

Apache Hadoop Ozone
hadoop.apache.org/ozone

Hadoop FS

CSI

S3 protocol

Why?

Scalability problem
● HDFS is designed for huge files

– 200 million files for regular users
– Companies with core devs 400-500 million

● New Opportunities and Challenges
– Cloud
– Streaming
– Small files are the norm

HDFS Scalability
● Small files for HDFS

– Memory pressure on Namenode
– Higher network traffic (BlockReports)

Other solution
● HDFS-5477 Separate Block Management (open)
● HDFS-8286 Partial namespace in memory (open)
● HDFS-1052 HDFS federation (resolved)
● HDFS-10467 Router based federation (resolved/in-progress)
● HDFS-7240 "Scaling HDFS" (Ozone)

Ozone borrows many idea learned from these efforts and is a super set of
these approaches

Design Tenets
● Strong Consistency

– Easier to write applications. No need for S3Guard.

● Simple architecture
– Easy to understand

● Use proven building blocks
– Raft protocol for consensus - E.g. HA and write pipeline.
– RocksDB from Facebook

● Open Source
– Work well with the Apache Hadoop/Spark ecosystem

Usability problem
● HDFS can be used from Hadoop ecosystem?

– Machine learning code? Python?
– S3 compatible code?
– Kubernetes? Containerization? File system?

● Object store seems to be a more universal
abstractions

Apache Hadoop Ozone
● Ozone is a scalable, redundant, and

distributed object store for Hadoop

“Ozone is a
 spiritual successor
 to Hdfs”

History.md
● Started as a feature branch in Hadoop
● Merged in 2018 to Hadoop trunk

– Built by optional profile
– Separated release lifecycle
– Separated subproject (“HDDS”)

● 2019 Q4: Moved to a separated git repostory (apache/hadoop-ozone)
● 2020.03: First beta release

https://github.com/apache/hadoop-ozone/blob/master/HISTORY.md

How to store?

How to Store files?

HDFS components

Separate key / block space management

Ozone components

Ozone components (full picture)

Key concepts

Key space
● 3 levels of hierarchy /vol1/bucket1/key1

– Volumes (~ user namespaces)
administration unit, managed by admins

– Buckets (~ dirs)
created/deleted by users

– Keys (~files)
flat hierarchy (with indexes)

Block space
● Each file is stored in blocks
● Blocks are replicated in groups

– Container is
unit of
replication

Open Containers
● Read / Write support
● Replicated with Ratis

(sync)
● Leader has the latest

state (Stale reads?)
● Closed: if full or in case

of error

● Immutable (Read Only)
● Replicated with simple

network copy (async)
● Easy to read from all

members
● GC is required

(to handle delete)

Closed Containers

Ozone Layers

Original Vision
● Use block layer by other applications not

just for Object Store

How to scale?
● Key / Block space are separated

– Less memory pressure

● Report / replicate containers and not blocks
– Smaller block reports

● Keep partial namespace in memory (if required)
– RocksDB + SSD can provide good enough performace

Ozone Services

Storage Container Manager
● Block space management

– Allocate blocks
– Replicate containers
– Manage certificates #security

SCM: network services
● Pipelines: List/Delete/Activate/Deactivate

– Raft groups are planned by SCM

● Containers: Create / List / Delete containers
● Admin related requests

– Safemode status/modification
– Replication manager start / stop

● CA authority service

SCM: network services II.
● Datanode HeartBeat protocol

– From Datanode to SCM (30 sec by default)
– Commands can be added to the response

SCM: persisted data (RocksDB)
● Pipelines
● Contaeners
● Deleted blocks
● Valid certs
● Revoked certs
● Node: in-memory

Ozone Manager (OM)
● Key Space Management

– Managing volumes/buckets/keys
– Secondary indexes for fs access

OM: network services
● Key, Bucket, Volume / CRUD

– Multipart upload (Initiate, Complete…)

● FS related calls
– GetFileStatus, CreateDirectory, CreateFile, LookupFile

● ACL related (for internal ACLs)
● Delegation token (Get / Renew / Cancel)
● Trash related commands (WIP)
● Admin APIs

– Get S3 secret
– ServiceList (to find SCM)
– DBUpdates (Recon downloads snapshots)
–

OM: persisted data (RocksDB)
● Volume / Bucket / Key tables
● OpenKey table (created key, but not committed)
● Delegation token table
● PrefixInfo table (ACL for prefixes)
● S3 secret table
● Multipart info table
● Deleted table

Datanodes
● Health check

– reports (Containers, disk…) to the SCM as a heartbeat
– Commands can be received in the response

Close container, Delete container

● Open Containers:
– Starting RAFT server and forward requests to it

● Closed Container
– Replicate as immutable package

Datanodes
● Datanodes are forming RAFT groups

(pipelines)
● Client is communicating with the leader

– All requests are replicated via RAFT

Datanode: network services

● Datanode protocol (for the clients)
● Heartbeat (DN SCM) for management→
● Ratis / Raft endpoint (for other datanodes)

Datanode client calls
● Containers: Create/Read/Updated/DeleteList
● Blocks: Put/Get/DeleteList
● Chunks: Read/Delete/Write/List
● PutSmallFiles/ GetSmallFiles
● (CloseContainer)
● CopyContainer (export Container)

Datanode → SCM messages
● GetVersion/Register (Initial handshake)
● SendHeartbeat (request)

