Home   Information   Classes   Download   Usage   Mail List   Requirements   Links   FAQ   Tutorial


LentPitShift.h
1#ifndef STK_LENTPITSHIFT_H
2#define STK_LENTPITSHIFT_H
3
4#include "Effect.h"
5#include "Delay.h"
6
7namespace stk {
8
9/***************************************************/
18/***************************************************/
19
20class LentPitShift : public Effect
21{
22 public:
24 LentPitShift( StkFloat periodRatio = 1.0, int tMax = RT_BUFFER_SIZE );
25
26 ~LentPitShift( void ) {
27 delete window;
28 delete dt;
29 delete dpt;
30 delete cumDt;
31 }
32
34 void clear( void );
35
37 void setShift( StkFloat shift );
38
40 StkFloat tick( StkFloat input );
41
43
51 StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
52
54
62 StkFrames& tick( StkFrames& iFrames, StkFrames &oFrames, unsigned int iChannel = 0, unsigned int oChannel = 0 );
63
64 protected:
65
67
71 void process( );
72
73 // Frame storage vectors for process function
74 StkFrames inputFrames;
75 StkFrames outputFrames;
76 int ptrFrames; // writing pointer
77
78 // Input delay line
79 Delay inputLine_;
80 int inputPtr;
81
82 // Output delay line
83 Delay outputLine_;
84 double outputPtr;
85
86 // Pitch tracker variables
87 unsigned long tMax_; // Maximal period measurable by the pitch tracker.
88 // It is also the size of the window used by the pitch tracker and
89 // the size of the frames that can be computed by the tick function
90
91 StkFloat threshold_; // Threshold of detection for the pitch tracker
92 unsigned long lastPeriod_; // Result of the last pitch tracking loop
93 StkFloat* dt; // Array containing the euclidian distance coefficients
94 StkFloat* cumDt; // Array containing the cumulative sum of the coefficients in dt
95 StkFloat* dpt; // Array containing the pitch tracking function coefficients
96
97 // Pitch shifter variables
98 StkFloat env[2]; // Coefficients for the linear interpolation when modifying the output samples
99 StkFloat* window; // Hamming window used for the input portion extraction
100 double periodRatio_; // Ratio of modification of the signal period
101 StkFrames zeroFrame; // Frame of tMax_ zero samples
102
103
104 // Coefficient delay line that could be used for a dynamic calculation of the pitch
105 //Delay* coeffLine_;
106
107};
108
110{
111 StkFloat x_t; // input coefficient
112 StkFloat x_t_T; // previous input coefficient at T samples
113 StkFloat coeff; // new coefficient for the difference function
114
115 unsigned long alternativePitch = tMax_; // Global minimum storage
116 lastPeriod_ = tMax_+1; // Storage of the lowest local minimum under the threshold
117
118 // Loop variables
119 unsigned long delay_;
120 unsigned int n;
121
122 // Initialization of the dt coefficients. Since the
123 // frames are of tMax_ length, there is no overlapping
124 // between the successive windows where pitch tracking
125 // is performed.
126 for ( delay_=1; delay_<=tMax_; delay_++ )
127 dt[delay_] = 0.;
128
129 // Calculation of the dt coefficients and update of the input delay line.
130 for ( n=0; n<inputFrames.size(); n++ ) {
131 x_t = inputLine_.tick( inputFrames[ n ] );
132 for ( delay_=1; delay_<= tMax_; delay_++ ) {
133 x_t_T = inputLine_.tapOut( delay_ );
134 coeff = x_t - x_t_T;
135 dt[delay_] += coeff * coeff;
136 }
137 }
138
139 // Calculation of the pitch tracking function and test for the minima.
140 for ( delay_=1; delay_<=tMax_; delay_++ ) {
141 cumDt[delay_] = dt[delay_] + cumDt[delay_-1];
142 dpt[delay_] = dt[delay_] * delay_ / cumDt[delay_];
143
144 // Look for a minimum
145 if ( delay_ > 1 && dpt[delay_-1]-dpt[delay_-2] < 0 && dpt[delay_]-dpt[delay_-1] > 0 ) {
146 // Check if the minimum is under the threshold
147 if ( dpt[delay_-1] < threshold_ ){
148 lastPeriod_ = delay_-1;
149 // If a minimum is found, we can stop the loop
150 break;
151 }
152 else if ( dpt[alternativePitch] > dpt[delay_-1] )
153 // Otherwise we store it if it is the current global minimum
154 alternativePitch = delay_-1;
155 }
156 }
157
158 // Test for the last period length.
