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FIG. 1. Sketch of charge distribution in a three
dimensional resonant-tunneling device under dc bias
Vb;~, ——pL, —p~ with a time modulation of amplitude AI, /~
superposed on the leads. As argued in the text, only a tiny
fraction of charge carriers participates in setting up the volt-
age drop across the structure.

charge is quite strong, and hence the bias across a tun-
neling structure is caused by a relatively small excess of
charge in accumulation and depletion layers. The forma-
tion of these layers then causes a rigid shift [see Eq. (2)
below] of the bottom of the conduction band deeper in
the leads, which is the origin of the rigid shift of energy
levels in our treatment of a time-dependent bias.
The second &equency limit on our approach is that

the buildup of electrons required for the formation of the
accumulation and depletion layers must not significantly
disrupt the coherent transport of electrons incident from
the leads. One way to quantify this is to ask—what is
the probability that an electron incident from the leads
participates in the buildup of charge associated with a
time-dependent bias' This probability will be the ratio
of the net current density fiowing into the accumulation
region to the total incident flux of electrons. For a three-
dimensional double-barrier resonant-tunneling structure
(see Fig. 1) the ac charging the accumulation layer isI'„'= 2n'vCV™/A, where v is the driving &equency,
C is the capacitance, V™is the applied bias, and A
is the area. In comparison, the total incident Hux is
I;„,= 3/8envF Using th. e parameters appropriate for
a typical experiment (we use that of Brown et al.24), we
find that up to 10 THz the probability of an electron par-
ticipating in the charge buildup is only 1%%. Summariz-
ing, these estimates indicate that our approach should be
accurate up to &equencies of tens of 7Hz, which are large
by present experimental standards, and consequently the
analysis presented in what follows should be valid for
most experimental situations.

nection to tunneling physics. Readers interested in tech-
nical details should consult any of the many available
review articles, such as Refs. 25—27. The basic difI'erence
between construction of equilibrium and nonequilibrium
perturbation schemes is that in nonequilibrium one can-
not assume that the system returns to its ground state
(or a thermodynamic equilibrium state at finite tempera-
tures) as t —i +oo. Irreversible effects break the symme-
try between t = —oo and t = +oo, and this symmetry is
heavily exploited in the derivation of the equilibrium per-
turbation expansion. In nonequilibrium situations one
can circumvent this problem by allowing the system to
evolve &om —oo to the moment of interest (for definite-
ness, let us call this instant to), and then continue the
time evolvement &om t = to back to t = —oo.2s (When
dealing with quantities that depend on two time vari-
ables, such as Green functions, the time evolution must
be continued to the later time. ) The advantage of this
procedure is that all expectation values are defined with
respect to a well defined state, i.e., the state in which
the system was prepared in the remote past. The price
is that one must treat the two time branches on an equal
footing (See Fig. 2).
A typical object of interest would be a two time Green

function (see Appendix A); the two times can be located
on either of the two branches of the complex time path
(e.g. , r and w' in Fig. 2). One is thus led to consider
2 x 2 Green-function matrices, and the various terms in
the perturbation theory can be evaluated by matrix mul-
tiplication. Since the internal time integrations run over
the complex time path, a method of bookkeeping for the
time labels is required, and there are various ways of do-
ing this. In the present work we employ a version of the
Keldysh technique.
In the context of tunneling problems the time-

independent Keldysh formalism works as follows. In the
remote past the contacts (i.e., the left and right lead)
and the central region are decoupled, and each region
is in thermal equilibrium. The equilibrium distribution
functions for the three regions are characterized by their
respective chemical potentials; these do not have to coin-
cide nor are the differences between the chemical poten-
tials necessarily small. The couplings between the difI'er-
ent regions are then established and treated as perturba-
tions via the standard techniques of perturbation theory,
albeit on the two-branch time contour. It is important
to notice that the couplings do not have to be small, e.g. ,
with respect level spacings or kBT, and typically must be
treated to all orders.

