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bias

FIG. 1. Sketch of charge distribution in a three
dimensional ~resonant-tunneling device under dc bias
Vhias = iz — pr with a time modulation of amplitude A, g
superposed on the leads. As argued in the text, only a tiny
fraction of charge carriers participates in setting up the volt-
age drop across the structure.

charge is quite strong, and hence the bias across a tun-
neling structure is caused by a relatively small excess of
charge in accumulation and depletion layers. The forma-
tion of these layers then causes a rigid shift [see Eq. (2)
below] of the bottom of the conduction band deeper in
the leads, which is the origin of the rigid shift of energy
levels in our treatment of a time-dependent bias.

The second frequency limit on our approach is that
the buildup of electrons required for the formation of the
accumulation and depletion layers must not significantly
disrupt the coherent transport of electrons incident from
the leads. One way to quantify this is to ask—what is
the probability that an electron incident from the leads
participates in the buildup of charge associated with a
time-dependent bias? This probability will be the ratio
of the net current density flowing into the accumulation
region to the total incident flux of electrons. For a three-
dimensional double-barrier resonant-tunneling structure
(see Fig. 1) the ac charging the accumulation layer is
Irms = 2rpC'V™* A, where v is the driving frequency,
C is the capacitance, V™* is the applied bias, and A
is the area. In comparison, the total incident flux is
Iinc = 3/8envp. Using the parameters appropriate for
a typical experiment (we use that of Brown et al.2%), we
find that up to 10 THz the probability of an electron par-
ticipating in the charge buildup is only 1%. Summariz-
ing, these estimates indicate that our approach should be
accurate up to frequencies of tens of THz, which are large
by present experimental standards, and consequently the
analysis presented in what follows should be valid for
most experimental situations.

III. THEORETICAL TOOLS AND THE MODEL

A. Baym-Kadanoff-Keldysh nonequilibrium
techniques

Here we wish to outline the physical background be-
hind the Keldysh formulation, and in particular its con-

nection to tunneling physics. Readers interested in tech-
nical details should consult any of the many available
review articles, such as Refs. 25-27. The basic difference
between construction of equilibrium and nonequilibrium
perturbation schemes is that in nonequilibrium one can-
not assume that the system returns to its ground state
(or a thermodynamic equilibrium state at finite tempera-
tures) as t = +oo. Irreversible effects break the symme-

try between t = —oo and t = +00, and this symmetry is
heavily exploited in the derivation of the equilibrium per-
turbation e: i In ilibri ituati one

can circumvent this problem by allowing the system to
evolve from —oo to the moment of interest (for definite-
ness, let us call this instant ty), and then continue the
time evolvement from ¢ = to back to t = —00.2® (When
dealing with quantities that depend on two time vari-
ables, such as Green functions, the time evolution must
be continued to the later time.) The advantage of this
procedure is that all expectation values are defined with
respect to a well defined state, i.e., the state in which
the system was prepared in the remote past. The price
is that one must treat the two time branches on an equal
footing (See Fig. 2).

A typical object of interest would be a two time Green
function (see Appendix A); the two times can be located
on either of the two branches of the complex time path
(e.g-, 7 and 7' in Fig. 2). One is thus led to consider
2 x 2 Green-function matrices, and the various terms in
the perturbation theory can be evaluated by matrix mul-
tiplication. Since the internal time integrations run over
the complex time path, a method of bookkeeping for the
time labels is required, and there are various ways of do-
ing this. In the present work we employ a version of the
Keldysh technique.

In the context of tunneling problems the time-
independent Keldysh formalism works as follows. In the
remote past the contacts (i.e., the left and right lead)
and the central region are decoupled, and each region
is in thermal equilibrium. The equilibrium distribution
functions for the three regions are characterized by their
respective chemical potentials; these do not have to coin-
cide nor are the differences between the chemical poten-
tials necessarily small. The couplings between the differ-
ent regions are then established and treated as perturba-
tions via the standard techniques of perturbation theory,
albeit on the two-branch time contour. It is important
to notice that the couplings do not have to be small, e.g.,
with respect level spacings or kgT, and typically must be
treated to all orders.

FIG. 2. The complex-time contour on which nonequilib-
rium-Green-function theory is constructed. In the contour
sense, the time 7, is earlier than 73 even though its real-time
projection appears larger.
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The time-dependent case can be treated similarly.
Before the couplings between the various regions are
turned on, the single-particle energies acquire rigid time-
dependent shifts, which, in the case of the noninteracting
contacts, translate into extra phase factors for the prop-
agators (but not in changes in occupations). The per-
turbation theory with respect to the couplings has the
same diagrammatic structure as in the stationary case.
The calculations, of course, become more complicated
because of the broken time-translational invariance.

B. Model Hamiltonian

‘We split the total Hamiltonian in three pieces: H =
H.+ Hr + Hm,, where H. describes the contacts, Hr
is the ling between ts and the in-
teracting region, and Hce, models the interacting cen-
tral region, respectively. Below we discuss each of these
terms.

