-output', 'Buffer output during
tests')

configSection
The name config file section to load into this plugin’s config.

alwaysOn
If this plugin should automatically register itself, set alwaysOn to True. Default is False.

Note: Plugins that use config values from config files and want to use the nose2 sphinx extension to automat-
ically generate documentation must extract all config values from self.config in __init__. Otherwise
the extension will not be able to detect the config keys that the plugin uses.

addArgument(callback, short_opt, long_opt, help_text=None)
Add command-line option that takes one argument.

Parameters

• callback – Callback function to run when flag is seen. The callback will receive one
argument.

• short_opt – Short option. Must be uppercase, no dashes.

• long_opt – Long option. Must not start with dashes

• help_text – Help text for users so they know what this flag does.

addFlag(callback, short_opt, long_opt, help_text=None)
Add command-line flag that takes no arguments

108 Chapter 7. Plugin Developer’s Guide



nose2, Release 0.11.0

Parameters

• callback – Callback function to run when flag is seen. The callback will receive one
empty argument.

• short_opt – Short option. Must be uppercase, no dashes.

• long_opt – Long option. Must not start with dashes

• help_text – Help text for users so they know what this flag does.

addMethods(*methods)
Add new plugin methods to hooks registry

Any plugins that are already registered and implement a method added here will be registered for that
method as well.

addOption(callback, short_opt, long_opt, help_text=None, nargs=0)
Add command-line option.

Parameters

• callback – Callback function to run when flag is seen. The callback will receive one
argument. The “callback” may also be a list, in which case values submitted on the com-
mand line will be appended to the list.

• short_opt – Short option. Must be uppercase, no dashes.

• long_opt – Long option. Must not start with dashes

• help_text – Help text for users so they know what this flag does.

• nargs – Number of arguments to consume from command line.

register()
Register with appropriate hooks.

This activates the plugin and enables it to receive events.

7.6.2 Plugin interface classes

class nose2.events.PluginInterface
Definition of plugin interface.

Instances of this class contain the methods that may be called, and a dictionary of nose2.events.Hook
instances bound to each method.

In a plugin, PluginInterface instance is typically available as self.session.hooks, and plugin hooks may be called
on it directly:

event = events.LoadFromModuleEvent(module=the_module)
self.session.hooks.loadTestsFromModule(event)

preRegistrationMethods
Tuple of methods that are called before registration.

methods
Tuple of available plugin hook methods.

hookClass
Class to instantiate for each hook. Default: nose2.events.Hook.

7.6. Plugin class reference 109



nose2, Release 0.11.0

addMethod(method)
Add a method to the available method.

This allows plugins to register for this method.

Parameters method – A method name

hookClass
alias of nose2.events.Hook

register(method, plugin)
Register a plugin for a method.

Parameters

• method – A method name

• plugin – A plugin instance

class nose2.events.Hook(method)
A plugin hook

Each plugin method in the nose2.events.PluginInterface is represented at runtime by a Hook in-
stance that lists the plugins that should be called by that hook.

method
The name of the method that this Hook represents.

plugins
The list of plugin instances bound to this hook.

110 Chapter 7. Plugin Developer’s Guide



CHAPTER

EIGHT

DEVELOPER’S GUIDE

8.1 Contributing to nose2

Please do! nose2 cannot move forward without contributions from the testing community.

If you’re unsure how to get started, feel free to ask for help from the nose2 community via the mailing list.

8.1.1 The Basics

nose2 is hosted on github and use GitHub for issue tracking.

Please report issues and make feature requests here: https://github.com/nose-devs/nose2/issues

Submit changes as GitHub Pull Requests.

8.1.2 Code Contributions

The main rule is: code changes should include tests.

If you aren’t sure how to add tests, or you don’t know why existing tests fail on your changes, that’s okay! Submit
your patch and ask for help testing it.

Local Dev Requirements

To run the tests you must have tox installed.

Optional but useful tools include make and pre-commit.

Running Tests

To run all tests:

$ tox

To run linting checks:

$ tox -e lint

You can also use make test and make lint for these.

111

mailto:discuss@nose2.io
https://github.com/nose-devs/nose2
https://github.com/nose-devs/nose2/issues
http://pypi.python.org/pypi/tox
https://pre-commit.com/


nose2, Release 0.11.0

Linting

nose2 uses black, isort, and flake8 to enforce linting and code style rules, and pre-commit to run these tools.

For the best development experience, we recommend setting up integrations with your editor and git.

Running pre-commit as a git hook is optional. To configure it, you must have pre-commit installed and run:

$ pre-commit install

Note: If you need to bypass pre-commit hooks after setting this up, you can commit with --no-verify

8.2 Internals

Reference material for things you probably only need to care about if you want to contribute to nose2.

8.2.1 nose2.main

class nose2.main.PluggableTestProgram(**kw)
TestProgram that enables plugins.

Accepts the same parameters as unittest.TestProgram, but most of them are ignored as their functions
are handled by plugins.

Parameters

• module – Module in which to run tests. Default: __main__()

• defaultTest – Default test name. Default: None

• argv – Command line args. Default: sys.argv

• testRunner – IGNORED

• testLoader – IGNORED

• exit – Exit after running tests?

• verbosity – Base verbosity

• failfast – IGNORED

• catchbreak – IGNORED

• buffer – IGNORED

• plugins – List of additional plugin modules to load

• excludePlugins – List of plugin modules to exclude

• extraHooks – List of hook names and plugin instances to register with the session’s
hooks system. Each item in the list must be a 2-tuple of (hook name, plugin instance)

sessionClass
The class to instantiate to create a test run configuration session. Default: nose2.session.Session

loaderClass
The class to instantiate to create a test loader. Default: nose2.loader.PluggableTestLoader.

112 Chapter 8. Developer’s Guide

https://black.readthedocs.io/
https://pycqa.github.io/isort/
https://flake8.pycqa.org/
https://pre-commit.com/


nose2, Release 0.11.0

Warning: Overriding this attribute is the only way to customize the test loader class. Passing a test
loader to __init__() does not work.

runnerClass
The class to instantiate to create a test runner. Default: nose2.runner.PluggableTestRunner.

Warning: Overriding this attribute is the only way to customize the test runner class. Passing a test
runner to __init__() does not work.

defaultPlugins
List of default plugin modules to load.

createTests()
Create top-level test suite

findConfigFiles(cfg_args)
Find available config files

classmethod getCurrentSession()
Returns the current session, or None if no nose2.session.Session is running.

handleArgs(args)
Handle further arguments.