III. THEORETICAL TOOLS AND THE MODEL
A. Baym-Kadanoff-Keldysh nonequilibrium

techniques

Here we wish to outline the physical background be-
hind the Keldysh formulation, and in particular its con-

FIG. 2. The complex-time contour on which nonequilib-
rium-Green-function theory is constructed. In the contour
sense, the time ~q is earlier than Tq even though its real-time
projection appears larger.
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The time-dependent case can be treated similarly.
Before the couplings between the various regions are
turned on, the single-particle energies acquire rigid time-
dependent shifts, which, in the case of the noninteracting
contacts, translate into extra phase factors for the prop-
agators (but not in changes in occupations). The per-
turbation theory with respect to the couplings has the
same diagrammatic structure as in the stationary case.
The calculations, of course, become more complicated
because of the broken time-translational invariance.

signal. This assumption implies that the total number
of electrons in the contacts varies with time. This be-
havior is inconsistent with what happens in real devices:
it is only the relatively small number of electrons in the
accumulation-depletion layers that is time dependent. In
addition to the unphysical charge pileup in the contacts,
the model of Chen and Ting leads to an instantaneous
loss of phase coherence in the contacts, and hence does
not display any of the interesting interference phenomena
predicted by our phase-conserving model.

B.Model Hamiltonian 2. Compliny beheeen leads and cental myion, Hz

We split the total Hamiltonian in three pieces: H =
H~+ Hz + H«, where H describes the contacts, Hz
is the tunneling coupling between contacts and the in-
teracting region, and H„„modelsthe interacting cen-
tral region, respectively. Below we discuss each of these
terms.

Contacts, H,

Guided by the typical experimental geometry in which
the leads rapidly broaden into metallic contacts, we view
electrons in the leads as noninteracting except for an
overall self-consistent potential. Physically, applying a
time-dependent bias between the source and drain con-
tacts corresponds to accumulating or depleting charge
to form a dipole around the central region. The re-
sulting electrostatic-potential difference means that the
single-particle energies become time dependent:
eg (t) = 2& + b, (t) [here a labels the channel in the
left (L) or right (B) lead]. The occupation of each state
kn, however, remains unchanged. The occupation, for
each contact, is determined by an equilibrium distribu-
tion function established in the distant past, before the
time-dependence or tunneling matrix elements are turned
on. Thus, the contact Hamiltonian is

Hc = ) eIen(t)cr, ~cr,n ~
f

k,a&L,R

and the exact time-dependent Green functions in the
leads for the uncoupled system are

t
= pi8(+t p t') exp i dt~eI, (tg)—

tl

One should note that our model for g difFers from the
choice made in the recent study of Chen and Ting. ~5 The
difFerence does not afFect calculations carried out to lin-
ear response in the ac drive, but is signi6cant in nonlinear
response. Speci6cally, Chen and Ting allow the electro-
chemical potential in the distribution function f to vary
with time: pI, —pR = e[V + U(t)], where U(t) is the ac

The coupling between the leads and the central (inter-
acting) region can be modified with time dependent gate
voltages, as is the case in single-electron pumps. The
precise functional form of the time dependence is deter-
mined by the detailed geometry and by the self-consistent
response of charge in the contacts to external driving.
%e assume that these parameters are known, and simply
write

Hz = ) [Vj, „(t)c&t d„+H.c.] .
k,aqL, R

Here (dt) and (d„)form a complete orthonormal set of
single-electron creation and annihilation operators in the
interacting region.

