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Introduction 

FRESA.CAD is an R package designed to aid health-related scientists in their data 
exploration efforts. It is specifically aimed to discover novel features or to design practical 
computer-aided diagnosis or decision support models. The package contains methods for 
data conditioning, data exploration, univariate filters, model building, model diagnosis, and 
model visualization as seen in Figure 1. Although there are many ways for a scientist to use 
the FRESA.CAD tools to explore their data, this vignette will focus on describing how to use 
the Bootstrapping Stage-Wise Model Selection (BSWiMS) method to discover and visualize 
diagnosis logistic models for a specific disease.  

The following sections will describe the method and the basic steps required to 
conditioning a database, run BSWiMS, display/visualize their outputs and finally how to 
compare the selected features to popular univariate methods. The following table shows 
the FRESA.CAD functions that will be showcased in this vignette: 

Objective FRESA.CAD Function Description 
Data Normalization FRESAScale(…) Case/Control-Based Data Normalization 

Model Selection/FS  
BSWiMS.model(…) 
FRESA.Model(…) 

Fit/models the data selecting the best 
linear/logistic/Cox models. 

Model Fitting baggedModel(…) 
Fit a set of linear models to the data using the 
bagging method. 

Model Cross-
Validation 

randomCV(…) 
Get the model test-performance using repeated 
holdout cross-validation. 

Data Visualization heatMaps(…) Display the desired features in a heat map. 
Model/Feature 
Description 

summary(…) 
Reports the model coefficient as well as their 
95% Confidence intervals. 

Model/Feature 
Description 

reportEquivalentVariables(…) 
Reports all variables that may be used as 
surrogated features in a model. 

Model prediction  predict(…) Predicts the model on the test data. 

Model prediction ensemblePredict(…) 
Predicts the ensemble of models on the test 
data. 

Performance 
Evaluation 

predictionStats_binary(…) 
Reports the predict/test performance by 
comparing the prediction to the ground truth. 

Model diagnosis plot.bootstrapValidation(…) 
Plot and reports diagnose done by 
bootstrapping. 

Model diagnosis plotModels.ROC(…) 
Plot the ROC of the given train/test sets as well 
as the confusion matrix. 

Performance 
comparison 

barPlotCiError(…) 
Plots and compares the model evaluations 
using the 95%CI. 

Data Analysis univariateRankVariables(…) 
Reports the basics descriptors of the data using 
univariate statistics. 

Feature Selection univariate_Logit(…) 
Feature selection using univariate logistic 
models and NRI/IDI. 

Feature Selection univariate_residual(…) 
Feature selection using univariate logistic or 
regression models. 

Feature Selection univariate_tstudent(…) Feature selection by t-test. 
Feature Selection univariate_Wilcoxon(…) Feature selection by Wilcoxon-test. 
Feature Selection univariate_correlation(…) Feature selection by Outcome-data correlation. 
Feature Selection mRMR.classic_FRESA(…) Feature selection using classic mRMR. 



 

 

Figure 1: Summary of FRESA.CAD functions 

  



The BSWiMS procedure 

BSWiMS is a supervised model-selection method aimed to select a unique statistical model 
that predicts a user-specified outcome. The statistical model is constructed by bagging a set 
of compact linear models (model-nuggets), where each model-nugget is built by a unique 
set of model-wise statistically-significant features. To achieve this goal the algorithm is 
divided into five different stages: Univariate Filter, Bootstrapped Forward Selection, 
Frequency-based Forward Selection, Bootstrapped Backwards Elimination and Model 
Bagging as seen in Figure 2(a).  Each stage of the process is designed to select features that 
are statistically relevant in explaining the desired outcome while trying to keep the false 
discovery rate (FDR) at the desired level. 

The first stage of the BSWiMS is univariate filtering. This step computes the univariate 
association of each feature to the outcome. Then, the association p-value is FDR adjusted 
using the Benjamini–Hochberg procedure[1]. Only features above the desired q-value are 
selected as candidates to build linear models. The second stage builds a set of B linear 
models using a forward selection procedure, where B is the number of bootstraps samples. 
Figure 2(b) shows the steps of the approach and it is based on selecting B bootstrap 
training samples and their corresponding out of bag validation sets (OOB)[2].  For each 
train set, the algorithm starts by selecting the feature with the smallest OOB and train 
fitness improvement p-values. If the feature-size adjusted p-value is statistically significant, 
then the feature is added to the model and the selected feature is removed from the feature 
set. The procedure is repeated until no more significant features can be added to the model. 
The third stage is the frequency-based forward selection. To generate a single model from 
the set of bootstrapped formulas, the bootstrapped models’ features are ranked from the 
highest frequency selection to the lowest. After ranking, the forward model is built by step-
wise adding the ranked features if and only if the size-adjusted fitting p-value is statistically 
significant. The fourth stage is the backward elimination. This stage bootstraps the forward 
model and analyzes the bootstrap distribution of each model term. If the largest OOB size-
adjusted p-value or the largest train p-value is not significant for a term member, then the 
feature is removed from the formula. Figure 2(c) shows the flowchart of the bootstrap 
stage. The resulting model after the backward elimination stage is a compact linear model; 
hence, a model-nugget. All terms of a model-nugget are model-wise statistically significant 
according to the user-selected statistical test that evaluated fitness improvement. In other 
words, each term of the model-nugget adds unique information, not shared by the other 
terms and each term is required to improve the model fitness in a statistically significant 
way. Once a model-nugget is found, the model-nugget features are removed and stages two 
to fourth are repeated until no more model-nuggets can be found or that the OOB 
performance of the last nugget is inferior to the first added nugget. After the last nugget is 
found, the set of nuggets extracted are stored. For selection ranking purposes, the process 
can be repeated several times. The fifth and last stage of the BSWiMS procedure is to bag all 
the extracted nuggets into a single statistical model. Model bagging consists are taking the 
performance-weighted average of the model-nugget coefficients. The bagged model is the 
BSWiMS model. 