Handle arguments parsed out of command line after plugins have been loaded (and injected their argument
configuration).

handleCfgArgs(cfg_args)
Handle initial arguments.

Handle the initial, pre-plugin arguments parsed out of the command line.

loadPlugins()
Load available plugins

self.defaultPlugins`() and self.excludePlugins() are passed to the session to alter the
list of plugins that will be loaded.

This method also registers any (hook, plugin) pairs set in self.hooks. This is a good way to inject
plugins that fall outside of the normal loading procedure, for example, plugins that need some runtime
information that can’t easily be passed to them through the configuration system.

loaderClass
alias of nose2.loader.PluggableTestLoader

parseArgs(argv)
Parse command line args

Parses arguments and creates a configuration session, then calls createTests().

runTests()
Run tests

runnerClass
alias of nose2.runner.PluggableTestRunner

sessionClass
alias of nose2.session.Session

8.2. Internals 113



nose2, Release 0.11.0

setInitialArguments()
Set pre-plugin command-line arguments.

This set of arguments is parsed out of the command line before plugins are loaded.

nose2.main.discover(*args, **kwargs)
Main entry point for test discovery.

Running discover calls nose2.main.PluggableTestProgram, passing through all arguments and key-
word arguments except module: module is discarded, to force test discovery.

nose2.main.main
alias of nose2.main.PluggableTestProgram

8.2.2 nose2.exceptions

exception nose2.exceptions.LoadTestsFailure
Raised when a test cannot be loaded

exception nose2.exceptions.TestNotFoundError
Raised when a named test cannot be found

8.2.3 nose2.loader

class nose2.loader.PluggableTestLoader(session)
Test loader that defers all loading to plugins

Parameters session – Test run session.

suiteClass
Suite class to use. Default: unittest.TestSuite.

discover(start_dir=None, pattern=None)
Compatibility shim for load_tests protocol.

failedImport(name)
Make test case representing a failed import.

failedLoadTests(name, exception)
Make test case representing a failed test load.

loadTestsFromModule(module)
Load tests from module.

Fires loadTestsFromModule() hook.

loadTestsFromName(name, module=None)
Load tests from test name.

Fires loadTestsFromName() hook.

loadTestsFromNames(testNames, module=None)
Load tests from test names.

Fires loadTestsFromNames() hook.

sortTestMethodsUsing(name)
Sort key for test case test methods.

suiteClass
alias of unittest.suite.TestSuite

114 Chapter 8. Developer’s Guide



nose2, Release 0.11.0

8.2.4 nose2.result

class nose2.result.PluggableTestResult(session)
Test result that defers to plugins.

All test outcome recording and reporting is deferred to plugins, which are expected to implement
startTest(), stopTest(), testOutcome(), and wasSuccessful().

Parameters session – Test run session.

shouldStop
When True, test run should stop before running another test.

addError(test, err)
Test case resulted in error.

Fires setTestOutcome() and testOutcome() hooks.

addExpectedFailure(test, err)
Test case resulted in expected failure.

Fires setTestOutcome() and testOutcome() hooks.

addFailure(test, err)
Test case resulted in failure.

Fires setTestOutcome() and testOutcome() hooks.

addSkip(test, reason)
Test case was skipped.

Fires setTestOutcome() and testOutcome() hooks.

addSubTest(test, subtest, err)
Called at the end of a subtest.

Fires setTestOutcome() and testOutcome() hooks.

addSuccess(test)
Test case resulted in success.

Fires setTestOutcome() and testOutcome() hooks.

addUnexpectedSuccess(test)
Test case resulted in unexpected success.

Fires setTestOutcome() and testOutcome() hooks.

startTest(test)
Start a test case.

Fires startTest() hook.

stop()
Stop test run.

Fires resultStop() hook, and sets self.shouldStop to event.shouldStop.

stopTest(test)
Stop a test case.

Fires stopTest() hook.

wasSuccessful()
Was test run successful?

8.2. Internals 115



nose2, Release 0.11.0

Fires wasSuccessful() hook, and returns event.success.

8.2.5 nose2.runner

class nose2.runner.PluggableTestRunner(session)
Test runner that defers most work to plugins.

Parameters session – Test run session

resultClass
Class to instantiate to create test result. Default: nose2.result.PluggableTestResult.

resultClass
alias of nose2.result.PluggableTestResult

run(test)
Run tests.

Parameters test – A unittest TestSuite` or TestClass.

Returns Test result

Fires startTestRun() and stopTestRun() hooks.

8.2.6 nose2.util

nose2.util.call_with_args_if_expected(func, *args)
Take :func: and call it with supplied :args:, in case that signature expects any. Otherwise call the function
without any arguments.

nose2.util.ensure_importable(dirname)
Ensure a directory is on sys.path.

nose2.util.exc_info_to_string(err, test)
Format exception info for output

nose2.util.format_traceback(test, err)
Converts a sys.exc_info() -style tuple of values into a string.

nose2.util.has_module_fixtures(test)
Does this test live in a module with module fixtures?

nose2.util.isgenerator(obj)
Is this object a generator?

nose2.util.ispackage(path)
Is this path a package directory?

nose2.util.ln(label, char='-', width=70)
Draw a divider, with label in the middle.

>>> ln('hello there')
'---------------------------- hello there -----------------------------'

width and divider char may be specified. Defaults are 70 and '-', respectively.

nose2.util.module_from_name(name)
Import module from name

nose2.util.name_from_args(name, index, args)
Create test name from test args

116 Chapter 8. Developer’s Guide



nose2, Release 0.11.0

nose2.util.name_from_path(path)
Translate path into module name

Returns a two-element tuple:

1. a dotted module name that can be used in an import statement (e.g., pkg1.test.test_things)

2. a full path to filesystem directory, which must be on sys.path for the import to succeed.

nose2.util.num_expected_args(func)
Return the number of arguments that :func: expects

nose2.util.object_from_name(name, module=None)
Given a dotted name, return the corresponding object.

Getting the object can fail for two reason:

• the object is a module that cannot be imported.

• the object is a class or a function that does not exists.

