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Why?



 
 

Scalability problem
● HDFS is designed for huge files

– 200 million files for regular users
– Companies with core devs 400-500 million

●  New Opportunities and Challenges 
– Cloud
– Streaming
– Small files are the norm



 
 

HDFS Scalability
● Small files for HDFS

– Memory pressure on Namenode
– Higher network traffic (BlockReports)



 
 

Other solution
●     HDFS-5477 Separate Block Management (open)
●     HDFS-8286 Partial namespace in memory (open)
●     HDFS-1052 HDFS federation (resolved)
●     HDFS-10467 Router based federation (resolved/in-progress)
●     HDFS-7240 "Scaling HDFS" (Ozone)

Ozone borrows many idea learned from these efforts and is a super set of 
these approaches



 
 

Design Tenets
● Strong Consistency

– Easier to write applications. No need for S3Guard.

● Simple architecture
– Easy to understand

● Use proven building blocks
– Raft protocol for consensus - E.g. HA and write pipeline.
– RocksDB from Facebook

● Open Source
– Work well with the Apache Hadoop/Spark ecosystem



 
 

Usability problem
● HDFS can be used from Hadoop ecosystem?

– Machine learning code? Python?
– S3 compatible code?
– Kubernetes? Containerization? File system?

● Object store seems to be a more universal 
abstractions



 
 

Apache Hadoop Ozone
● Ozone is a scalable, redundant, and 

distributed object store for Hadoop



 
 

“Ozone is a 
      spiritual successor
                              to Hdfs”



 
 

History.md
● Started as a feature branch in Hadoop
● Merged in 2018 to Hadoop trunk

– Built by optional profile
– Separated release lifecycle
– Separated subproject (“HDDS”)

● 2019 Q4: Moved to a separated git repostory (apache/hadoop-ozone)
● 2020.03: First beta release

https://github.com/apache/hadoop-ozone/blob/master/HISTORY.md


 
 

How to store?



 
 

How to Store files?



 
 

HDFS components



 
 

Separate key / block space management



 
 

Ozone components



 
 

Ozone components (full picture)



 
 

Key concepts



 
 

Key space
● 3 levels of hierarchy /vol1/bucket1/key1

– Volumes (~ user namespaces) 
administration unit, managed by admins

– Buckets (~ dirs)
created/deleted by users

– Keys (~files)
flat hierarchy (with indexes)



 
 

Block space
● Each file is stored in blocks
● Blocks are replicated in groups

– Container is
unit of
replication



 
 

Open Containers
● Read / Write support
● Replicated with Ratis 

(sync)
● Leader has the latest 

state (Stale reads?)
● Closed: if full or in case 

of error

● Immutable (Read Only)
● Replicated with simple 

network copy (async)
● Easy to read from all 

members
● GC is required 

(to handle delete)

Closed Containers



 
 

Ozone Layers



 
 

Original Vision
● Use block layer by other applications not 

just for Object Store



 
 

How to scale?
● Key / Block space are separated

– Less memory pressure 

● Report / replicate containers and not blocks
– Smaller block reports

● Keep partial namespace in memory (if required)
– RocksDB + SSD can provide good enough performace



 
 

Ozone Services



 
 

Storage Container Manager
● Block space management

– Allocate blocks
– Replicate containers
– Manage certificates #security



 
 

SCM: network services
● Pipelines: List/Delete/Activate/Deactivate

– Raft groups are planned by SCM

● Containers: Create / List / Delete containers
● Admin related requests

– Safemode status/modification
– Replication manager start / stop 

● CA authority service



 
 

SCM: network services II.
● Datanode HeartBeat protocol

– From Datanode to SCM (30 sec by default)
– Commands can be added to the response



 
 

SCM: persisted data (RocksDB)
● Pipelines
● Contaeners
● Deleted blocks
● Valid certs
● Revoked certs
● Node: in-memory



 
 

Ozone Manager (OM)
● Key Space Management

– Managing volumes/buckets/keys
– Secondary indexes for fs access



 
 

OM: network services
● Key, Bucket, Volume / CRUD

– Multipart upload (Initiate, Complete…)

● FS related calls
– GetFileStatus, CreateDirectory, CreateFile, LookupFile

● ACL related (for internal ACLs)
● Delegation token (Get / Renew / Cancel)
● Trash related commands (WIP)
● Admin APIs

– Get S3 secret 
– ServiceList (to find SCM)
– DBUpdates (Recon downloads snapshots)
–



 
 

OM: persisted data (RocksDB)
● Volume / Bucket / Key tables
● OpenKey table (created key, but not committed)
● Delegation token table
● PrefixInfo table (ACL for prefixes)
● S3 secret table
● Multipart info table
● Deleted table



 
 

Datanodes
● Health check

–  reports (Containers, disk…) to the SCM as a heartbeat
– Commands can be received in the response 

Close container, Delete container

● Open Containers:
– Starting RAFT server and forward requests to it

● Closed Container
– Replicate as immutable package



 
 

Datanodes
● Datanodes are forming RAFT groups 

(pipelines)
● Client is communicating with the leader

– All requests are replicated via RAFT



 
 

Datanode: network services

● Datanode protocol (for the clients)
● Heartbeat (DN  SCM) for management→
● Ratis / Raft endpoint (for other datanodes)



 
 

Datanode client calls
● Containers: Create/Read/Updated/DeleteList
● Blocks: Put/Get/DeleteList
● Chunks: Read/Delete/Write/List
● PutSmallFiles/ GetSmallFiles
● (CloseContainer)
● CopyContainer (export Container)



 
 

Datanode → SCM messages
● GetVersion/Register (Initial handshake)
● SendHeartbeat (request)