– DatanodeDetails
– NodeReport
– ContainerReport
– PipelineReport
– IncrementalContainerReport
– Container/Pipeline actions (request to close

SCM → Datanode messages
● Sent in the response
● Reregister command
● Container replication commands

– Replicate, Delete, Close,

● Pipeline commands

Datanode: network services

● Datanode protocol (for the clients)
● Heartbeat (DN SCM DN) for → →

management
● Ratis / Raft endpoint (for other

datanodes)

Raft
● “Raft is a consensus algorithm for managing

a replicated log”
● “Raft more understandable thanPaxos and

also provides a better foundation for build-
ing practical systems”

Apache Ratis (incubator)
● RAFT implementation as a Java library

– Embeddable, pluggable protocol, statemachine,…

● Support high performance with many optmization
● Off the RAFT log data

– Metadata is saved to the Raft log, chunk data is not
– Multi Raft support (one datanode can be part of multiple raft ring)
– Batching and async processing

DN: persisted data
● Per container directory

– Yaml file (metadata, verison, path,...)
– RocksDB:

● Key: LocalID
● Value:

– Map<String,String> (Generic metadata)
– List<ChunkInfo> (ChunkInfo: chunkName, length, blockOffset, checksum)

– Chunk data
● v1: 1 file per chunk
● v2: 1 file per block

+2 other services
● Recon

– Web UI, prediction, analytics

● S3 gateway
– stateless REST Ozone RPC translator→

Read / write path

Write path

Read path

Use it!

Apache Hadoop Ozone
hadoop.apache.org/ozone

Hadoop FS

CSI

S3 protocol

Hadoop file system (old style)
● o3fs://
● View to one specific bucket only!
● hdfs dfs -ls

o3fs://bucket1.volume1/dir1/file1.txt

Hadoop file system (new style)
● ofs://
● View to the whole keyspace
● hdfs dfs -ls

o3fs://om:9862/vol1/bucket1/dir1/file1.txt
● DistCp friendly

S3 compatible REST api
● Stateless gateway

– AWS S3 REST call Ozone RPC call→

● All the important S3 endpoints are implemented, to use with
– Hadoop s3a
– AWS Cli
– S3 compatible FUSE file system (s3)
– Python based clients (boko)
– Go based clients

AWS Cli
● aws s3api --endpoint http://localhost:9878

create-bucket –bucket=bucket1
● aws s3cp --endpoint http://localhost:9878

README.txt s3://wordcount

Security

Security
● HDFS security is based on Kerberos

– Kerberos cannot sustain the scale of applications running in a Hadoop Cluster.

● HDFS relies on Delegation tokens and block tokens.
– Ozone uses the same, so applications have no change.

● SCM comes with its own Certificate Authority.
– End users do NOT know about it.

● Allows us to move away from the need of Kerberos setup for each
data node. We need only Kerberos on OM and SCM.

Dev/ops
experience

3…, 2…, 1…, UP!
● 10 secs from build to deploy

– Even a full secure cluster can be started
locally

● docker-compose based example clusters
– Working as documentation

Observability

Observability
● Prometheus support
● Distributed tracing support
● Ozone Recon

– Web UI, historical data, prediction

● Developer / admin tools
– “What’s going on”?

Recon
● Separated component with SQL backend
● Stores historical data

– From prometheus
– Snapshots from other services
– Receives Datanode heartbeats with reports

● Can help to debug
● Can predict problems (space usage?)
● Can help to understand the current state

Ozone Insight
● Command line tool to make debug easier
● Profiles to define

– metrics
– logs
– configuration

Testing

Levels of testing
● Acceptance tests

– Each PR is tested with full secure / unsecure clusters

● MiniOzoneChaos test
● Freon: load generator
● Functional tests

– TPC-DS with Spark
– HBase test

● Fault Injection
– Injected errors with Fuse File system

● 1 billion object key

Kubernetes
support

Kubernetes support
● Ozone  Kubernetes

– Ozone can be started quickly in K8s
– Easy way to run chaos / performance testing
– Tested in k8s / multiple configuration sets are provided

● Kubernetes  Ozone
– Ozone provides storage for container orchestrator
– ozone csi service is a CSI service implementation

CSI
● Container Storage Interface

– Standard to provide storage for container
orchestrator

– Supported by Yarn, Kubernetes, Mesos, etc…
– A common language to request and mount storage
– Ozone CSI daemon

CSI

Use Ozone Storage as a FS
● CSI is the easy part:

– Create storage
– Mount storage to a specific dir

● Hard part: how to mount?

CSI: Mount options
● Use S3 Fuse driver

– goofys Ozone S3 gateway Ozone cluster→ →

– NFS Ozone NFS gateway Ozone cluster→ →

– fuse driver libhdfs OzoneFileSystem …→ → →

Ozone Operator?
● Ozone has native Kubernetes support

– It doesn’t require to use an operator

● Operator pattern doesn’t do gitops
– Most of the use cases can be covered by

better tools

Summary

Other implemented features
● TDA: encrypt data in rest

– Very similar to HDFS

● GDPR support
– Right to be forgotten: Similar to TDE, but delete

encryption key

● Hadoop 2.7+ support (classoader magic)

Not (yet) implemented
● Ereasure Coding
● In-place Hdfs upgrade (planned)

Summary
● Scalable (1 billion keys)
● Multiple interfaces (Hadoop, S3, CSI)
● Cloud native

Apache Hadoop Ozone
hadoop.apache.org/ozone

Hadoop FS

CSI

S3 protocol

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

