
� � �� � � � � � � �� �� � � � � � � � � � �� � � � � �

 � � � �
 � � � �� � � � �	 � � � � � � � � �� � � � �� � ��
� � � � � � � � � � �� � � � � �� � � � �

� � �� � � � � � � � � � �� � � � � �single tracks, (staggered) subtracks, and steps

� � �
 � � � � � � � �� � � � � � �cell-based, step-based, and staggered metrics� � �� � � � � � � �� � � � � � � �� �� � � � � � � � � � � � �

- $1:

- $2:

- $n:

. .
.

� � � � � � �� � � � � �

t1

t2

t3

t4

� � � � � � �� � � � �

t x y z
t1
t2
t3
t4

Δt
Δt
Δt

� � � � � � � � �

t1

t2

t3

t4

t1 t2 t3 t4

to

from

subtrack length

03 2 1

t1

t2

t3

t4

Track properties can be computed in a cell-based, step-based, or staggered fashion. For more informa-
tion, please refer to (� � � 	 � � �� � �� � ­ �� � � �). Examples are shown for the analysis of speed, but can also
be performed with other analysis measures (� � � ��)�

� � � � �� � � � �
Find average speed of each
individual cell (track):

ce

lls

mean cell speed

Get instantaneous/”step” speed
distribution for each cell (track):

st

ep
s

st

ep
s

step speed

cell 1:

cell 2:

� � � � �� � � � �
Average speed over all steps,
pooled from all tracks together:

#s
te

ps

step speed

To get the distribution over all
steps instead of only the mean:

� � � � � � � � �
Measure speed on all subtracks
in the staggered matrix:

speed

Directly get all mean cell speeds
(over the staggered subtracks):

-

-

- . . .

ID t x y z
cell1 t1 . . .
cell1 t2 . . .
cell2 t1 . . .
cell2 t2 . . .

Generate tracks object from a csv �le:
mydata.csv: - $cell1:

- $cell2:

- ...

t x y z
t1
t2
t x y z
t1
t2

Convert between data structures:

ID t x y z
cell1 t1
cell1 t2
cell2 t1
cell2 t2

tracks to dataframe

dataframe to tracks

tracks to regular R list

dataframe

- $cell1:
t x y z
t1
t2

wrap single track matrix
into a track object

t . . .
t8 . . .
t3 . . .

t . . .
t1 . . .
t2 . . .

� � � � � � �� � � � � � allow better inference of the cell’s
behavior, especially in cell-based analyses (� � � ��).

tr

ac
ks

#steps

max length distribution

longest track (# steps)

Check for � � � � � � � �Δ� between steps, or gaps:

Δ
t-

av
g(

Δ
t)

position
p

p or

Fix this issue automatically for all tracks in X with
an irregular Δt above some threshold:

t . . .
t1 . . .
t2 . . .
t3 . . .

t . . .
t1 . . .
t3 . . .

Adjust � �	 � �� � � � � � � � � � �Δ� :

cell-based
mean

- $cell1:

- $cell2:

-

keep only tracks of at least n steps

Concatenate two tracks objects:

To analyze cell movement, we record a cell’s coordinates in time-lapse videos
to obtain a cell � �� � � . To facilitate the interpretation of tracking data,
� � � � � � � � � � implements a large variety of methods for the fast and
�exible analysis of track data in R. Load data from a text �le,
get rid of artefacts and tracking errors by performing quality
controls proposed in literature, and analyze any metric on the level of
individual tracks, steps, or subtracks. � � � � � � � � � � supports angle analyses and
allows rapid visualization, clustering, and simulation of tracks. Let’s get started!

cell.steps <- subtracks(x, 1)
all.steps <- subtracks(X, 1)
first.steps <- prefixes(X, 1)
t.steps <- subtracksByTime(X, t, 1)

X x <- X[[1]]

mean(sapply(X, speed))

steps <- subtracks(x, 1)
hist(sapply(
 steps, speed))

steps <- subtracks(X, 1)
hist(sapply(
 steps, speed))

aggregate(X, speed,
 subtrack.length = 1,
 FUN = mean)$value

image(applyStaggered(
 x, speed, matrix = TRUE))

sapply(X,
 staggered(speed))

read.tracks.csv(mydata.csv,
 id.column = 1, time.column = 2,
 pos.columns = 3:5)

as.data.frame(X)

as.tracks(D)

as.list(X)

wrapTrack(x)

