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Chapter 1

Overview

1.1 Examples

1.1.1 TriangleGroup

> TriangleGroup(p, q, r) (function)
Returns: a pregroup presentation
Returns a pregroup presentation for the (p, q, r)-triangle group, the pregroup is the pregroup of
the free product of a cyclic group of order p generated by x and a cyclic group of order q generated
by y together with the relation (xy)”.
Example

gap> T := TriangleGroup(2,3,7);

<pregroup presentation with 3 generators and 1 relators>
gap> Pregroup(T);

<pregroup with 4 elements in table rep>

gap> Relators(T);

[ <pregroup relator ([ "2", "3" ])~7> ]

gap> T := TriangleGroup(17,22,100);

<pregroup presentation with 37 generators and 1 relators>
gap> Pregroup(T);

<pregroup with 38 elements in table rep>

gap> Relators(T);

[ <pregroup relator ([ "2", "18" ]1)~100> ]

gap> IsHyperbolic(T, 1/6);

true

1.1.2 TriangleCommutatorQuotient

> TriangleCommutatorQuotient (m, n) (function)
> TriSH ( arg ) (function)
Returns: a pregroup presentation
Returns a pregroup presentation of the quotient of the (2,3, m)-triangle group by the normal sub-
group generated by nth power of the commutator of x and y. The name TriSH is a synonym for
TriangleCommutatorQuotient provided for backwards compatibility and might be removed in the
future.
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1.1.3 RandomTriangleQuotient

> RandomTriangleQuotient(p, g, r, len) (function)
Returns: a pregroup presentation
Returns the quotient of the (p, q, r)-triangle group by a random relator of length len.

1.1.4 JackButtonGroup

> JackButtonGroup O (function)
Returns: a pregroup presentation
The Jack-Button group, as suggested to me by Alan Logan. It is known to be hyperbolic, but the
tester fails for it. The pregroup is the pregroup of the free group of rank 3 with generators a,b, and ¢

and two relators t ‘atb~'a=! and tata='b7!.
Example

gap> J := JackButtonGroup();

<pregroup presentation with 6 generators and 2 relators>
gap> Pregroup(J);

<pregroup of free group of rank 3>

gap> Relators(J);

[ <pregroup relator TatBA>, <pregroup relator TatAB> ]

1.1.5 RandomPregroupPresentation

> RandomPregroupPresentation(pg, nrel, lrel) (function)
Returns: a pregroup presentation
Returns a pregroup presentation over the given pregroup pg with nrel randomly chosen relators
of length 1rel.

1.1.6 RandomPregroupWord

> RandomPregroupWord(pg, len) (function)

Returns: a list of integers

A random list of pregroup element numbers of the pregroup pregroup of length 1en. When
interpreted as a pregroup word this is cyclically reduced.

This package provides the operations IsHyperbolic, ways of testing a finitely presented group
for hyperbolicity in the sense of Gromov.

The algorithm is based on ideas by Richard Parker, and the theory is described in the paper "Poly-
nomial time proofs that groups are hyperbolic".

1.2 Testing Hyperbolicity

The main function of this package is the so-called RSym-tester. Given a (pregroup) presentation of
a group, this function will try to prove whether the group defined by the presentation is hyperbolic,
and will give an answer in polynomial time. Since hyperbolicity is undecidable, the answer can be
positive, negative, or inconclusive.

As a simple example consider the following. Triangle groups are known to be hyperbolic when
the sum % + % + ]; is less than 1. The parameter for IsHyperbolic (3.5.3) gives the algorithm a hint
how hard it should try.
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Example
gap> triangle := TriangleGroup(2,3,7);
<pregroup presentation with 3 generators and 1 relators>

gap> IsHyperbolic(triangle, 1/6);

true

gap> triangle := TriangleGroup(3,3,3);

<pregroup presentation with 3 generators and 1 relators>

gap> IsHyperbolic(triangle, 1/6);

[ fail, [ [ 1, 0,0, 01, [2, 1,1, 1/361, [ 1,2, 2, 1/18 1],
2,3,3,1/121, [ 1, 4, 4, 1/91, [ 2, 5, 5, 5/36 1],
1, 6,6,1/611, [2,5,5,5/31]]

o/

One can also create pregroup presentations by giving a pregroup and relators, that is, words over
the pregroup.
Example

gap> Gl := CyclicGroup(3);;

gap> pg := PregroupOfFreeProduct(G1,G1);