8. The cental-mgion Hamiltonian H

The form chosen for H„„in the central interacting re-
gion depends on geometry and on the physical behavior
being investigated. Our results relating the current to
local properties, such as densities of states and Green
functions, are valid generally. To make the results more
concrete, we will discuss two particular examples in de-
tail. In the 6rst, the central region is taken to consist of
noninteracting, but time-dependent levels,

(4)

Here d~ (d ) creates (destroys) an electron in state
m. The choice (4) represents a simple model for time-
dependent resonant tunneling. Below we shall present
general results for an arbitrary number of levels, and an-
alyze the case of a single level in detail. The latter is
interesting both as an exactly solvable example, and. for
predictions of coherence efFects in time-dependent exper-
iments.
The second example we will discuss is resonant tunnel-

ing with electron-phonon interaction,

H;,'„P"= mod d+ d d ) M~[at + a ~] .

In the above, the 6rst term represents a single site,
while the second term represents the interaction of an
electron on the site with phonons: at(a ) creates (de-
stroys) a phonon in mode q, and Mz is the interaction
matrix element. The full Hamiltonian of the system

Chapter 1. PHYSICAL REVIEW B VOLUME 50, NUMBER 8 Page 2



AQM & SPD

xiamyphys@gmail.com

Axia

Hangzhou Dianzi University

mailto:xiamyphys@gmail.com
https://sci.hdu.edu.cn




Rotations and Angular Momenta

Mengnan Chen (HDU) Advanced Quantum Mechanics November 8, 2023 3 / 66

Finite Versus Infinitesimal Rotations

Consider a vector
V =
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,
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Define a rotation operator about the z-axis by angle �,

Rz(�) =

0

@
cos� � sin� 0
sin� cos� 0
0 0 1

1

A

We are particularly interested in an infinitesimal form of Rz :

Rz(✏) =

0

B@
1� ✏2

2
�✏ 0

✏ 1� ✏2

2
0

0 0 1

1

CA , ✏ ! 0 .

Mengnan Chen (HDU) Advanced Quantum Mechanics November 8, 2023 5 / 66

Likewise, we have

Rx(✏) =

0

B@
1 0 0

0 1� ✏2

2
�✏

0 ✏ 1� ✏2

2

1

CA ,

and

Ry (✏) =

0

B@
1� ✏2

2
0 ✏

0 1 0

�✏ 0 1� ✏2

2

1

CA .
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Elementary matrix manipulations lead to

RxRy =

0

B@
1� ✏2

2
0 ✏

✏2 1� ✏2

2
�✏

�✏ ✏ 1� ✏2

1

CA

RyRx =

0

B@
1� ✏2

2
✏2 ✏

0 1� ✏2

2
�✏

�✏ ✏ 1� ✏2

1

CA

RxRy � RyRx =

0

@
0 �✏2 0
✏2 0 0
0 0 0

1

A = Rz(✏
2)� 1 ,

where all terms of order higher than ✏2 have been ignored.
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Infinitesimal Rotations in Quantum Mechanics

Given a rotation operation characterized by a orthogonal 3⇥ 3 matrix R ,
associate an operator D(R) in the appropriate ket space such that

|↵iR = D(R)|↵i .

• For describing a spin�1/2, system with no other degrees of freedom,
D(R) is a 2⇥ 2 matrix;

• for a spin-1 system, D(R) is a 3⇥ 3 matrix.

The appropriate infinitesimal operators could be written as

Û(✏) = 1� iĜ✏ , Ĝ : Hermitian

We therefore define the angular-momentum operator Ĵk for an infinitesimal
rotation around the kth axis by angle d� can be obtained by letting

Ĝ ! Ĵk
~ , ✏ ! d�
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 第一章 半导体物理基础

固体材料的分类（宏观）——导电性能

分类 电阻率ρ
(Ω·cm)

导体 <10-4

半导体 10-4-10-9

绝缘体 >109

固体材料的分类（宏观）——导电性能

分类 电阻率ρ
(Ω·cm)

导体 <10-4

半导体 10-4-10-9

绝缘体 >109

固体材料的分类（宏观）——导电性能

分类 电阻率ρ
(Ω·cm)