Since we cannot distinguish between these two cases, we assume we are in the first one. We expect the stacktrace
is explicit enough for the user to understand the error.

nose2.util.parse_log_level(lvl)
Return numeric log level given a string

nose2.util.safe_decode(string)
Safely decode a byte string into unicode

nose2.util.test_from_name(name, module)
Import test from name

nose2.util.transplant_class(cls, module)
Make cls appear to reside in module.

Parameters

• cls – A class

• module – A module name

Returns A subclass of cls that appears to have been defined in module.

The returned class’s __name__ will be equal to cls.__name__, and its __module__ equal to module.

nose2.util.try_import_module_from_name(splitted_name)
Try to find the longest importable from the splitted_name, and return the corresponding module, as well
as the potential ImportError exception that occurs when trying to import a longer name.

For instance, if splitted_name is [‘a’, ‘b’, ‘c’] but only a.b is importable, this function:

1. tries to import a.b.c and fails

2. tries to import a.b and succeeds

3. return a.b and the exception that occured at step 1.

nose2.util.valid_module_name(path)
Is path a valid module name?

8.2. Internals 117



nose2, Release 0.11.0

118 Chapter 8. Developer’s Guide



CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

119



nose2, Release 0.11.0

120 Chapter 9. Indices and tables



PYTHON MODULE INDEX

n
nose2.events, 92
nose2.exceptions, 114
nose2.loader, 114
nose2.main, 112
nose2.plugins.attrib, 46
nose2.plugins.buffer, 31
nose2.plugins.collect, 60
nose2.plugins.coverage, 35
nose2.plugins.debugger, 32
nose2.plugins.doctests, 57
nose2.plugins.dundertest, 29
nose2.plugins.failfast, 33
nose2.plugins.junitxml, 39
nose2.plugins.layers, 56
nose2.plugins.loader.discovery, 21
nose2.plugins.loader.eggdiscovery, 67
nose2.plugins.loader.functions, 22
nose2.plugins.loader.generators, 23
nose2.plugins.loader.loadtests, 28
nose2.plugins.loader.parameters, 24
nose2.plugins.loader.testcases, 26
nose2.plugins.loader.testclasses, 26
nose2.plugins.logcapture, 33
nose2.plugins.mp, 51
nose2.plugins.outcomes, 58
nose2.plugins.prettyassert, 37
nose2.plugins.printhooks, 64
nose2.plugins.prof, 62
nose2.plugins.result, 29
nose2.plugins.testid, 61
nose2.result, 115
nose2.runner, 116
nose2.tools.such, 75
nose2.util, 116

121



nose2, Release 0.11.0

122 Python Module Index



INDEX

Symbols
-A DEFAULT

command line option, 46
-B DEFAULT

command line option, 31
-C DEFAULT

command line option, 36
-D DEFAULT

command line option, 32
-E DEFAULT

command line option, 46
-F DEFAULT

command line option, 33
-I DEFAULT

command line option, 62
-N DEFAULT

command line option, 52
-P DEFAULT

command line option, 64, 65
-X DEFAULT

command line option, 41
--attribute DEFAULT

command line option, 46
--collect-only DEFAULT

command line option, 60
--config CONFIG

command line option, 16
--coverage PATH

command line option, 36
--coverage-config FILE

command line option, 36
--coverage-report TYPE

command line option, 36
--debugger DEFAULT

command line option, 32
--eval-attribute DEFAULT

command line option, 46
--fail-fast DEFAULT

command line option, 33
--junit-xml DEFAULT

command line option, 41
--junit-xml-path FILE

command line option, 41
--layer-reporter DEFAULT

command line option, 57
--log-capture DEFAULT

command line option, 34
--no-plugins

command line option, 17
--no-user-config

command line option, 16
--output-buffer DEFAULT

command line option, 31
--pretty-assert DEFAULT

command line option, 38
--print-hooks DEFAULT

command line option, 65
--processes DEFAULT

command line option, 52
--profile DEFAULT

command line option, 64
--project-directory

TOP_LEVEL_DIRECTORY
command line option, 14

--set-outcomes DEFAULT
command line option, 59

--start-dir START_DIR
command line option, 14

--top-level-directory
TOP_LEVEL_DIRECTORY

command line option, 14
--with-coverage DEFAULT

command line option, 36
--with-doctest DEFAULT

command line option, 58
--with-id DEFAULT

command line option, 62
-c CONFIG

command line option, 16
-s START_DIR

command line option, 14
-t TOP_LEVEL_DIRECTORY

command line option, 14

123



nose2, Release 0.11.0

A
A() (in module nose2.tools.such), 75
addArgument() (nose2.events.Plugin method), 108
addAssertDetail()

(nose2.plugins.prettyassert.PrettyAssert static
method), 38

addError() (nose2.result.PluggableTestResult
method), 115

addExpectedFailure()
(nose2.result.PluggableTestResult method),
115

addFailure() (nose2.result.PluggableTestResult
method), 115

addFlag() (nose2.events.Plugin method), 108
addMethod() (nose2.events.PluginInterface method),

109
addMethods() (nose2.events.Plugin method), 109
addOption() (nose2.events.Plugin method), 109
addSkip() (nose2.result.PluggableTestResult method),

115
addSubTest() (nose2.result.PluggableTestResult

method), 115
addSuccess() (nose2.result.PluggableTestResult

method), 115
addUnexpectedSuccess()

(nose2.result.PluggableTestResult method),
115

afterInteraction()
built-in function, 105

afterInteraction()
(nose2.plugins.buffer.OutputBufferPlugin
method), 31

afterSummaryReport()
built-in function, 105

afterSummaryReport()
(nose2.plugins.coverage.Coverage method), 36

afterTestRun()
built-in function, 104

afterTestRun() (nose2.plugins.result.ResultReporter
method), 30

always-on
configvar, 22–28, 30–32, 34, 35, 37, 40, 51, 56,

58–61, 63, 64, 68
alwaysOn (nose2.events.Plugin attribute), 108
argparse (nose2.session.Session attribute), 106
args (nose2.events.CommandLineArgsEvent attribute),

92
as_bool() (nose2.config.Config method), 107
as_float() (nose2.config.Config method), 107
as_int() (nose2.config.Config method), 107
as_list() (nose2.config.Config method), 107
as_str() (nose2.config.Config method), 107
AttributeSelector (class in nose2.plugins.attrib),

46

B
beforeErrorList()

built-in function, 104
beforeInteraction()

built-in function, 105
beforeInteraction()