<pregroup with 5 elements in table rep>

gap> rel := [2,5,3,4,3,4,3,4,3,5,2,4,3,5,2,4,3,5,3,4,2,4,3,5];

(2,5, 3, 4,3, 4,3, 4,3,5,2,4,23,5,2,4,23,5,3,4,2,4,3,5]
gap> pgp := NewPregroupPresentation(pg, [pg_word(pg,rel)]);

<pregroup presentation with 4 generators and 1 relators>

gap> res := RSymTest(pgp, 0);;

gap> res[1];

fail

1.3 The MAGMA-compatible interface

An implementation of the hyperbolicity testing algorithm and word-problem solver exist in MAGMA
as well. For ease of comparison between the results these two systems give, walrus contains an
interface that aims to be compatible with MAGMA’s. Please refer to MAGMA'’s documentation for
further details.

Example

gap> F := FreeGroup("x", "y");;

gap> AssignGeneratorVariables(F);;

gap> rred := [ y°3 1;;

gap> rgreen := [ x4, (xxy)~4 1;;

gap> IsHyperbolic(F, rred, rgreen, 1/10);

[ fail, [ [ 1, 0,0,01]1, [2,1,1, 13/1201, [ 1, 2, 2, 13/60 1],
(2,3,3,13/401, [ 1, 4, 4, 13/301 1, [ 2, 3, 3, 13/40 1]
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Pregroups

Pregroups are the fundamental building block of pregroup presentations used in the hyperbolicity
tester.

2.1 Creating Pregroups

This section describes functions to create pregroups from multiplication tables, free groups, and free
products of finite groups.

2.1.1 PregroupByTable

> PregroupByTable (enams, table) (function)
> PregroupByTableNC(arg) (function)

Returns: A pregroup

If enams is a list of element names, which can be arbitrary GAP objects, with the convention that
enams [1] is the name of the identity element, and table is a square table of non-negative integers that
is the multiplication table of a pregroup, then PregroupByTable and PregroupByTableNC return a
pregroup in multiplication table representation.

By convention the elements of the pregroup are numbered [1..n] with 0 denoting an undefined
product in the table.

The axioms for a pregroup are checked by PregroupByTable and not checked by
PregroupByTableNC.

Example
gap> pregroup := PregroupByTable( "1xyY",
> [ [1,2,3,4]
> , [2,1,0,0]
> , [3,4,0,1]
> , [4,0,1,311);

<pregroup with 4 elements in table rep>

2.1.2 PregroupByRedRelators (for IsFreeGroup, IsList, IsList)

> PregroupByRedRelators(F, rrel, inv) (operation)
Returns: A pregroup in table representation
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Construct a pregroup from the list rrel of red relators and the list inv of involutions over the free
group F. The argument rred has to be a list of elements of length 3 in the free group F, and inv has
to be a list of generators of F.

2.1.3 PregroupOfFreeProduct (for IsGroup, IsGroup)

> PregroupOfFreeProduct (G, H) (operation)

Construct the pregroup of the free product of G and H. If G and H are finite groups, then
Pregroup0fFreeProduct returns the pregroup consisting of the non-identity elements of G and H
and an identity element. A product between two non-trivial elements is defined if and only if they are
in the same group.

Example
gap> pregroup := PregroupOfFreeProduct(SmallGroup(12,2), SmallGroup(24,4));
<pregroup with 35 elements in table rep>

2.1.4 PregroupOfFreeGroup

> Pregroup0fFreeGroup (F) (function)

Return the pregroup of the free group F

2.2 Filters and Representations

This section gives an overview over the filters, categories and representations defined by walrus

2.2.1 IsPregroup (for IsObject and IsCollection)

> IsPregroup(arg) (filter)
Returns: true or false

2.2.2 IsPregroupTableRep (for IsPregroup andIsComponentObjectRep andIsAt-
tributeStoringRep)

> IsPregroupTableRep(arg) (filter)
Returns: true or false
A pregroup represented by its multiplication table, which is a square table of integers between 0
and the size of the pregroup, where 0 represents an undefined multiplication.

2.2.3 IsPregroupOfFreeGroupRep (for IsPregroup andIsComponentObjectRep an-
dIsAttributeStoringRep)

> IsPregroupOfFreeGroupRep(arg) (filter)
Returns: true or false
Pregroup of a free group of rank k. The only defined products are 1 -x = x-1 =x and xx~! =
x~'x = 1, for all generators x.
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2.2.4 IsPregroupOfFreeProductRep (for IsPregroup andIsComponentObjectRep an-
dIsAttributeStoringRep)

> IsPregroupOfFreeProductRep(arg) (filter)
Returns: true or false
Pregroup of the free product of a list of groups where products between non-trivial elements g, &
are defined if g, h are contained in the same group.