The main feature of a BSWiMS model is that every model term is statistically described by 
the average nugget-fitted fitness statistics and the feature selection frequency. Model 
coefficients with their 95%Ci are provided, the relevance of each feature is statistically 
tested and the statistics can be used to explore the relevance of each feature in describing 
the outcome. A second feature of the procedure is that ensemble predictions can be made 
using the set of nuggets and this prediction be compared to the ones done by the linear 
bagged model. This second feature may be useful if the nuggets are not collinear, hence the 
ensemble procedure may yield better performance than the bagged model. 
 

The following sections will show how to: 

 Generate BSWiMS models on control-normalized data sets. 
 Diagnose the models. 
 Visualize the selected features. 
 Cross-validate the models using the cross-validation procedure as seen in Figure 

1(d) and 1(e)  
 Report the 95% confidence intervals via the bootstrapped bagging procedure. 
 Inspect the returned features and 

Compare those features to the ones returned by univariate feature selection methods 



     

(a)                                                         (b)                                                     (c) 

          

(d)                                                                                             (e) 
Figure 2: (a) the BSWiMS stages. (b) The bootstrap forward selection workflow. (c) The bootstrap backwards 
elimination. (d) FRESA.Model k-fold cross-validation. (e) Random holdout cross-validation. 

 

  



Data Normalization 

The data used in this vignette is the GlaucomaM data from the TH.data package[3]. The 
BSWiMS procedure requires numerical data frames where each row is a sample and each 
column is a feature. Therefore, the next step after loading the data is to transform it into a 
numeric data frame where the class levels are set to 0s for controls and 1s for glaucoma 
patients.  

R> data(GlaucomaM,package = "TH.data") 
R> GlaucomaM_mat <- as.data.frame(model.matrix(Class~.,GlaucomaM)[,-1]) 
R> GlaucomaM_mat$Class <- 1*(GlaucomaM$Class == "glaucoma") 
 

An optional step in model discovery consists on normalize the data. FRESA.CAD has a 
normalization function that can be used to scale the data based on the observed 
distribution of the control strata. The FRESAScale(x, control, method = 
"RankInv") function with the “rankInv” method takes the empirical distribution of each 
feature in the control population to rank them to estimate the percentile of each subject 
and then it is used to get the corresponding z-value using the inverse transform of the 
normal distribution. The following code snippet will show how to rank features based on 
the normal population: 

R> ALLcontrolSubjects <- subset(GlaucomaM_mat,Class == 0) 
R> ALLCaseSubjects <- subset(GlaucomaM_mat,Class == 1) 
R> ALLScaled <- FRESAScale(GlaucomaM_mat,refFrame = ALLcontrolSubjects,method = "RankInv") 
 

To visualize the relevant features of the normalized data set we use the 
univariate_Logit(…) and the heatMaps(…) function. The first function computes the p-
value of the logistic model fit, ranks the p-values, adjust them using the Benjamini–
Hochberg FDR procedure, and finally return the features above the specified threshold. The 
second function wraps the gplots::heatmap.2(…) and tailors it to the needs of 
visualizing labeled data sets. Figure 2 shows the results of the following code: 

R> q_valuesALL <- univariate_Logit(data = ALLScaled$scaledData,  
                             Outcome = "Class", 
                             pvalue = 1.0e-6) 

 
R>  hm <- heatMaps(Outcome = "Class", 
               data = ALLScaled$scaledData[,c("Class",names(q_valuesALL))], 
               title = "Heat Map: Normal Inverse (ALL)",Scale = c(-2,2), 
               hCluster = "col",cexRow = 0.25,cexCol = 0.15,srtCol = 45) 

 



 

Figure 3: Heat map of relevant features of the z-normalized Glaucoma data set. 

Model Selection via the BSWiMS method 

Once the data is ready we can use the BSWiMS.model(…) function to generate a logistic 
model that discriminates Glaucoma and normal subjects, and we can evaluate the expected 
performance on an independent test set using the randomCV(…) function or we can perform 
a comprehensive k-fold cross-validation using the FRESA.Model(…) function[4]. All the 
methods used the integrated discriminant improvement (IDI) for the evaluation of the 
significance of each feature in improvement diagnosis performance[5]. The following code 
snippet shows the proper call of each option on the Glaucoma data set. 