(nose2.plugins.buffer.OutputBufferPlugin
method), 31

beforeSummaryReport()
built-in function, 105

beforeSummaryReport()
(nose2.plugins.coverage.Coverage method), 36

beforeSummaryReport()
(nose2.plugins.prof.Profiler method), 64

bind_address
configvar, 51

built-in function
afterInteraction(), 105
afterSummaryReport(), 105
afterTestRun(), 104
beforeErrorList(), 104
beforeInteraction(), 105
beforeSummaryReport(), 105
createTests(), 100
describeTest(), 102
getTestCaseNames(), 101
handleArgs(), 100
handleFile(), 101
loadTestsFromModule(), 101
loadTestsFromName(), 100
loadTestsFromNames(), 100
loadTestsFromTestCase(), 101
matchPath(), 101
outcomeDetail(), 104
pluginsLoaded(), 100
registerInSubprocess(), 48
reportError(), 103
reportExpectedFailure(), 103
reportFailure(), 103
reportOtherOutcome(), 103
reportSkip(), 103
reportStartTest(), 102
reportSuccess(), 103
reportUnexpectedSuccess(), 103
resultCreated(), 101
resultStop(), 104
runnerCreated(), 101
setTestOutcome(), 102
startLayerSetup(), 102
startLayerSetupTest(), 102
startLayerTeardown(), 104
startLayerTeardownTest(), 104
startSubprocess(), 48
startTest(), 102

124 Index



nose2, Release 0.11.0

startTestRun(), 101
stopLayerSetup(), 102
stopLayerSetupTest(), 102
stopLayerTeardown(), 104
stopLayerTeardownTest(), 104
stopSubprocess(), 48
stopTest(), 103
stopTestRun(), 104
testOutcome(), 102
wasSuccessful(), 105

C
call_with_args_if_expected() (in module

nose2.util), 116
clear-handlers

configvar, 34
code-directories

configvar, 16
CollectOnly (class in nose2.plugins.collect), 61
collectTests() (nose2.plugins.collect.CollectOnly

method), 61
colors

configvar, 56
command line option

-A DEFAULT, 46
-B DEFAULT, 31
-C DEFAULT, 36
-D DEFAULT, 32
-E DEFAULT, 46
-F DEFAULT, 33
-I DEFAULT, 62
-N DEFAULT, 52
-P DEFAULT, 64, 65
-X DEFAULT, 41
--attribute DEFAULT, 46
--collect-only DEFAULT, 60
--config CONFIG, 16
--coverage PATH, 36
--coverage-config FILE, 36
--coverage-report TYPE, 36
--debugger DEFAULT, 32
--eval-attribute DEFAULT, 46
--fail-fast DEFAULT, 33
--junit-xml DEFAULT, 41
--junit-xml-path FILE, 41
--layer-reporter DEFAULT, 57
--log-capture DEFAULT, 34
--no-plugins, 17
--no-user-config, 16
--output-buffer DEFAULT, 31
--pretty-assert DEFAULT, 38
--print-hooks DEFAULT, 65
--processes DEFAULT, 52
--profile DEFAULT, 64

--project-directory
TOP_LEVEL_DIRECTORY, 14

--set-outcomes DEFAULT, 59
--start-dir START_DIR, 14
--top-level-directory

TOP_LEVEL_DIRECTORY, 14
--with-coverage DEFAULT, 36
--with-doctest DEFAULT, 58
--with-id DEFAULT, 62
-c CONFIG, 16
-s START_DIR, 14
-t TOP_LEVEL_DIRECTORY, 14

CommandLineArgsEvent (class in nose2.events), 92
commandLineSwitch (nose2.events.Plugin attribute),

108
Config (class in nose2.config), 107
config (nose2.events.Plugin attribute), 108
configClass (nose2.session.Session attribute), 106
configSection (nose2.events.Plugin attribute), 108
configvar

always-on, 22–28, 30–32, 34, 35, 37, 40, 51, 56,
58–61, 63, 64, 68

bind_address, 51
clear-handlers, 34
code-directories, 16
colors, 56
coverage, 35
coverage-config, 35
coverage-report, 35
date-format, 34
descriptions, 30
errors-only, 32
exclude-plugins, 17
extensions, 58
filename, 63
filter, 34
format, 34
highlight-words, 56
id-file, 61
indent, 56
keep_restricted, 40
log-level, 34
path, 40
plugins, 17
processes, 51
restrict, 63
sort, 63
start-dir, 16
stderr, 31
stdout, 31
test_fullname, 40
test_properties, 41
test-file-pattern, 16
test-method-prefix, 16

Index 125



nose2, Release 0.11.0

test-run-timeout, 51
treat-as-fail, 59
treat-as-skip, 59

connection (nose2.plugins.mp.SubprocessEvent at-
tribute), 49

coverage
configvar, 35

Coverage (class in nose2.plugins.coverage), 36
coverage-config

configvar, 35
coverage-report

configvar, 35
CreatedTestSuiteEvent (class in nose2.events),

93
createTests()

built-in function, 100
createTests() (nose2.main.PluggableTestProgram

method), 113
createTests() (nose2.plugins.coverage.Coverage

method), 36
createTests() (nose2.tools.such.Scenario method),

75
CreateTestsEvent (class in nose2.events), 92

D
date-format

configvar, 34
Debugger (class in nose2.plugins.debugger), 33
defaultPlugins (nose2.main.PluggableTestProgram

attribute), 113
describeTest()

built-in function, 102
DescribeTestEvent (class in nose2.events), 93
description (nose2.events.DescribeTestEvent at-

tribute), 93
descriptions

configvar, 30
discover() (in module nose2.main), 114
discover() (nose2.loader.PluggableTestLoader

method), 114
DiscoveryLoader (class in

nose2.plugins.loader.discovery), 22
DocTestLoader (class in nose2.plugins.doctests), 58
DunderTestFilter (class in

nose2.plugins.dundertest), 29

E
EggDiscoveryLoader (class in

nose2.plugins.loader.eggdiscovery), 68
ensure_importable() (in module nose2.util), 116
errorList (nose2.events.DescribeTestEvent attribute),

93
errors-only

configvar, 32

Event (class in nose2.events), 93
exc_info (nose2.events.TestOutcomeEvent attribute),