导体 <10-4

半导体 10-4-10-9

绝缘体 >109
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固体材料的分类（微观）——能带结构

能带被电
子部分占
满，在电
场作用下
这些电子
可以导电

禁带很宽，
价带电子
常温下不
能被激发
到空导带

禁带比较窄，常
温下，部分价带
电子被激发到空
的导带，形成有
少数电子填充的
导带和留有少数
空穴的价带，都

能带电

3~6eV

硅1.12eV

锗0.67 eV

砷化镓

1.42 eV 

导体、绝缘体、半导体的能带示意图

半导体的基本特性

元素半导体和化合物半导体
晶态半导体、非晶及多晶半导体
无机半导体和有机半导体
本征半导体和杂质半导体

半导体的种类

✓温度效应-----负温度系数
✓掺杂效应-----杂质敏感性
✓光电效应-----光电导
✓电场、磁场效应

半导体的种类及特性

固体（半导体）材料的分类——原子空间排列
◼ 单晶：原子排列长程有序，内部结构有周期性（长程有序：um量级），例如：单晶硅

◼ 非晶：原子排列无序，例如：玻璃（无序SiO2）

◼ 多晶：原子排列短程有序，由不同取向的单晶颗粒组成，例如：多晶硅

单晶：周期性 非晶：无周期性 多晶：小区域周期性硅太阳能
电池效率
(实验室) 25.0% 10.1% 20.4%
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晶体结构 =结构基元 + 点阵

晶体结构的基本概念*

◼ 基元：组成晶体的最小单元。
◼ 布拉非格子（点阵）

（1）晶体一定具有平移周期性
（2）每个格点周围环境完全相同

◼ 晶体＝基元＋布拉菲点阵。

例如：Cu的面心立方晶格，Si的金刚石晶格

和NaCl晶格布拉菲格子都是面心立方格子，

每个格点的基元分别为一个Cu、两个Si和一

对Na+、Cl-离子。

Cu Si NaCl

两个不等价位点
基元

一般格子

连接最近等价原子
描述周期结构
布拉菲格子

一般格子和布拉菲格子

原 胞 晶 胞

㈈ⷒ䐱㳆〞䔏㾂⭥䐽㠻⭆䊋 㳆〞ㅰ⫔⭥䐽㠻⭆䊋

㗠⷗䊎⟜䐱㬖カ㩰䐜⟝⼍䄜⷗ⷒ
⮄᱄
㗠⷗䊎⟜䇱8⷗Ⰶㅨ᷍
㗠⷗Ⰶㅨ㸋㼁㑻8⷗䊎⟜㰚⹓䇱᷍
㰚䄵᷍
㗠⷗䊎⟜㰚⼍ⷒ⮄㭞㸋8ᱢ1/8=1

㗠⷗㈈⟜䐱㰚⼍ⷒ⮄㭞䅓ㆂ⹚
ⱙ䅍᱄ 例：面心立方晶格

㈈⟜ㆂ⹚᱋᱋㑃Ⳟ㳆᷍
㘇㾥ⷒ⮄ᷛ㑞⷗㼁㑻㈈⟜⹓䇱᷍䐜
䇱1/2㭕䇻䄜⷗㈈⟜ᷜ
Ⰶㅨⷒ⮄ᷛ䐜䇱1/8㭕䇻䄜⷗㈈⟜ᷜ
䓽ⷒ⮄㭞=8ᱢ1/8+6ᱢ1/2=4

䊎⟜⭥㳆〞㋪⢎㬟㸋ᷛ

㘇㾥㑃Ⳟ㈈ⷒ⭥䊎⟜㳆〞=a3/4

㈈⟜㳆〞㬨䊎⟜㳆〞⭥n⡗᷉n
㬨ⶤㆂ⹚㗠⷗㈈⟜㰚⼍ⷒ⮄㭞᷊

㘇㾥㑃Ⳟㆂ⹚㈈⟜㳆〞=a3)( 321 aaav =

原胞

与晶

胞的

区别

与联

系

小结:三种原胞特点
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