R> BSWiMSMODEL_ALL <- BSWiMS.model(formula = "Class ~ 1",data = ALLScaled$scaledData,NumberofRepeats = 25) 
R> ALLcv <- randomCV(ALLScaled$scaledData,"Class", BSWiMS.model,trainFraction = 0.9, repetitions = 50)    
R> FRESAMODEL_ALL <- FRESA.Model(formula = "Class ~ 1",data = ALLScaled$scaledData,CVfolds = 5,repeats = 
10,equivalent = TRUE,usrFitFun = e1071::svm) 
 

The first and third call requires the definition of the base formula: formula = "Class ~ 1". 

This formula may contain covariates that will be included in all models. The scaled data 
frame is specified in all three calls (data = ALLScaled$scaledData). In the first call, we 
are specifying that the procedure is repeated 25 times before doing the last bagging step 
(NumberofRepeats = 25). By repeating the procedure 25 times we may infer the 
importance of each feature in separating cases from controls. The returned object will 



contain all the information to diagnose and inspect the selected model/models and 
features. The second call evaluated BSWiMS on the Glaucoma data set by repeating 50 
times a holdout cross-validation that used 80% for training and 20% for testing. The CV 
returned the expected behavior of the BSWiMS model on the test set. The third call 
performed a full validation and model-comparison of the BSWiMS method using a 5-fold 
cross-validation repeated 10 times. The function call also returned the CV of equivalent 
models, the CV of the LASSO model with lambda set to "lambda.1se", the CV of KNN 
modeling with k set to the square root of samples, and lastly it returned the CV 
performance of an SVM with a Gaussian kernel[6, 7].  

The next section I will show you different aspects of the returned objects.  

Diagnosing the BSWiMS Model 

The plot.bootstrapValidation_Bin(…)  function is used to verify that the top model-
nugget is not overfitted. The plots output the bootstrapped validation tests, hence it may be 
used to get an idea of the expected model performance on a test set. The following code will 
return the set of bootstrapped validation plots of the top model:  

R> pm <- plot(BSWiMSMODEL_ALL$BSWiMS.model$bootCV,main = "Bootstrap Validation (ALL)") 

 

Figure 4: Left: Accuracy, Sensitivity, and Specificity bootstrapped distributions with the sample values of the 
model (Blue), and the bootstrapped cross-validated mean estimations (red). Right: the ROC plot of the model 
along with the Confusion matrix, where the red line is the bootstrapped estimation, the black line is the 
sample training curve, and the green line shows the operation point. 

Figure 4 shows the output of the plot command. It takes the output of bootstrapped 
validation object (BSWiMSMODEL_ALL$BSWiMS.model$bootCV) and it plots the train 
distribution as well as the validation accuracy, sensitivity, specificity that the generated 
models. This plot does not show any signs of overfitting.  The ROC plot of the model is the 
left element of figure 4. This plot also shows that the train and bootstrapped validation are 
equivalent.  

The test performance is evaluated via the randomCV(…) the output can be analyzed and 
visualized using the following command: 

R> ALLpsCV <- predictionStats_binary(ALLcv$medianTest,plotname = "50 Rep Random CV (All Subjects)"cex = 
0.8) 



Figure 5(a) shows the output of the above command. The plot shows the ROC curve of the 
predicted probabilities for both classes, and the operation point (p>0.5) as a green line. The 
confusion matrix of the operation point is shown on the left side of the plot, and common 
performance metrics are displayed on the top. The plot command also returns the 
evaluation of the confusion matrix and their evaluation 

R> pander::pander(ALLpsFoldCV$CM.analysis$tab)  

      Outcome +   Outcome -   Total 

  Test +   80   11   91 

  Test -   18   87   105 

  Total   98   98   196 

 

The following instructions display the accuracy, specificity and the balanced error with 
their corresponding 95%CI. 

R> pander::pander(ALLpsCV$accc) 
est lower upper 

0.852 0.7945 0.8986 
R> pander::pander(ALLpsCV$sensitivity) 

est lower upper 
0.8163 0.7253 0.8874 

R> pander::pander(ALLpsCV$specificity) 
est lower upper 

0.8878 0.808 0.9426 
R> pander::pander(ALLpsCV$berror) 

50% 2.5% 97.5% 
0.1476 0.09913 0.1971 

 
The bootstrapped estimation of the above statistics are the following:  

R> pander::pander(ALLpsCV$ClassMetrics) 
• accci: 
  50%   2.5%   97.5% 
  0.852   0.801   0.9031 
• senci: 

  50%   2.5%   97.5% 
  0.8524   0.8029   0.9009 
• aucci: 

  50%   2.5%   97.5% 
  0.8524   0.8029   0.9009 
• berci: 

  50%   2.5%   97.5% 
  0.1476   0.09913   0.1971 

• preci: 
  50%   2.5%   97.5% 

  0.8542   0.805   0.9031 
• F1ci: 

  50%   2.5%   97.5% 
  0.8517   0.8008   0.9015 

 

The full statistical analysis is stored in ALLpsCV$CM.analysis. The output comes from the 
epiR::epi.tests(…)  I’ll let the user explore the returned metrics.  