99
exc_info_to_string() (in module nose2.util), 116
exclude-plugins

configvar, 17
excludedNames (nose2.events.GetTestCaseNamesEvent

attribute), 93
executeTests (nose2.events.StartTestRunEvent at-

tribute), 98
executeTests (nose2.plugins.mp.SubprocessEvent

attribute), 49
expected (nose2.events.TestOutcomeEvent attribute),

99
extensions

configvar, 58
extraDetail (nose2.events.OutcomeDetailEvent at-

tribute), 95
extraNames (nose2.events.GetTestCaseNamesEvent

attribute), 93
extraTests (nose2.events.HandleFileEvent attribute),

94
extraTests (nose2.events.LoadFromModuleEvent at-

tribute), 94
extraTests (nose2.events.LoadFromNameEvent at-

tribute), 94
extraTests (nose2.events.LoadFromNamesEvent at-

tribute), 95
extraTests (nose2.events.LoadFromTestCaseEvent

attribute), 95

F
failedImport() (nose2.loader.PluggableTestLoader

method), 114
failedLoadTests()

(nose2.loader.PluggableTestLoader method),
114

FailFast (class in nose2.plugins.failfast), 33
filename

configvar, 63
filter

configvar, 34
findConfigFiles()

(nose2.main.PluggableTestProgram method),
113

format
configvar, 34

format_traceback() (in module nose2.util), 116
Functions (class in nose2.plugins.loader.functions),

23

G
Generators (class in

nose2.plugins.loader.generators), 24

126 Index



nose2, Release 0.11.0

get() (nose2.config.Config method), 107
get() (nose2.session.Session method), 106
getCurrentSession()

(nose2.main.PluggableTestProgram class
method), 113

getTestCaseNames()
built-in function, 101

getTestCaseNames()
(nose2.plugins.loader.generators.Generators
method), 24

getTestCaseNames()
(nose2.plugins.loader.parameters.Parameters
method), 25

GetTestCaseNamesEvent (class in nose2.events),
93

getTestMethodNames() (in module
nose2.plugins.loader.testclasses), 27

H
handleArgs()

built-in function, 100
handleArgs() (nose2.main.PluggableTestProgram

method), 113
handleArgs() (nose2.plugins.attrib.AttributeSelector

method), 46
handleArgs() (nose2.plugins.coverage.Coverage

method), 36
handleArgs() (nose2.plugins.junitxml.JUnitXmlReporter

method), 41
handleCfgArgs() (nose2.main.PluggableTestProgram

method), 113
handled (nose2.events.Event attribute), 93
handleDir() (nose2.plugins.loader.loadtests.LoadTestsLoader

method), 29
handleFile()

built-in function, 101
handleFile() (nose2.plugins.doctests.DocTestLoader

method), 58
HandleFileEvent (class in nose2.events), 94
has_module_fixtures() (in module nose2.util),

116
has_setup() (nose2.tools.such.Scenario method), 75
has_teardown() (nose2.tools.such.Scenario

method), 75
has_test_setup() (nose2.tools.such.Scenario

method), 75
has_test_teardown() (nose2.tools.such.Scenario

method), 76
having() (nose2.tools.such.Scenario method), 76
highlight-words

configvar, 56
Hook (class in nose2.events), 110
hookClass (nose2.events.PluginInterface attribute),

109, 110

hooks (nose2.session.Session attribute), 106

I
id-file

configvar, 61
indent

configvar, 56
isgenerator() (in module nose2.util), 116
ispackage() (in module nose2.util), 116
isPluginLoaded() (nose2.session.Session method),

106
isTestMethod (nose2.events.GetTestCaseNamesEvent

attribute), 93

J
JUnitXmlReporter (class in nose2.plugins.junitxml),

41

K
keep_restricted

configvar, 40

L
Layer (built-in class), 53
layer (nose2.events.StartLayerSetupEvent attribute),

97
layer (nose2.events.StartLayerSetupTestEvent at-

tribute), 97
layer (nose2.events.StartLayerTeardownEvent at-

tribute), 97
layer (nose2.events.StartLayerTeardownTestEvent at-

tribute), 97
layer (nose2.events.StopLayerSetupEvent attribute), 98
layer (nose2.events.StopLayerSetupTestEvent at-

tribute), 98
layer (nose2.events.StopLayerTeardownEvent at-

tribute), 98
layer (nose2.events.StopLayerTeardownTestEvent at-

tribute), 98
LayerReporter (class in nose2.plugins.layers), 57
Layers (class in nose2.plugins.layers), 57
libDirs (nose2.session.Session attribute), 106
ln() (in module nose2.util), 116
loadConfigFiles() (nose2.session.Session

method), 106
loader (nose2.events.CreateTestsEvent attribute), 92
loader (nose2.events.GetTestCaseNamesEvent at-

tribute), 93
loader (nose2.events.HandleFileEvent attribute), 94
loader (nose2.events.LoadFromModuleEvent at-

tribute), 94
loader (nose2.events.LoadFromNameEvent attribute),

94

Index 127



nose2, Release 0.11.0

loader (nose2.events.LoadFromNamesEvent attribute),
95

loader (nose2.events.LoadFromTestCaseEvent at-
tribute), 95

loader (nose2.plugins.mp.SubprocessEvent attribute),
49

loaderClass (nose2.main.PluggableTestProgram at-
tribute), 112, 113

LoadFromModuleEvent (class in nose2.events), 94
LoadFromNameEvent (class in nose2.events), 94
LoadFromNamesEvent (class in nose2.events), 95
LoadFromTestCaseEvent (class in nose2.events),

95
loadIds() (nose2.plugins.testid.TestId method), 62
loadPlugins() (nose2.main.PluggableTestProgram

method), 113
loadPlugins() (nose2.session.Session method), 106
loadPluginsFromModule()

(nose2.session.Session method), 107
LoadTestsFailure, 114
loadTestsFromModule()

built-in function, 101
loadTestsFromModule()