Sort tracks by time-order:
sort(X)

maxTrackLength(X)

subsample(x, k = 2)

filterTracks(function(x) nrow(x)>n, X)

fix1 <- repairGaps(X, “interpolate”)

hist(sapply(X, nrow))

avdt <- timeStep(x); hist(sapply(
 subtracks(x, 1), duration) - avdt)

c(X1, X2)

interpolateTrack(x, dtvec)

“steps” are
subtracks
of length 1

matrix with all
“staggered”
subtracks

“pre�xes” start at t1

all subtracks
starting at t

symmetrical
matrix. 0-step
subtracks have
no speed (NA).

if FALSE: return only the matrix
mean, which is dominated by
short (more frequent!) subtracks.

� � � � � have equal weights; � � � � �
from short tracks weigh more

� � � � � have equal weights; � � � � �
with longer tracks weigh more

tracks object contains
a matrix for each cell

Output of read.tracks.csv()
and as.tracks.data.frame()
is time-ordered by default.

split into
two tracks

interpolate
@�xed ∆t

 interpolate at times in dtvec
steps of
one cell x

all steps in
object X

function
must return
TRUE/FALSE

Filtering can cause bias. Consider a step-based
analysis (� � � ��) instead of removing short tracks.

� � � �[[]] to return coordinate matrix,
[] to return a tracks object.

subtrack length

Angle analyses�(� � � ��)�can help detect artifacts,
drift, and tracking errors (� � � 	 � � �� � �� � ­ �� � � �).

or: “split”

subsample every
k-th timepoint

� � �
 � � � � � � � �	 � � � � � � � �
(see also ?TrackMeasures)

� � �� � � � � � �
 � � � � � �� �� � � � � � � � � � � �
detecting patterns in track data

� � �� �	 � � � � � � � �� � � � � � � �
Models & bootstrapping

� � �
 � � � � � �� �� � � � � � � � � � � � � �
(see also ?AngleAnalysis)

� � � � � �	 � � � � �
Check out the detailed examples in the package vignettes:
browseVignettes(package = “celltrackR”)

� � � � � � � � � � �

= tend - t1

= d(t1,t2) + ... + d(tend-1,tend)

d(tm,tn)
tm

tn
dy

dx

= d(tm,tn)

� � � � � �� � � �� � � � � � � � 	 � � �

= tracklength/duration

t1 = max d(t1, tn)

t x y z
t1
t2
t3
t4

max

d(t1,
 tn)

tra
ck-

length

� � � � � �� � � � � � � � � � � �

= d(t1,tend)/max d0 1

0 1

0 1

a

b

� � � � � � � �� � � � � �

θ

v1

vend

= angle θ(v1, vend) (first & last step)

= dot product v1 • vend =
cos θ

|v1||vend|

θ1

θ2

θ
θ

= mean (θ1, ... , θend)

= angle θ between �rst step
 and reference pointθd

= distance d between �rst step
 and reference point

p (px, py, pz)

θ
= angle θ between �rst step
 and reference direction

= angle θ between �rst step
 and plane with points p1-p3

= distance d between �rst step
 and plane with points p1-p3

θ

p1
p2 p3

d

an
gl

e

distanceθ
d

x

y

Δt

M
SD

Δt

ac
ov

speed

m
ea

n
θ

straightness

m
ea

n
θ

PC1

PC
2

x

y

overallAngle(x)

duration(x)

trackLength(x)

displacement(x,
 from = m, to = n)

speed(x)

maxDisplacement(x)

displacementRatio(x)