The cross-validation output of the FRESA.Model(…) can visualize using the 
plotModels.ROC(…) function. The next line of commands produced the outputs of Figure 
5(b-f).  

 
 
R> pmeBSWiMS <- plotModels.ROC(FRESAMODEL_ALL$cvObject$Models.testPrediction,main = "Top Nugget eBSWiMS: 
5-Fold CV (All Subjects)",theCVfolds = 5,predictor = "eB.SWiMS",cex = 0.8) 
R> pmBSWiMS <- plotModels.ROC(FRESAMODEL_ALL$cvObject$Models.testPrediction,main = "BSWiMS: 5-Fold CV (All  
Subjects)",theCVfolds=5,predictor="Prediction",cex = 0.8)  
R> pmLASSO <- plotModels.ROC(FRESAMODEL_ALL$cvObject$LASSO.testPredictions,main = "LASSO: 5-Fold CV (All 
Subjects)",theCVfolds=5,predictor="Prediction",cex = 0.8) 
R> pmKNN <- plotModels.ROC(FRESAMODEL_ALL$cvObject$KNN.testPrediction,main = "KNN: 5-Fold CV (All 
Subjects)",theCVfolds=5,predictor="Prediction",cex = 0.8)  
R> FRESAMODEL_ALL$cvObject$Models.testPrediction[,"usrFitFunction_Sel"] <- 
FRESAMODEL_ALL$cvObject$Models.testPrediction[,"usrFitFunction_Sel"] - 0.5 
R> pmSVM <- plotModels.ROC(FRESAMODEL_ALL$cvObject$Models.testPrediction,main = "SVM: 5-Fold CV (All 
Subjects)",theCVfolds = 5,predictor="usrFitFunction_Sel",cex = 0.8) 
 
 



 
(a)                                                                             (b) 

 
(c)                                                                                (d) 

 
(e)                                                                                (f) 

Figure 5: ROC plots of Cross-Validation. (a) Hold-out test results. (b) 5-fold CV test results for equivalent 
models. (c) 5-fold CV of BSWiMS model. (d) 5-fold CV of LASSO. (e) 5-fold CV of KNN. (f) 5-fold CV of SVM. 

 

 

 

FRESA.CAD provides a simple function: barPlotCiError(…) that can be used compare the 
performance of the different classifiers. To create the outputs, the returned object of the 
plotModels.ROC(…) have to be analyzed by the predictionStats_binary(…) Then the 
output is passed to the barPlotCiError function. The next line of code was used to create 
the results shown in figure 6. 



R> ALLpsFoldCV <- predictionStats_binary(pmBSWIM$ensemblePrediction,plotname = "10 Rep 5-Fold CV (All 
Subjects)",cex = 0.8) 
R> ALLLASSOFoldCV <- predictionStats_binary(pmLASSO$ensemblePrediction,plotname = "LASSO: 5-Fold CV (All 
Subjects)",cex = 0.8) 
R> ALLKNNFoldCV <- predictionStats_binary(pmKNN$ensemblePrediction,plotname = "KNN: 5-Fold CV (All 
Subjects)",cex = 0.8) 
R> ALLSVMFoldCV <- predictionStats_binary(pmSVM$ensemblePrediction,plotname = "SVM: 5-Fold CV (All 
Subjects)",cex = 0.8) 
R> ALLEquiFoldCV <- predictionStats_binary(pmeBSWiMS$ensemblePrediction,plotname = "eBSWiMS: 5-Fold CV 
(All Subjects)",cex = 0.8) 
 
R> AllbalancedError <- rbind(BSWiMS = ALLpsFoldCV$berror, LASSO = ALLLASSOFoldCV$berror,KNN = 
ALLKNNFoldCV$berror,SVM = ALLSVMFoldCV$berror,eBSWiMS = ALLEquiFoldCV$berror) 
 
R> bpCI <- barPlotCiError(as.matrix(AllbalancedError),metricname = "Balanced Error", 
                       thesets =  c("Repeated 5-Fold CV Test Set"), 
                       themethod = rownames(AllbalancedError), 
                       main = "Balanced Error", 
                       offsets = c(0.5,1), 
                       scoreDirection = "<",ho = 0.5, 
                       args.legend = list(bg = "white",x = "bottomright"), 
                       col = terrain.colors(nrow(AllbalancedError))) 
 
R> AllAUC <- rbind(BSWiMS = ALLpsFoldCV$aucs, LASSO = ALLLASSOFoldCV$aucs,KNN = ALLKNNFoldCV$aucs,SVM = 
ALLSVMFoldCV$aucs,eBSWiMS = ALLEquiFoldCV$aucs) 
 
