Machine Learning and Mapping for Spatial Epidemiology


[Up] [Top]

Documentation for package ‘mlspatial’ version 0.1.0

Help Pages

africa_shp Africa shapefile data
africa_shps Africa shapefile data 2
compute_spatial_autocorr Compute Moran's I & LISA, classify clusters
eval_model Get RMSE/MAE/R² metrics on training data
global_variables_eval Declare known global variables to suppress R CMD check NOTE Global variables used in evaluation functions
join_data Join spatial and incidence datasets
load_incidence_data Load incidence data from Excel
load_shapefile Load shapefile as sf + optionally convert to sp
model_evaluation_examples Examples for model evaluation functions
pancre_mort Pancreatic Cancer Mortality Data
panc_incidence Pancreatic Cancer Incidence Data
panc_prevalence Pancreatic Cancer Prevalence Data
plot_map_grid Arrange Multiple tmap Plots in a Grid
plot_obs_vs_pred Plot observed vs predicted values with correlation
plot_single_map Build a tmap for a single variable
train_rf Train Random Forest model
train_svr Train Support Vector Regression (SVR) model
train_xgb Train XGBoost model