2.3 Attributes, Properties, and Operations

This section gives an overview over the attributes, properties, and operatins defined for pregroups.

2.3.1 [] (for IsPregroup, IsInt)

> [ (pregroup, i) (operation)

Get the ith element of pregroup. By convention the 1st element is the identity element.

2.3.2 IntermultPairs (for IsPregroup)

> IntermultPairs(pregroup) (attribute)

Returns the set of intermult pairs of the pregroup

2.3.3 One (for IsPregroup)

> One(pregroup) (attribute)

The identity element of pregroup.

2.3.4 MultiplicationTable (for IsPregroup)

> MultiplicationTable(pregroup) (attribute)

The multiplication table of pregroup

2.3.5 SetPregroupElementNames (for IsPregroup, IsList)

> SetPregroupElementNames (pregroup, names) (operation)

Can be used to set more user-friendly display names for the elements of pregroup. The list names
has to be of length Size (pregroup).

2.3.6 PregroupElementNames (for IsPregroup)

> PregroupElementNames (pregroup) (operation)

Return the list of names of elements of pregroup
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2.4 Elements of Pregroups

24.1 IsElementOfPregroup (for IsMultiplicativeElementWithInverse)

> IsElementOfPregroup(arg) (filter)
Returns: true or false

2.4.2 IsElementOfPregroupRep (for IsElementOfPregroup and IsComponentObjec-
tRep)

> IsElementOfPregroupRep(arg) (filter)
Returns: true or false

2.4.3 IsElementOfPregroupOfFreeGroupRep (for IsElementOfPregroup and IsCom-
ponentObjectRep)

> IsElementOfPregroupO0fFreeGroupRep(arg) (filter)
Returns: true or false

2.4.4 PregroupOf (for IsElementOfPregroup)

> PregroupOf (p) (attribute)

The pregroup that the element p is contained in.

2.4.5 IsDefinedMultiplication (for IsElementOfPregroup, IsElementOfPregroup)

> IsDefinedMultiplication(p, q) (operation)

Tests whether the multiplication of p and q is defined in the pregroup containing p and q.

2.4.6 IsIntermultPair (for IsElementOfPregroup, IsElementOfPregroup)

> IsIntermultPair(p, q) (operation)

Tests whether (p, q) is an intermult pair. defined.

2.4.7 Pregrouplnverse (for IsElementOfPregroup)

> PregroupInverse (p) (attribute)

Return the inverse of p.

2.5 Small Pregroups

This package contains a small database of pregroups of sizes 1 to 7. The database was computed by
Chris Jefferson using the Minion constraint solver.
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These small pregroups currently used for testing. Accessing the small pregroups database works
as follows.

2.5.1 NrSmallPregroups

> NrSmallPregroups(n) (function)
Returns: an integer.
Returns the number of pregroups of size n available in the database.

2.5.2 SmallPregroup

> SmallPregroup(n, i) (function)
Returns: a pregroup.
Returns the ith pregroup of size n from the database of small pregroups.
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Pregroup Presentations

3.1 Concepts

Given a pregroup P there is a universal group % (P) that contains P. The concept of a pregroup
presentation is a generalisation of presentations over the free group, that is a pregroup presentation is
a way of defining a group as a quotient of a universal group over a pregroup by giving relator words
over the pregroup.

For the purposes of the RSym tester we introduce some more concepts.

3.1.1 Locations

A location on a pregroup relator w = aja; . . .a, is an index i between 1 and n and denotes the location
between qa; (the InLetter (3.2.2)) and a;1 (the OutLetter (3.2.3)), where the relator is considered
cyclically, that is, when i = n then the outletter is a;.

3.1.2 Places

A place R(L,x,C) on a pregroup relator R is a location (3.1.1) together with a letter from the pregroup
and a colour, which is either red or green.

3.2 Attributes

3.2.1 IsPregroupLocation (for IsObject)

> IsPregrouplocation(arg) (filter)
Returns: true or false

3.2.2 InLetter (for IsPregroupLocation)

> InLetter(arg) (attribute)

3.2.3 OutLetter (for IsPregroupLocation)

11
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> OutLetter (arg) (attribute)

3.2.4 Places (for IsPregroupLocation)

> Places(arg) (attribute)

3.2.5 NextLocation (for IsPregroupLocation)

> NextLocation(arg) (attribute)

3.2.6 PrevLocation (for IsPregroupLocation)

> PrevLocation(arg) (attribute)

3.2.77 __ID (for IsPregroupLocation)

> __ID( arg ) (attribute)

3.3 Creating Pregroup Presentations

3.3.1 NewPregroupPresentation

> NewPregroupPresentation(pregroup, relators) (function)
Returns: a pregroup presentation
Creates a pregroup presentation over the pregroup with relators relators.