R> bpCI <- barPlotCiError(as.matrix(AllAUC),metricname = "AUC", 
                       thesets =  c("Repeated 5-Fold CV Test Set"), 
                       themethod = rownames(AllAUC), 
                       main = "ROC AUC", 
                       offsets = c(0.5,1), 
                       args.legend = list(bg = "white",x = "bottomright"), 
                       col = terrain.colors(nrow(AllAUC))) 

 

 

 

  

Figure 6: 5-fold test results comparisons of the Balanced Error Rate (left) and the ROC AUC (right) 



barPlotCiError(…) get the performance data with their corresponding 95%CI to create 
the plots and rank them from the one with the best score performance to the method with 
the lowest score, where the score is just the sum of how many times a method was 
statistically superior to other method minus the times that the same method was 
statistically inferior to the other method. 

Exploring the BSWiMS model 

The summary of the method can be extracted by executing the summary(…) function. This 
function will return a set of objects that describe the model coefficients and performance. 
The following code snippet shows how to access the top 20 model coefficients then rank 
them according to their z-value:   

R> sm <- summary(BSWiMSMODEL_ALL) 
R> smcoeff <- sm$coefficients[order(-sm$coefficients[,"Frequency"]),] 
pander::pander(smcoeff[1:20,c("Estimate","lower","OR","upper","z.IDI","Frequency")])  

Table 1 shows the returned coefficients along with their diagnostic odds, the z value of the 
IDI test and the frequency of selection. 

Table 1 

  Estimate lower OR upper z.IDI Frequency 

vars -0.219 0.8015 0.8033 0.8458 8.327 1 

varg -0.1125 0.8777 0.8936 0.9176 8.307 1 

vari -0.07706 0.9223 0.9258 0.9458 7.069 1 

vbri 0.4204 1.32 1.523 1.849 5.782 1 

vbst -0.4389 0.5536 0.6447 0.7797 5.641 1 

phci 0.133 1.107 1.142 1.202 5.098 1 

mhci 0.08533 1.063 1.089 1.127 4.946 1 

tmi 0.03928 1.024 1.04 1.058 4.566 1 

hic 0.06972 1.035 1.072 1.149 3.907 1 

phcg 0.04626 1.04 1.047 1.069 4.532 0.96 

mhcn 0.09496 1.086 1.1 1.171 2.944 0.96 

at -0.2148 0.7445 0.8067 0.8981 5.246 0.92 

abrs 0.2852 1.167 1.33 1.604 4.263 0.92 

abri 0.1634 1.094 1.178 1.27 4.222 0.92 

mdic 0.6181 1.495 1.855 3.265 5.601 0.88 

hvc -0.09726 0.8786 0.9073 0.9616 3.281 0.88 

rnf -0.2133 0.7561 0.8079 0.9207 6.308 0.84 

eat -0.1833 0.7734 0.8326 0.9101 4.871 0.84 

vass -0.09313 0.8851 0.9111 0.9592 3.543 0.76 

mdt -0.1273 0.8174 0.8804 0.9544 3.361 0.76 

 



An alternative way to display the relative importance and their association between 
features is to the display the analysis of the extracted nuggets: 

R> gplots::heatmap.2(BSWiMSMODEL_ALL$bagging$formulaNetwork[1:20,1:20],trace = "none",mar = c(5,5),main = 
"B:SWiMS Formula Network", cexRow = 0.75,cexCol = 0.75) 

The BSWiMSMODEL_ALL$bagging$formulaNetwork contains an analysis of how many times 
a feature was found by the repeated BSWiMS method and how many times that feature was 
found concordant to other nugget feature. Figure 7(a) shows the heatmap of the top 20 
features of the formulaNetwork object. The heat map shows that (tmi, phcg) or (vari,hic) 
paired features were concurrent most of the time. That means that the nugget on average 
had only two features either (tmi, phcg) or (vari,hic). There were other associations 
(vbst,vbri) but not as frequent. 

Furthermore, we can explore if there are more association between features using the 
reportEquivalentVariables(…)function. This function will explore a model nugget and it 
will return a set of equivalent model-nuggets were each new nugget is different to the 
parent nugget by a single equivalent feature. The next code snippet extracted the 
equivalent model-nuggets from the top BSWiMS nugget. 

R> eq <- reportEquivalentVariables(BSWiMSMODEL_ALL$BSWiMS.model$back.model,pvalue = 0.05, 
                              data = ALLScaled$scaledData, 
                              variableList = BSWiMSMODEL_ALL$univariate, 
                              Outcome = "Class", 
                              type = "LOGIT"); 

R> sm <- summary(eq$equivalentModel) 
pander::pander(sm$coefficients[,c("Estimate","lower","OR","upper","z.IDI","Frequency")]) 

Table 2: Summary of top equivalent model features. 