159 if ( dpt[delay_]-dpt[delay_-1] < 0 ) {
160 if ( dpt[delay_] < threshold_ )
161 lastPeriod_ = delay_;
162 else if ( dpt[alternativePitch] > dpt[delay_] )
163 alternativePitch = delay_;
164 }
165
166 if ( lastPeriod_ == tMax_+1 )
167 // No period has been under the threshold so we used the global minimum
168 lastPeriod_ = alternativePitch;
169
170 // We put the new zero output coefficients in the output delay line and
171 // we get the previous calculated coefficients
172 outputLine_.tick( zeroFrame, outputFrames );
173
174 // Initialization of the Hamming window used in the algorithm
175 for ( int n=-(int)lastPeriod_; n<(int)lastPeriod_; n++ )
176 window[n+lastPeriod_] = (1 + cos(PI*n/lastPeriod_)) / 2 ;
177
178 long M; // Index of reading in the input delay line
179 long N; // Index of writing in the output delay line
180 double sample; // Temporary storage for the new coefficient
181
182 // We loop for all the frames of length lastPeriod_ presents between inputPtr and tMax_
183 for ( ; inputPtr<(int)(tMax_-lastPeriod_); inputPtr+=lastPeriod_ ) {
184 // Test for the decision of compression/expansion
185 while ( outputPtr < inputPtr ) {
186 // Coefficients for the linear interpolation
187 env[1] = fmod( outputPtr + tMax_, 1.0 );
188 env[0] = 1.0 - env[1];
189 M = tMax_ - inputPtr + lastPeriod_ - 1; // New reading pointer
190 N = 2*tMax_ - (unsigned long)floor(outputPtr + tMax_) + lastPeriod_ - 1; // New writing pointer
191 for ( unsigned int j=0; j<2*lastPeriod_; j++,M--,N-- ) {
192 sample = inputLine_.tapOut(M) * window[j] / 2.;
193 // Linear interpolation
194 outputLine_.addTo(env[0] * sample, N);
195 outputLine_.addTo(env[1] * sample, N-1);
196 }
197 outputPtr = outputPtr + lastPeriod_ * periodRatio_; // new output pointer
198 }
199 }
200 // Shifting of the pointers waiting for the new frame of length tMax_.
201 outputPtr -= tMax_;
202 inputPtr -= tMax_;
203}
204
205
206inline StkFloat LentPitShift :: tick( StkFloat input )
207{
208 StkFloat sample;
209
210 inputFrames[ptrFrames] = input;
211
212 sample = outputFrames[ptrFrames++];
213
214 // Check for end condition
215 if ( ptrFrames == (int) inputFrames.size() ){
216 ptrFrames = 0;
217 process( );
218 }
219
220 return sample;
221}
222
223inline StkFrames& LentPitShift :: tick( StkFrames& frames, unsigned int channel )
224{
225#if defined(_STK_DEBUG_)
226 if ( channel >= frames.channels() ) {
227 oStream_ << "LentPitShift::tick(): channel and StkFrames arguments are incompatible!";
228 handleError( StkError::FUNCTION_ARGUMENT );
229 }
230#endif
231
232 StkFloat *samples = &frames[channel];
233 unsigned int hop = frames.channels();
234 for ( unsigned int i=0; i<frames.frames(); i++, samples += hop ) {
235 *samples = tick( *samples );
236 }
237
238 return frames;
239}
240
241inline StkFrames& LentPitShift :: tick( StkFrames& iFrames, StkFrames& oFrames, unsigned int iChannel, unsigned int oChannel )
242{
243#if defined(_STK_DEBUG_)
244 if ( iChannel >= iFrames.channels() || oChannel >= oFrames.channels() ) {
245 oStream_ << "LentPitShift::tick(): channel and StkFrames arguments are incompatible!";
246 handleError( StkError::FUNCTION_ARGUMENT );
247 }
248#endif
249
250 StkFloat *iSamples = &iFrames[iChannel];
251 StkFloat *oSamples = &oFrames[oChannel];
252 unsigned int iHop = iFrames.channels(), oHop = oFrames.channels();
253 for ( unsigned int i=0; i<iFrames.frames(); i++, iSamples += iHop, oSamples += oHop ) {
254 *oSamples = tick( *iSamples );
255 }
256
257 return iFrames;
258}
259
260} // stk namespace
261
262#endif
263
STK non-interpolating delay line class.
Definition Delay.h:25
StkFloat tapOut(unsigned long tapDelay)
Return the value at tapDelay samples from the delay-line input.
StkFloat addTo(StkFloat value, unsigned long tapDelay)
Sum the provided value into the delay line at tapDelay samples from the input.
StkFloat tick(StkFloat input)
Input one sample to the filter and return one output.
Definition Delay.h:124
STK abstract effects parent class.
Definition Effect.h:22
Pitch shifter effect class based on the Lent algorithm.
Definition LentPitShift.h:21
LentPitShift(StkFloat periodRatio=1.0, int tMax=RT_BUFFER_SIZE)
Class constructor.
StkFloat tick(StkFloat input)
Input one sample to the filter and return one output.
Definition LentPitShift.h:206
void clear(void)
Reset and clear all internal state.
void process()
Apply the effect on the input samples and store it.
Definition LentPitShift.h:109
void setShift(StkFloat shift)
Set the pitch shift factor (1.0 produces no shift).
An STK class to handle vectorized audio data.
Definition Stk.h:279
unsigned int channels(void) const
Return the number of channels represented by the data.
Definition Stk.h:416
unsigned int frames(void) const
Return the number of sample frames represented by the data.
Definition Stk.h:419
size_t size() const
Returns the total number of audio samples represented by the object.
Definition Stk.h:374
The STK namespace.
Definition ADSR.h:6

The Synthesis ToolKit in C++ (STK)
©1995--2021 Perry R. Cook and Gary P. Scavone. All Rights Reserved.