1. Contacts, H.

Guided by the typical experimental geometry in which
the leads rapidly broaden into metallic contacts, we view
electrons in the leads as noninteracting except for an
overall self-consistent potential. Physically, applying a
time-dependent bias between the source and drain con-
tacts corresponds to accumulating or depleting charge
to form a dipole around the centra.[ region. The re-
sulting el means that the
single-] parucle energ:es become time dependent: e,, —
€ka(t) = €p, + Aq(t) [here o labels the channel in the
left (L) or right (R} lead]. The occupation of each state
ka, however, remains unchanged. The occupation, for
each contact, is determined by an equilibrium distribu-
tion f\mcnon established in the distant past, before the

time-d or ling matrix el are turned
on. Thus, the contact Hamiltonian is
He= Y exalt)clacha, (1)
ka€EL,R
and the exact time-d d Green functi in the

leads for the uncoupled system are
Tia(t:t)= ilela(t)era(®))
t
=if(ehs) exp [7i/ dt;eh,,(tl)]
N

gra(t,t)= FiO(£t F ') ({cka(t), chal(t)})

t
= Fif(£t F t') exp [—i/; dhfka(t:)] - (2

One should note that our model for g< differs from the
choice made in the recent study of Chen and Ting.!5 The
difference does not affect calculations carried out to lin-
ear response in the ac drive, but is significant in nonlinear
response. Specifically, Chen and Ting allow the electro-
chemical potential in the distribution function f to vary
with time: pz — ur = e[V + U(t)], where U(t) is the ac

signal. This assumption implies that the total number
of electrons in the contacts varies with time. This be-
havior is i istent with what happens in real devices:
it is only the relatively small number of electrons in the
accumulation-depletion layers that is time dependent. In
addition to the unphysical charge pileup in the contacts,
the model of Chen and Ting leads to an instantaneous
loss of phase coherence in the contacts, and hence does
not display any of the interesting interference phenomena
predicted by our phase-conserving model.

2. Coupling between leads and central region, Hr

The coupling between the leads and the central (inter-
acting) region can be modified with time dependent gate
voltages, as is the case in single-electron pumps. The
precise functional form of the time dependence is deter-
mined by the detailed geometry and by the self-consistent
response of charge in the contacts to external driving.
We assume that these parameters are known, and simply
write

Hr= Y [Vian(t)cl,dn+Hel. (3)

ka€L,R

Here {d},} and {d,} form a complete orthonormal set of
single-electron creation and annihilation operators in the
interacting region.

3. The central-region Hamiltonian Hcen

The form chosen for He, in the central interacting re-
gion depends on geometry and on the physical behavior
being investigated. Our results relating the current to
local properties, such as densities of states and Green
functions, are valid generally. To make the results more
concrete, we will discuss two particular examples in de-
tail. In the first, the central region is taken to consist of

i but time-dependent levels,

Hen = em(t)dl,dmm. (4)

Here d}, (d..) creates (destroys) an electron in state
m. The choice (4) represents a simple model for time-
dependent resonant tunneling. Below we shall present
general results for an arbitrary number of levels, and an-
alyze the case of a single level in detail. The latter is
interesting both as an exactly solvable example, and for
predictions of coherence effects in time-dependent exper-
iments.

The second example we will discuss is resonant tunnel-
ing with electron-phonon interaction,

= adla s dd S Mal rad . )
Ll

In the above, the first term represents a single site,
while the second term represents the interaction of an
electron on the site with phonons: a} (aq) creates (de-
stroys) a phonon in mode q, and Mq is the interaction
matrix element. The full Hamiltonian of the system
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Rotations and Angular Momenta

Mengnan Chen (HDU) Advanced Quantum Mechanics November 8, 2023 3 /66
Finite Versus Infinitesimal Rotations

Consider a vector
V= (VX Vv, VZ)

after a rotation

V. Vi
vi|=RrR[V,
V! V,
with
RTR=RR" =1,

leading to a property
V'V =VTRTRV ,
V2L VR VR =V24+ V24 V2.

Mengnan Chen (HDU) Advanced Quantum Mechanics November 8, 2023 4 / 66
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Define a rotation operator about the z-axis by angle ¢,

cos¢p —sing 0
R:(¢) = [ sing cos¢ 0
0 0 1

We are particularly interested in an infinitesimal form of R;:

2
1-5 —e 0
2
R.(e) = € 1-5 0], e—0.
0 0 1
November 8, 2023 5/ 66
Likewise, we have
1 0 0

and ,
1-5 0 €
Ry(e) = 0 1 0
2
- 0 1-%
November 8,2023 6/ 66
Elementary matrix manipulations lead to
1-9 0 c
RRy=| & 1-9 —¢
—€ € 1-¢
1-— % € €
Ry Rx - 0 1-— % —€
—€ € 1—¢€
0 - 0
RRy—RR=[e 0 0]=Rg(})-1,
0 0 O

where all terms of order higher than €2 have been ignored.