  Estimate lower OR upper z.IDI Frequency 

vari -1.233 0.2251 0.2914 0.3896 9.363 0.6429 

vars -0.04711 0.9396 0.954 0.9685 6.097 0.03571 

varg -0.03692 0.9524 0.9637 0.9753 6.083 0.03571 

hic 0.3891 1.266 1.476 2.058 4.968 0.4286 

phci 0.02266 1.013 1.023 1.033 4.359 0.03571 

phcg 0.01617 1.008 1.016 1.024 3.972 0.03571 

tmi 0.02537 1.01 1.026 1.041 3.288 0.07143 

phcn 0.0106 1.004 1.011 1.017 3.186 0.03571 

vbst -0.02882 0.9542 0.9716 0.9893 3.124 0.03571 

mhcg 0.03316 1.012 1.034 1.056 3.085 0.03571 

mdi 0.002213 1.001 1.002 1.004 2.981 0.07143 

phct 0.03768 1.012 1.038 1.065 2.909 0.03571 

mhct 0.03384 1.011 1.034 1.058 2.883 0.03571 

mdic 0.02655 1.007 1.027 1.047 2.719 0.03571 

tmg 0.02542 1.007 1.026 1.045 2.68 0.07143 

tms 0.02282 1.006 1.023 1.041 2.606 0.03571 

mhcn 0.02413 1.005 1.024 1.044 2.506 0.03571 

mdn 0.03226 1.006 1.033 1.06 2.437 0.03571 

mdg 0.02617 1.005 1.027 1.049 2.408 0.03571 

 



The analysis of each feature and its association with other features is in the 
equivalentMatrix. Matrix that is part of the equivalent model object. The matrix 
elements are seen in table 3. 

R> pander::pander(eq$equivalentMatrix) 

Table 3: The equivalent matrix reportEquivalentVariables(…)$equivalentMatrix matrix 

Name Locus 
Extended 

Name 

Unit 
Perfor-
mance 

Full 

Perfor-
mance 

Delta 
Perfor-
mance 

Improvement 
Fraction p.value 

vari vari vari:vari 0.8112 0.8418 0.06633 0.5408 1.47e-12 

varg vari varg:vari 0.7857 0.7959 0.02041 0.5 5.898e-10 

vars vari vars:vari 0.7755 0.8316 0.05612 0.5 5.406e-10 

tmi vari tmi:vari 0.7551 0.7908 0.01531 0.2449 2.101e-05 

tmg vari tmg:vari 0.7143 0.7857 0.0102 0.2653 0.0007421 

phcg vari phcg:vari 0.7296 0.7908 0.01531 0.2551 3.559e-05 

phci vari phci:vari 0.75 0.801 0.02551 0.3265 6.524e-06 

phcn vari phcn:vari 0.7041 0.7806 0.005102 0.2347 0.0007219 

emd vari emd:vari 0.6735 0.7908 0.01531 0.1224 0.02579 

vbst vari vbst:vari 0.5969 0.7857 0.0102 0.2143 0.0008923 

mdi vari mdi:vari 0.6122 0.7806 0.005102 0.1122 0.000542 

tmi hic tmi:hic 0.7551 0.8316 0.02041 0.2551 0.006563 

hic hic hic:hic 0.7755 0.8418 0.03061 0.2959 9.666e-05 

tmg hic tmg:hic 0.7143 0.8265 0.01531 0.1939 0.01454 

tms hic tms:hic 0.7194 0.8163 0.005102 0.2347 0.004576 

mdic hic mdic:hic 0.7194 0.8214 0.0102 0.2041 0.003278 

vbrs hic vbrs:hic 0.6837 0.8265 0.01531 0.2959 0.01438 

mhcn hic mhcn:hic 0.7143 0.8316 0.02041 0.2551 0.006107 

mhcg hic mhcg:hic 0.7092 0.8316 0.02041 0.2959 0.001019 

emd hic emd:hic 0.6735 0.8367 0.02551 0.2551 0.004058 

mhcs hic mhcs:hic 0.7041 0.8367 0.02551 0.2653 0.01605 

vbss hic vbss:hic 0.6786 0.8367 0.02551 0.1939 0.009954 

mdn hic mdn:hic 0.6071 0.8265 0.01531 0.2041 0.007396 

mdi hic mdi:hic 0.6122 0.8214 0.0102 0.2347 0.003527 

mds hic mds:hic 0.5969 0.8316 0.02041 0.1837 0.01041 

mdg hic mdg:hic 0.5918 0.8214 0.0102 0.2041 0.00801 

mhct hic mhct:hic 0.5306 0.8214 0.0102 0.1939 0.001966 

phct hic phct:hic 0.5102 0.8163 0.005102 0.2755 0.001815 

 

 

 

 

 

 



Next, the vignette will show you how to visualize the model matrix network of the 
equivalent models. The following code will use the CV object to visualize all the association 
found by the equivalent matrix of the top model-nugget: 

#50 Models from 5-fold CV repeated 10 times 
R> nev <- length(FRESAMODEL_ALL$cvObject$equiFormulas.list)/50; 
R> fn <- nev*bmEqi$formulaNetwork 
R> ford <- colMeans(fn) 
fn <- fn[order(-ford),order(-ford)] 
fn[fn > 1] <- 1 
 
gplots::heatmap.2(fn[1:20,1:20],trace = "none",mar = c(5,5),main = "eB:SWiMS Formula Network", cexRow = 
0.75,cexCol = 0.75) 

Figure 7(b) shows the model-network of the CV models. The heat-map shows that features 
vari, vbrt, hic and vbst have significant contribution in separating cases and controls. 