(nose2.loader.PluggableTestLoader method),
114

loadTestsFromModule()
(nose2.plugins.loader.functions.Functions
method), 23

loadTestsFromModule()
(nose2.plugins.loader.generators.Generators
method), 24

loadTestsFromModule()
(nose2.plugins.loader.parameters.Parameters
method), 25

loadTestsFromModule()
(nose2.plugins.loader.testcases.TestCaseLoader
method), 26

loadTestsFromModule()
(nose2.plugins.loader.testclasses.TestClassLoader
method), 28

loadTestsFromName()
built-in function, 100

loadTestsFromName()
(nose2.loader.PluggableTestLoader method),
114

loadTestsFromName()
(nose2.plugins.loader.discovery.DiscoveryLoader
method), 22

loadTestsFromName()
(nose2.plugins.loader.eggdiscovery.EggDiscoveryLoader
method), 68

loadTestsFromName()
(nose2.plugins.loader.functions.Functions
method), 23

loadTestsFromName()
(nose2.plugins.loader.generators.Generators
method), 24

loadTestsFromName()
(nose2.plugins.loader.parameters.Parameters
method), 25

loadTestsFromName()
(nose2.plugins.loader.testcases.TestCaseLoader
method), 26

loadTestsFromName()
(nose2.plugins.loader.testclasses.TestClassLoader
method), 28

loadTestsFromName() (nose2.plugins.testid.TestId
method), 62

loadTestsFromNames()
built-in function, 100

loadTestsFromNames()
(nose2.loader.PluggableTestLoader method),
114

loadTestsFromNames()
(nose2.plugins.loader.discovery.DiscoveryLoader
method), 22

loadTestsFromNames()
(nose2.plugins.loader.eggdiscovery.EggDiscoveryLoader
method), 68

loadTestsFromNames()
(nose2.plugins.testid.TestId method), 62

loadTestsFromTestCase()
built-in function, 101

loadTestsFromTestCase()
(nose2.plugins.loader.generators.Generators
method), 24

loadTestsFromTestClass() (in module
nose2.plugins.loader.testclasses), 26

LoadTestsLoader (class in
nose2.plugins.loader.loadtests), 29

log-level
configvar, 34

LogCapture (class in nose2.plugins.logcapture), 35
longLabel (nose2.events.TestOutcomeEvent attribute),

99

M
main (in module nose2.main), 114
matchPath()

built-in function, 101
MatchPathEvent (class in nose2.events), 95
metadata (nose2.events.Event attribute), 93
method (nose2.events.Hook attribute), 110
methods (nose2.events.PluginInterface attribute), 109
module

nose2.events, 92
nose2.exceptions, 114
nose2.loader, 114

128 Index



nose2, Release 0.11.0

nose2.main, 112
nose2.plugins.attrib, 46
nose2.plugins.buffer, 31
nose2.plugins.collect, 60
nose2.plugins.coverage, 35
nose2.plugins.debugger, 32
nose2.plugins.doctests, 57
nose2.plugins.dundertest, 29
nose2.plugins.failfast, 33
nose2.plugins.junitxml, 39
nose2.plugins.layers, 56
nose2.plugins.loader.discovery, 21
nose2.plugins.loader.eggdiscovery,

67
nose2.plugins.loader.functions, 22
nose2.plugins.loader.generators, 23
nose2.plugins.loader.loadtests, 28
nose2.plugins.loader.parameters, 24
nose2.plugins.loader.testcases, 26
nose2.plugins.loader.testclasses, 26
nose2.plugins.logcapture, 33
nose2.plugins.mp, 51
nose2.plugins.outcomes, 58
nose2.plugins.prettyassert, 37
nose2.plugins.printhooks, 64
nose2.plugins.prof, 62
nose2.plugins.result, 29
nose2.plugins.testid, 61
nose2.result, 115
nose2.runner, 116
nose2.tools.such, 75
nose2.util, 116

module (nose2.events.CreateTestsEvent attribute), 93
module (nose2.events.LoadFromModuleEvent at-

tribute), 94
module (nose2.events.LoadFromNameEvent attribute),

94
module (nose2.events.LoadFromNamesEvent attribute),

95
module_from_name() (in module nose2.util), 116
moduleLoadedSuite()

(nose2.plugins.attrib.AttributeSelector
method), 46

moduleLoadedSuite()
(nose2.plugins.loader.loadtests.LoadTestsLoader
method), 29

ModuleSuiteEvent (class in nose2.events), 95
MultiProcess (class in nose2.plugins.mp), 52

N
name (nose2.events.HandleFileEvent attribute), 94
name (nose2.events.LoadFromNameEvent attribute), 94
name (nose2.events.MatchPathEvent attribute), 95
name_from_args() (in module nose2.util), 116

name_from_path() (in module nose2.util), 117
names (nose2.events.CreateTestsEvent attribute), 92
names (nose2.events.LoadFromNamesEvent attribute),

95
nextId() (nose2.plugins.testid.TestId method), 62
nose2.events

module, 92
nose2.exceptions

module, 114
nose2.loader

module, 114
nose2.main

module, 112
nose2.plugins.attrib

module, 46
nose2.plugins.buffer

module, 31
nose2.plugins.collect

module, 60
nose2.plugins.coverage

module, 35
nose2.plugins.debugger

module, 32
nose2.plugins.doctests

module, 57
nose2.plugins.dundertest

module, 29
nose2.plugins.failfast

module, 33
nose2.plugins.junitxml

module, 39
nose2.plugins.layers

module, 56
nose2.plugins.loader.discovery

module, 21
nose2.plugins.loader.eggdiscovery

module, 67
nose2.plugins.loader.functions

module, 22
nose2.plugins.loader.generators

module, 23
nose2.plugins.loader.loadtests

module, 28
nose2.plugins.loader.parameters

module, 24
nose2.plugins.loader.testcases

module, 26
nose2.plugins.loader.testclasses

module, 26
nose2.plugins.logcapture

module, 33
nose2.plugins.mp

module, 51
nose2.plugins.outcomes

Index 129



nose2, Release 0.11.0

module, 58
nose2.plugins.prettyassert

module, 37
nose2.plugins.printhooks

module, 64
nose2.plugins.prof

module, 62
nose2.plugins.result

module, 29
nose2.plugins.testid

module, 61
nose2.result

module, 115
nose2.runner

module, 116
nose2.tools.such

module, 75
nose2.util

module, 116
num_expected_args() (in module nose2.util), 117

O
object_from_name() (in module nose2.util), 117
outcome (nose2.events.TestOutcomeEvent attribute), 99
outcomeDetail()

built-in function, 104
outcomeDetail() (nose2.plugins.buffer.OutputBufferPlugin

method), 31
outcomeDetail() (nose2.plugins.logcapture.LogCapture

method), 35
OutcomeDetailEvent (class in nose2.events), 95
outcomeEvent (nose2.events.OutcomeDetailEvent at-

tribute), 95
Outcomes (class in nose2.plugins.outcomes), 60
OutputBufferPlugin (class in

nose2.plugins.buffer), 31

P
Parameters (class in

nose2.plugins.loader.parameters), 25
params() (in module nose2.tools), 69
parse_log_level() (in module nose2.util), 117
parseArgs() (nose2.main.PluggableTestProgram

method), 113
path

configvar, 40
path (nose2.events.HandleFileEvent attribute), 94
path (nose2.events.MatchPathEvent attribute), 95
pattern (nose2.events.HandleFileEvent attribute), 94
pattern (nose2.events.MatchPathEvent attribute), 95
pdb (nose2.plugins.debugger.Debugger attribute), 33
PluggableTestLoader (class in nose2.loader), 114
PluggableTestProgram (class in nose2.main), 112
PluggableTestResult (class in nose2.result), 115