Mengnan Chen (HDU) Advanced Quantum Mechanics November 8, 2023 7/ 66
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Infinitesimal Rotations in Quantum Mechanics

Given a rotation operation characterized by a orthogonal 3 x 3 matrix R,
associate an operator D(R) in the appropriate ket space such that

la)r = D(R)|) -
e For describing a spin71/2, system with no other degrees of freedom,
D(R) is a 2 x 2 matrix;
e for a spin-1 system, D(R) is a 3 x 3 matrix.
The appropriate infinitesimal operators could be written as

U(e)=1—-iGe, G : Hermitian

We therefore define the angular-momentum operator jk for an infinitesimal
rotation around the kth axis by angle d¢ can be obtained by letting

>

@%Ek, e —do

Mengnan Chen (HDU) Advanced Quantum Mechanics November 8, 2023 8 / 66




% Chapter 1. SPD Basic: Transport

Page 4

‘m

F—E FSRYBEEEH

| p ESHERS% (£ ) — SHites

433 =212k ALK p(Q-cm)
>~ C)
(Q-cm) W00 o 0% e 100 et 10t 1 100 10t
T

0 0t
— 1
X [y
=N <104 s 1 (Ge) .
s "
AL (Gars) iy
K 104107
ﬁ% >10° 4R T
T T S R S SO SO ST N
107 107 107 107 1070 10t 10t 10t 107 1 10° 10t 10* 10t
WHEaSlem)
ke ku e




% Chapter 1. SPD Basic: Transport

Page 5

| BRI () — e
| Sih. BEE. ¥OBHEEETER

e
S
AR,
=t
/o
EDET Lol R
(a)FF (b) 4B 1F
| SRS
E =10 N:SES B R T Aol
RSB A S “'d‘hﬁi{z:"”jw“g'% »
DEBESHE, RBRBBESE oar  VELS ICVEL 1oV
AL SBHEHLS it BVUR OBV SAT
OFEESBNREESIE | Ge SiGe AAs ZnSe
AISb ZnTe
GaP CdS
BN SRR o o
TR SR o
SRR KA inhs
W%, BB ne

L Bl (GRS ) MRS %— BFISEHET

uBE . BRFHRIKESRF  ANEEEEHY (KEEF  umER ) |, fii0 : Bk
u 3R BRFHIPIERE | fian - 38 ( KRESIO,)

u 28 BRFHSIEIESF  HARNENRRERER , Hli | S&FE

(a) Crystalline (b) Amorphous (¢) Polycrystalline

ki B8 AN 1 : T S8 : MRAE
AR
(TE)




% Chapter 1. SPD Basic: Transport

Page 6

| m RSIENESRS

RIS =S8 + SFF
® HiT:
= FHREAMEF (56 )

(1) Rr—EEEFREBE

B8N : CufdELIZIT &R | SIRIERITRE
H RN ERREISNRTT, FHINaCIREHHEAEE FHRE VLS EF |
ESMERRIBTARA—NCu, FmASiH—

(2) BrEmEERERLEn T CRF
ey
Cu > Si,/ e NaC!
v
o - .."'.. Py
° . & “\

| — AR FETRRIEEET

I:LV

2

3

€ BIREMNEIR
25t

N (9 —BREF
fi (
'/L\'/. EERESNET
AR
B K m
R LN A AN ILE E SN RPN G E o
BAEREPE ERAE Mg | AR A R BE S
He Tiske Bl EOIHRE
BARMASA T, RIS — Ak,
FATIA NS RIRRE, LR AR, R
Bitk, A1/ 2BF—Ahi;
BAREFAHEENSX1/8=1 | Tifkd: RA1/SETF— RIE;
BHEAB=8X1/8+6X1/2=4
TR AR AT R - RIABR IR S (2

v=a,-(a,xay)

T DT Sk R R BL=a3/ 4

RAZL A T & B0
ML RN R=a3

g NS RERRS S

BEFYEFFE SRFED

SR -FLFE

RV yEM TR ROk,

AL, B o kBN, A5
Bﬁ%’-ﬁJRﬁl 79 “o= e” s M}f—i
B, HERH ASHERA b, &R
M a,a,,a%E AHAEBUHIELAE,
e FABRFYRRS

— A, BEERH
M d,b¢ KHw;

b OB 2
AW ERFAE, B
R 55 T PR e 40
PR BhRER
BV, KRR
L, RS
RAE—AMB=;




% Chapter Page




% Chapter Page




VR ES T Y 3 @ Hangzhou - Zhejiang

Hangzhou Dianzi University



https://sci.hdu.edu.cn

VR ES T Y 3 @ Hangzhou - Zhejiang

Hangzhou Dianzi University



https://sci.hdu.edu.cn