 

 

(a)                                                                                            (b)  

Figure 7: Heat map of feature network created by analysis of extracted model-nuggets. (a) Network of 
BSWiMS model. (b) 

Finally, we can use baggedModel(…) function to refine the 95%CI of the BSWiMS model. To achieve this 
goal, we will bootstrap each one of the model-nuggets 100 times in the bagging procedure. By bootstrapping 
the bagging process we will get better estimates of each model coefficient and importance inside each nugget. 

#bagging 100 times the model-nuggets inside bagging. 

R> bmAll <- baggedModel(BSWiMSMODEL_ALL$formula.list,ALLScaled$scaledData,type = "LOGIT",n_bootstrap = 
100) 
R> smALL <- summary(bmAll$bagged.model) 
R> pander::pander(smALL$coefficients) 

Table 4 shows the first 18 coefficients of the bagged model.  

 

 

 

 



Table 4: 18 features of the BSWiMS model 

 Feature Estimate lower OR upper z.IDI z.NRI Frequency 

varg -0.1159 0.8665 0.8906 0.9272 8.304 9.276 1 

vars -0.2239 0.7581 0.7994 0.8622 8.271 9.479 1 

vbsg -0.6235 0.4544 0.536 0.6891 7.394 9.34 0.32 

vari -0.08346 0.899 0.9199 0.9548 7.111 9.367 1 

vbrg 0.3957 1.322 1.485 1.948 6.667 6.837 0.4 

rnf -0.2228 0.7467 0.8003 0.943 6.297 7.286 0.84 

abrg 0.4611 1.363 1.586 2.212 5.982 6.31 0.72 

vbrs 0.2774 1.2 1.32 1.567 5.737 6.126 0.6 

vbri 0.4636 1.355 1.59 2.162 5.682 6.33 1 

mdic 0.6986 1.577 2.011 3.92 5.639 6.678 0.88 

vbst -0.4944 0.5127 0.6099 0.8398 5.581 6.244 1 

at -0.2586 0.7011 0.7722 0.9259 5.247 5.87 0.92 

phci 0.1422 1.092 1.153 1.231 5.158 7.178 1 

mhci 0.08836 1.055 1.092 1.145 4.927 6.859 1 

eat -0.223 0.7316 0.8001 0.951 4.886 5.803 0.84 

mhct 0.1055 1.064 1.111 1.201 4.743 5.324 0.44 

eag -0.1093 0.8566 0.8965 0.9705 4.707 5.412 0.2 

phcg 0.05096 1.031 1.052 1.075 4.679 5.855 0.96 

 

Univariate Feature Selection vs. BSWiMS 

The BSWiMS method is based on selecting informative features in each model nugget. This 
section will explore the univariate analysis and univariate filtering and compare the feature 
ranks of BSWiMS, Statistical tests: Wilcoxon, t-student, Kendall correlation, Spearman 
correlation and the classic minimum Redundancy Maximum Relevance(mRMR) feature 
selection algorithm[8]. 

The FRESA.CAD  univariateRankVariables(…) function, can be used to compute basic 
descriptive statistics of the data that can be useful to describe differences between cases 
and control for each feature in the data frame. The following code is an example of the use 
of this function to display the subjects with abnormal values. 

# The features to be analyzed by univariate ranking 

R> varlist <- colnames(ALLScaled$scaledData) 
R> varlist <- varlist[varlist != "Class"] 
R> varlist <- cbind(varlist,varlist) 
 
R> univ <- univariateRankVariables(varlist,"Class~1","Class",ALLScaled$scaledData, 
                            categorizationType = "Tail", 
                            type = "LOGIT",  
                            cateGroups = c(0.05, 0.95), 
                            raw.dataFrame = GlaucomaM_mat) 

R> rownames(univ) <- univ$parent 
 
# The data table 5  
R> selFeatures <- names(ALLcv$featureFrequency[ALLcv$featureFrequency > 25]) 
R> pander::pander(univ[selFeatures,c("controlMean","caseMean","ROCAUC","caseN_Z_Low_Tail", 
"caseN_Z_Hi_Tail")]) 



The first three lines of the code create a list of features to be analyzed. The user has the 
freedom to select a specific set of features to be analyzed and described in the varlist 
matrix.  In this case, we select all the data features.  The parameter: type = "LOGIT" is 
indicating that generalized linear models with a logit link will be used to rank features. The 
categorizationType = "Tail" with cateGroups = c(0.05, 0.95) parameters are 
telling the function to define a new set of model terms for the logistic function that will 
divide the data into two new categories: The lower tail subjects (p<0.5) and upper tail 
(p>0.95). The raw.dataFrame = GlaucomaM_mat parameters are indicating that the raw 
data is the GlaucomaM_mat matrix.  Once the descriptive statistics are computed for all 
features, a set of columns are selected to be displayed in a table, and only features that had 
a relatively high selection frequency in the holdout CV test. Table 5 shows the result of the 
last command that creates the formatted table. 