3.3.2 PregroupPresentationFromFp

> PregroupPresentationFromFp (F, rred, rgreen) (function)
Returns: a pregroup presentation
Creates a pregroup presentation over the pregroup defined by F and rred with relators rgreen.

3.3.3 PregroupPresentationToFpGroup

> PregroupPresentationToFpGroup(presentation) (function)
Returns: a finitely presented group
Converts the pregroup presentation presentation into a finitely presented group.
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3.4 Filters, Attributes, and Properties

3.4.1 IsPregroupPresentation (for IsObject)
> IsPregroupPresentation(arg) (filter)

Returns: true or false

3.4.2 (for IsPregroupPresentation and IsComponentObjectRep and IsAttributeStor-
ingRep)

> (arg) (filter)
Returns: true or false

3.5 Hyperbolicity testing for pregroup presentations
3.5.1 RSymTestOp (for IsPregroupPresentation, IsRat)
> RSymTestOp(presentation, epsilon) (operation)

Test the group presented by presentation for hyperbolicity using the RSym tester with param-
eter epsilon.

3.5.2 RSymTest

> RSymTest(args...) (function)

This is a wrapper for RSymTest0p (3.5.1). If the first argument given is a free group, the second
and third lists of words over the free group, and the fourth a rational, then this function creates a
pregroup presentation from the input data and invokes RSymTest0Op (3.5.1) on it. If the first argument
is a pregroup presentation and the second argument is rational number, then it invokes RSymTest0p
(3.5.1) on that input.

3.5.3 IsHyperbolic (for IsPregroupPresentation)

> IsHyperbolic(presentation) (operation)
> IsHyperbolic(presentation, epsilon) (operation)
> IsHyperbolic(F, rred, rgreen, epsilon) (operation)

Tests a given presentation for hyperbolicity using the RSym test procedure.

3.6 Input and Output of Pregroup Presentations

3.6.1 PregroupPresentationToOKBMAG

> PregroupPresentationToKBMAG(presentation) (function)
Returns: A KBMAG rewriting system
Turns the pregroup presentation presentation into valid input for Knuth-Bendix rewriting using
KBMAG. Only available if the kbmag package is available.
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3.6.2 PregroupPresentationToStream

> PregroupPresentationToStream(stream, presentation) (function)

Writes the pregroup presentation presentation to stream.
Example

gap> T := TriangleGroup(2,3,7);;

gap> str := "";; stream := OutputTextString(str, true);;
gap> PregroupPresentationToStream(stream, T);

gap> Print(str);

rec(

rels := [ [2, 3, 2,3, 2,3,2,3,2,3,2,3,2,311,

table := [ [ 1’ 2, 3’ 4 ]’ [ 2’ 1’ 0, O ], [ 3, O’ 4’ 1 ]’ [ 4’ 0, 1’ 3 ] ] );
3.6.3 PregroupPresentationFromStream
> PregroupPresentationFromStream(stream) (function)

Returns: A pregroup presentation
Reads a pregroup presentation from an input stream in the same format that

PregroupPresentationToStrean (3.6.2) uses.
Example

gap> stream := InputTextString(str);
InputTextString(0,146)

gap> PregroupPresentationFromStream(stream) ;

<pregroup presentation with 3 generators and 1 relators>

3.6.4 PregroupPresentationToSimpleStream

> PregroupPresentationToSimpleStream(stream, presentation) (function)

Writes the pregroup presentation presentation to stream. Uses a simpler format than
PregroupPresentationToStreanm (3.6.2)

3.6.5 PregroupPresentationToFile

> PregroupPresentationToFile(filename, presentation) (function)

Writes the pregroup presentation presentation to file with name filename.

3.6.6 PregroupPresentationFromFile

> PregroupPresentationFromFile(filename) (function)

Reads a pregroup presentation from file with filename.

3.6.7 PregroupPresentationToSimpleFile

> PregroupPresentationToSimpleFile(stream, presentation) (function)

Writes the pregroup presentation presentation to file with name filename in a simple format.
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