PluggableTestRunner (class in nose2.runner), 116
Plugin (class in nose2.events), 108
pluginargs (nose2.session.Session attribute), 106
pluginClasses (nose2.plugins.mp.RegisterInSubprocessEvent

attribute), 49
PluginInterface (class in nose2.events), 109
plugins

configvar, 17
plugins (nose2.events.Hook attribute), 110
plugins (nose2.plugins.mp.SubprocessEvent attribute),

49
plugins (nose2.session.Session attribute), 106
pluginsLoaded (nose2.events.PluginsLoadedEvent

attribute), 96
pluginsLoaded()

built-in function, 100
PluginsLoadedEvent (class in nose2.events), 96
prepareSysPath() (nose2.session.Session method),

107
preRegistrationMethods

(nose2.events.PluginInterface attribute),
109

PrettyAssert (class in nose2.plugins.prettyassert),
38

PrintHooks (class in nose2.plugins.printhooks), 65
processes

configvar, 51
procs() (nose2.plugins.mp.MultiProcess property), 52
Profiler (class in nose2.plugins.prof ), 64

R
reason (nose2.events.TestOutcomeEvent attribute), 99
register() (nose2.events.Plugin method), 109
register() (nose2.events.PluginInterface method),

110
register() (nose2.plugins.loader.testclasses.TestClassLoader

method), 28
register() (nose2.plugins.printhooks.PrintHooks

method), 65
registerInSubprocess()

built-in function, 48
RegisterInSubprocessEvent (class in

nose2.plugins.mp), 49
registerPlugin() (nose2.session.Session method),

107
reportCategories (nose2.events.ReportSummaryEvent

attribute), 96
reportError()

built-in function, 103
reportExpectedFailure()

built-in function, 103
reportFailure()

built-in function, 103
reportOtherOutcome()

130 Index



nose2, Release 0.11.0

built-in function, 103
reportSkip()

built-in function, 103
reportStartTest()

built-in function, 102
reportStartTest() (nose2.plugins.testid.TestId

method), 62
reportSuccess()

built-in function, 103
ReportSummaryEvent (class in nose2.events), 96
ReportTestEvent (class in nose2.events), 96
reportUnexpectedSuccess()

built-in function, 103
restrict

configvar, 63
result (nose2.events.ResultCreatedEvent attribute), 96
result (nose2.events.ResultStopEvent attribute), 96
result (nose2.events.ResultSuccessEvent attribute), 96
result (nose2.events.StartTestEvent attribute), 97
result (nose2.events.StartTestRunEvent attribute), 97
result (nose2.events.StopTestEvent attribute), 98
result (nose2.events.StopTestRunEvent attribute), 98
result (nose2.events.TestOutcomeEvent attribute), 99
result (nose2.plugins.mp.SubprocessEvent attribute),

49
resultClass (nose2.runner.PluggableTestRunner at-

tribute), 116
resultCreated()

built-in function, 101
resultCreated() (nose2.plugins.failfast.FailFast

method), 33
ResultCreatedEvent (class in nose2.events), 96
ResultReporter (class in nose2.plugins.result), 30
resultStop()

built-in function, 104
ResultStopEvent (class in nose2.events), 96
ResultSuccessEvent (class in nose2.events), 96
run() (nose2.runner.PluggableTestRunner method),

116
runner (nose2.events.RunnerCreatedEvent attribute),

97
runner (nose2.events.StartTestRunEvent attribute), 97
runner (nose2.events.StopTestRunEvent attribute), 98
runnerClass (nose2.main.PluggableTestProgram at-

tribute), 113
runnerCreated()

built-in function, 101
RunnerCreatedEvent (class in nose2.events), 97
runTests() (nose2.main.PluggableTestProgram

method), 113

S
safe_decode() (in module nose2.util), 117
Scenario (class in nose2.tools.such), 75

Session (class in nose2.session), 105
session (nose2.events.Plugin attribute), 108
sessionClass (nose2.main.PluggableTestProgram

attribute), 112, 113
setInitialArguments()

(nose2.main.PluggableTestProgram method),
113

setStartDir() (nose2.session.Session method), 107
setTestOutcome()

built-in function, 102
setTestOutcome() (nose2.plugins.buffer.OutputBufferPlugin

method), 32
setTestOutcome() (nose2.plugins.logcapture.LogCapture

method), 35
setTestOutcome() (nose2.plugins.outcomes.Outcomes

method), 60
setUp() (Layer class method), 53
setVerbosity() (nose2.session.Session method),

107
shortLabel (nose2.events.TestOutcomeEvent at-

tribute), 99
should() (nose2.tools.such.Scenario method), 76
shouldStop (nose2.events.ResultStopEvent attribute),

96
shouldStop (nose2.result.PluggableTestResult at-

tribute), 115
sort

configvar, 63
sortTestMethodsUsing()