– DatanodeDetails
– NodeReport
– ContainerReport
– PipelineReport
– IncrementalContainerReport
– Container/Pipeline actions (request to close



 
 

SCM → Datanode messages
● Sent in the response
● Reregister command
● Container replication commands

– Replicate, Delete, Close, 

● Pipeline commands



 
 

Datanode: network services

● Datanode protocol (for the clients)
● Heartbeat (DN  SCM  DN) for → →

management
● Ratis / Raft endpoint (for other 

datanodes)



 
 

Raft
● “Raft is a consensus algorithm for managing 

a replicated log”
● “Raft more understandable thanPaxos and 

also provides a better foundation for build-
ing practical systems”



 
 



 
 



 
 



 
 



 
 



 
 



 
 



 
 



 
 



 
 



 
 

Apache Ratis (incubator)
● RAFT implementation as a Java library

– Embeddable, pluggable protocol,  statemachine,…

● Support high performance with many optmization
● Off the RAFT log data

– Metadata is saved to the Raft log, chunk data is not
– Multi Raft support (one datanode can be part of multiple raft ring)
– Batching and async processing



 
 

DN: persisted data
● Per container directory

– Yaml file (metadata, verison, path,...)
– RocksDB:  

● Key: LocalID
● Value:

– Map<String,String> (Generic metadata)
– List<ChunkInfo> (ChunkInfo: chunkName, length, blockOffset, checksum)

– Chunk data
● v1: 1 file per chunk 
● v2: 1 file per block



 
 

+2 other services
● Recon

– Web UI, prediction, analytics

● S3 gateway
– stateless REST  Ozone RPC translator→



 
 

Read / write path



 
 

Write path



 
 

Read path



 
 

Use it!
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Hadoop file system (old style)
● o3fs://
● View to one specific bucket only!
● hdfs dfs -ls 

o3fs://bucket1.volume1/dir1/file1.txt



 
 

Hadoop file system (new style)
● ofs://
● View to the whole keyspace
● hdfs dfs -ls 

o3fs://om:9862/vol1/bucket1/dir1/file1.txt
● DistCp friendly



 
 

S3 compatible REST api
● Stateless gateway

– AWS S3 REST call  Ozone RPC call→

● All the important S3 endpoints are implemented, to use with
– Hadoop s3a
– AWS Cli
– S3 compatible FUSE file system (s3)
– Python based clients (boko)
– Go based clients



 
 

AWS Cli
● aws s3api --endpoint http://localhost:9878 

create-bucket –bucket=bucket1
● aws s3cp --endpoint http://localhost:9878 

README.txt s3://wordcount



 
 

Security



 
 

Security
● HDFS security is based on Kerberos 

– Kerberos cannot sustain the scale of applications running in a Hadoop Cluster.

● HDFS relies on Delegation tokens and block tokens.
– Ozone uses the same, so applications have no change.

● SCM comes with its own Certificate Authority.
– End users do NOT know about it.

● Allows us to move away from the need of Kerberos setup for each 
data node. We need only Kerberos on OM and SCM.



 
 

Dev/ops
experience



 
 

3…, 2…, 1…, UP!
● 10 secs from build to deploy

– Even a full secure cluster can be started 
locally

● docker-compose based example clusters
– Working as documentation



 
 

Observability



 
 

Observability
● Prometheus support
● Distributed tracing support
● Ozone Recon

– Web UI, historical data, prediction 

● Developer / admin tools
– “What’s going on”?



 
 

Recon
● Separated component with SQL backend
● Stores historical data

– From prometheus
– Snapshots from other services
– Receives Datanode heartbeats with reports

● Can help to debug
● Can predict problems (space usage?)
● Can help to understand the current state



 
 



 
 

Ozone Insight
● Command line tool to make debug easier
● Profiles to define

– metrics
– logs
– configuration



 
 

Testing



 
 

Levels of testing
● Acceptance tests

– Each PR is tested with full secure / unsecure clusters

● MiniOzoneChaos test
● Freon: load generator
● Functional tests

– TPC-DS with Spark
– HBase test

● Fault Injection
– Injected errors with Fuse File system

● 1 billion object key



 
 

Kubernetes 
support



 
 

Kubernetes support
● Ozone  Kubernetes

– Ozone can be started quickly in K8s
– Easy way to run chaos / performance testing
– Tested in k8s / multiple configuration sets are provided

● Kubernetes  Ozone
– Ozone provides storage for container orchestrator
– ozone csi service is a CSI service implementation



 
 

CSI
● Container Storage Interface

– Standard to provide storage for container 
orchestrator

– Supported by Yarn, Kubernetes, Mesos, etc…
– A common language to request and mount storage
– Ozone CSI daemon



 
 

CSI



 
 

Use Ozone Storage as a FS
● CSI is the easy part:

– Create storage
– Mount storage to a specific dir

● Hard part: how to mount?



 
 

CSI: Mount options
● Use S3 Fuse driver 

– goofys  Ozone S3 gateway  Ozone cluster→ →

– NFS  Ozone NFS gateway  Ozone cluster→ →

– fuse driver  libhdfs  OzoneFileSystem  …→ → →



 
 

Ozone Operator?
● Ozone has native Kubernetes support

– It doesn’t require to use an operator

● Operator pattern doesn’t do gitops
– Most of the use cases can be covered by 

better tools



 
 

Summary



 
 

Other implemented features
● TDA: encrypt data in rest

– Very similar to HDFS

● GDPR support
– Right to be forgotten: Similar to TDE, but delete 

encryption key

● Hadoop 2.7+ support (classoader magic)



 
 

Not (yet) implemented
● Ereasure Coding
● In-place Hdfs upgrade (planned)



 
 

Summary
● Scalable (1 billion keys)
● Multiple interfaces (Hadoop, S3, CSI)
● Cloud native
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