= max d/tracklength
outreachRatio(x)

straightness(x)
= d(t1,tend)/tracklength

asphericity(x)
= (a2 - b2)2/(a2 + b2)2

overallDot(x)

meanTurningAngle(x)

hotellingsTest(X,
 plot = TRUE)

beaucheminTrack(sim.time, delta.t,
 p.persist, p.bias, bias.dir, taxis.mode,
 t.free, v.free, t.pause)

brownianTrack(nsteps, dim, mean=c(0,0),
 sd=c(1,1))

simdata <- simulateTracks(10,
 bootstrapTrack(nsteps, X))

plot(X)

plotTrackMeasures(
 X, speed,
 meanTurningAngle)

trackFeatureMap(X,
 c(speed,straightness,
 meanTurningAngle),
 method = “PCA”)

bootstrapTrack(nsteps, X)

angleToPoint(x,p)

distanceToPoint(x,p)

angleToDir(x,dvec)

angleToPlane(x,p1,p2,p3)

distanceToPlane(x,p1,p2,p3)

step.pairs <- analyzeStepPairs(X)
plot(step.pairs$dist, step.pairs$angle)

plot(normalizeTracks(X))

plot(aggregate(X, squareDisplacement))
plot(aggregate(X, overallDot))

minv <- median(
 sapply(X, speed))
fast <- selectTracks(
 X, speed, minv, Inf)

clusterTracks(X,
 c(speed,straightness,
 meanTurningAngle),
 method = “hclust”)

see also:
squareDisplacement()
displacementVector()
normalizeToDuration()

note that asphericity
ignores time-ordering

useful for autocorrelation/
autocovariance plots

symmetric
0 < θ < π

 � � � � � �� � �� �� � � � � � � � � �� � � � � ­ �� � � � � � � � � ­ �� � �� � � � �

 � � � � � �� � � � � � � �� � � � � �� � �� � � � � �� � �� � � � � � �can help
identify directional biases or artefacts (� � � 	 � � �� � �
� � ­ �� � � �):

or try analyzeCellPairs()

expected:
90 degrees

� � � � � � � � � �� �� � � � �can help detect global direction-
ality in a dataset in an unbiased fashion (� � � � � � �� � �
� � ­ �� � � �):

� � � � � � �
 � � � �� � � � � � in space

overlay track starting points

� � � � � �	 � � � � � � � �� � �� � � � � � � � �Δ� � �mean square
displacement (MSD) & autocovariance plots

� � � � � � �� � �� � � � � � � �� � � � � �
Visualize two measures
in a scatterplot:

Plot cos() of
overallAngle()
for an autocor-
relation plot

Or subset tracks by one
feature �rst:

Or visualize higher dim-
ensional feature sets with
dimensionality reduction:

Other methods:
“UMAP”/“MDS”

boundingBox(X)

3D tracks? see plot3d()
& projectDimensions()

does the average
step displacement
di�er from the null
vector?

A � � � � � 	 �� � � � in dim dimensions:

non-zero for directional bias

A "� � � � �� � � �� � ” model designed for T cells
(� � � � � � 	 � � �� � �� � ­ �� � � �). Cells move at speed
v.free for time t.free, and then pause for a time
t.pause before changing direction (can be with
directional persistence or directional bias):

unlike brownianTrack(), beaucheminTrack()
has an explicit de�nition of time.

A � � � � � � � � � � � � �� � � � � matches speeds and
turning angles to those observed in data:

Comparing observed data to idealized models is
useful for interpretation. CelltrackR supports
several methods for simulating tracks.

� �	 � � � � � �	 � � � � � � � �� � � � � � �� � �� � � � :

or another simulation method

Beauchemin et al (2007). Characterizing T cell movement within
 lymph nodes in the absence of antigen. � � � �� � � �� � ��� � � � � �� �
 .

Beltman et al (2009). Analysing Immune cell migration.
������ � � � � � �� �
 	� � � ��� � � � � �� �
 �

Mokhtari et al (2013). Automated characterization and para-
 meter-free classi�cation of cell tracks based on local mi-
 gration behavior. � � � � �� � � �

Textor et al (2011). De�ning the quantitative limits of intravital
 two-photon lymphocyte tracking. � � � � ���

© Johannes Textor, Katharina Dannenberg, Jeffrey Berry, Gerhard Burger, Inge Wortel (2019).
For the newest version, visit:
To cite celltrackR, please refer to: citation(“celltrackR”).

https://github.com/ingewortel/celltrackR

Cluster tracks by features:

Or: “kmeans”