(nose2.loader.PluggableTestLoader method),
114

start-dir
configvar, 16

startDir (nose2.session.Session attribute), 106
startLayerSetup()

built-in function, 102
StartLayerSetupEvent (class in nose2.events), 97
startLayerSetupTest()

built-in function, 102
StartLayerSetupTestEvent (class in

nose2.events), 97
startLayerTeardown()

built-in function, 104
StartLayerTeardownEvent (class in

nose2.events), 97
startLayerTeardownTest()

built-in function, 104
StartLayerTeardownTestEvent (class in

nose2.events), 97
startSubprocess()

built-in function, 48
startTest()

built-in function, 102
startTest() (nose2.plugins.buffer.OutputBufferPlugin

Index 131



nose2, Release 0.11.0

method), 32
startTest() (nose2.plugins.junitxml.JUnitXmlReporter

method), 41
startTest() (nose2.plugins.logcapture.LogCapture

method), 35
startTest() (nose2.plugins.result.ResultReporter

method), 30
startTest() (nose2.result.PluggableTestResult

method), 115
StartTestEvent (class in nose2.events), 97
startTestRun()

built-in function, 101
startTestRun() (nose2.plugins.collect.CollectOnly

method), 61
startTestRun() (nose2.plugins.dundertest.DunderTestFilter

method), 29
startTestRun() (nose2.plugins.logcapture.LogCapture

method), 35
startTestRun() (nose2.plugins.prof.Profiler

method), 64
StartTestRunEvent (class in nose2.events), 97
startTime (nose2.events.StartTestEvent attribute), 97
startTime (nose2.events.StartTestRunEvent attribute),

98
stderr

configvar, 31
stdout

configvar, 31
stop() (nose2.result.PluggableTestResult method), 115
stopLayerSetup()

built-in function, 102
StopLayerSetupEvent (class in nose2.events), 98
stopLayerSetupTest()

built-in function, 102
StopLayerSetupTestEvent (class in

nose2.events), 98
stopLayerTeardown()

built-in function, 104
StopLayerTeardownEvent (class in nose2.events),

98
stopLayerTeardownTest()

built-in function, 104
StopLayerTeardownTestEvent (class in

nose2.events), 98
stopSubprocess()

built-in function, 48
stopTest()

built-in function, 103
stopTest() (nose2.plugins.buffer.OutputBufferPlugin

method), 32
stopTest() (nose2.plugins.logcapture.LogCapture

method), 35
stopTest() (nose2.result.PluggableTestResult

method), 115

StopTestEvent (class in nose2.events), 98
stopTestEvent (nose2.events.ReportSummaryEvent

attribute), 96
stopTestRun()

built-in function, 104
stopTestRun() (nose2.plugins.junitxml.JUnitXmlReporter

method), 41
stopTestRun() (nose2.plugins.testid.TestId method),

62
StopTestRunEvent (class in nose2.events), 98
stopTime (nose2.events.StopTestEvent attribute), 98
stopTime (nose2.events.StopTestRunEvent attribute),

99
stream (nose2.events.ReportSummaryEvent attribute),

96
stream (nose2.events.ReportTestEvent attribute), 96
SubprocessEvent (class in nose2.plugins.mp), 49
success (nose2.events.ResultSuccessEvent attribute),

96
suite (nose2.events.CreatedTestSuiteEvent attribute),

93
suite (nose2.events.StartTestRunEvent attribute), 97
suiteClass (nose2.loader.PluggableTestLoader at-

tribute), 114

T
tearDown() (Layer class method), 53
test (nose2.events.DescribeTestEvent attribute), 93
test (nose2.events.StartLayerSetupTestEvent attribute),

97
test (nose2.events.StartLayerTeardownTestEvent at-

tribute), 97
test (nose2.events.StartTestEvent attribute), 97
test (nose2.events.StopLayerSetupTestEvent attribute),

98
test (nose2.events.StopLayerTeardownTestEvent

attribute), 98
test (nose2.events.StopTestEvent attribute), 98
test (nose2.events.TestOutcomeEvent attribute), 99
test_from_name() (in module nose2.util), 117
test_fullname

configvar, 40
test_properties

configvar, 41
test-file-pattern

configvar, 16
test-method-prefix

configvar, 16
test-run-timeout

configvar, 51
testCase (nose2.events.GetTestCaseNamesEvent at-

tribute), 93
testCase (nose2.events.LoadFromTestCaseEvent at-

tribute), 95

132 Index



nose2, Release 0.11.0

TestCaseLoader (class in
nose2.plugins.loader.testcases), 26

TestClassLoader (class in
nose2.plugins.loader.testclasses), 28

testEvent (nose2.events.ReportTestEvent attribute),
96

testFilePattern (nose2.session.Session attribute),
106

TestId (class in nose2.plugins.testid), 62
testMethodPrefix (nose2.events.GetTestCaseNamesEvent

attribute), 93
testMethodPrefix (nose2.session.Session at-

tribute), 106
TestNotFoundError, 114
testOutcome()

built-in function, 102
testOutcome() (nose2.plugins.debugger.Debugger

method), 33
testOutcome() (nose2.plugins.failfast.FailFast

method), 33
testOutcome() (nose2.plugins.junitxml.JUnitXmlReporter

method), 41
testOutcome() (nose2.plugins.result.ResultReporter

method), 30
TestOutcomeEvent (class in nose2.events), 99
testSetUp() (Layer class method), 53
testTearDown() (Layer class method), 53
timeTaken (nose2.events.StopTestRunEvent attribute),

99
topLevelDir (nose2.session.Session attribute), 106
topLevelDirectory (nose2.events.HandleFileEvent

attribute), 94
transplant_class() (in module nose2.util), 117
treat-as-fail

configvar, 59
treat-as-skip

configvar, 59
try_import_module_from_name() (in module

nose2.util), 117

U
unittest (nose2.session.Session attribute), 106
UserInteractionEvent (class in nose2.events), 99

V
valid_module_name() (in module nose2.util), 117
verbosity (nose2.session.Session attribute), 106
version (nose2.events.Event attribute), 93

W
wasSuccessful()

built-in function, 105
wasSuccessful() (nose2.plugins.coverage.Coverage

method), 36

wasSuccessful() (nose2.result.PluggableTestResult
method), 115

with_setup() (in module nose2.tools.decorators), 69
with_teardown() (in module

nose2.tools.decorators), 69

Index 133


	nose2 vs pytest
	Quickstart
	Full Docs
	Versions and Support
	Changelog and Version Scheme
	Python Versions

	Contributing
	User’s Guide
	Getting started with nose2
	Using nose2
	Configuring nose2
	Differences: nose2 vs nose vs unittest2
	Plugins for nose2
	Tools and Helpers
	Changelog

	Plugin Developer’s Guide
	Writing Plugins
	Documenting plugins
	Event reference
	Hook reference
	Session reference
	Plugin class reference

	Developer’s Guide
	Contributing to nose2
	Internals

	Indices and tables
	Python Module Index
	Index