The visualization of the subjects with abnormal features values is done using the 
heatMaps(…) function as shown in the next line of code: 

# The heat map showing the location of abnormal values  figure 8 
R>  hm <- heatMaps(variableList = univ,Outcome = "Class", 
               data = ALLScaled$scaledData, 
               title = "Heat Map: univ",Scale = c(-2,2), 
               hCluster = "col",cexRow = 0.20,cexCol = 0.3,srtCol = 45) 

Figure 8 displays the heat map, were we can see how the glaucoma subjects have features 
with abnormally low values (p<0.05, the blue colors) and features with abnormal high 
values (p>0.95, the red colors). Control subjects as expected did no show many blue nor 
red subjects.   



Table 5: Descriptive statistics of the more frequently selected features of the Glaucoma data sets. Mean values, 
ROC area under the curve (ROCAUC), and a number of subjects with abnormal values (caseN_Z_Low_Tail and 
caseN_Z_Hi_Tail). These two columns represent the number of subjects with abnormal signal values (p<0.05), 
and the number of subjects with abnormally high signal values (p>0.95) 

  controlMean caseMean ROCAUC caseN_Z_Low_Tail caseN_Z_Hi_Tail 
mhci 0.02176 0.1076 0.594 0 23 
varg 0.4139 0.1785 0.7119 45 0 
vari 0.115 0.0448 0.7574 54 0 
vars 0.1068 0.04506 0.6879 41 0 
hic 0.2114 0.3986 0.6369 0 31 

phci -0.09373 0.00898 0.674 0 38 
tmi -0.1097 0.03664 0.6709 2 37 
rnf 0.2252 0.1396 0.6106 26 0 

vbri 0.06443 0.1466 0.616 0 27 
abri 0.2331 0.417 0.5983 0 23 
phcg -0.1216 -0.03546 0.6866 0 40 
vbst 0.1122 0.1558 0.551 0 14 

mhcg 0.06633 0.122 0.6218 0 28 
eat 0.389 0.4238 0.5056 0 5 

varn 0.1774 0.08224 0.6893 42 0 
abrs 0.2502 0.4088 0.5201 0 8 
phcn -0.07168 0.006918 0.6968 0 43 
mdic 0.1722 0.2904 0.6091 0 25 
tms -0.1192 0.03959 0.6177 0 27 
vbrt 0.07163 0.1228 0.5762 0 19 
abrg 0.976 1.608 0.5455 0 13 
mhcn 0.04119 0.1064 0.59 0 22 

at 0.454 0.464 0.5052 0 3 
hvc 0.4077 0.3132 0.5685 17 1 
tmg -0.1524 -0.03356 0.6891 0 41 

 

 

Figure 8: Heat map showing features with the abnormal signal. The red colors indicate a subject with a 
feature signal that is abnormally high (p>0.95). The blue colors indicate subjects whose feature signal is 
abnormally low (p<0.05) 



 

The comparison of the BSWiMS features to other common feature selection starts by 
finding the adjusted p-values of the association of the features to the outcome. This is done 
by executing the following lines of code: 

R> q_values <- univariate_Logit(data = ALLScaled$scaledData, Outcome = "Class", pvalue = 0.05) 
 
R> thenames <- names(ALLcv$featureFrequency) 
R> mv <- match(thenames,names(ALLcv$featureFrequency)) 
 
R> qValueMatrix <- q_values 
R> idiqValueMatrix <- q_values 
R> mv <- cbind(mv,match(thenames,names(q_values))) 
 
R> q_values <- univariate_Logit(data = ALLScaled$scaledData, Outcome = "Class", uniTest = "zNRI",pvalue = 
0.05) 
R> qValueMatrix <- cbind(idiqValueMatrix,q_values[names(idiqValueMatrix)]) 
R> mv <- cbind(mv,match(thenames,names(q_values))) 
 
R> q_values <- univariate_residual(data = ALLScaled$scaledData, Outcome = "Class",pvalue = 0.05,type = 
"LOGIT") 
R> qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)]) 
R> mv <- cbind(mv,match(thenames,names(q_values))) 
 
R> q_values <- univariate_tstudent(data = ALLScaled$scaledData, Outcome = "Class",pvalue = 0.05) 
R> qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)]) 
R> mv <- cbind(mv,match(thenames,names(q_values))) 
 
R> q_values <- univariate_Wilcoxon(data = ALLScaled$scaledData, Outcome = "Class", pvalue = 0.05) 
R> qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)]) 
R> mv <- cbind(mv,match(thenames,names(q_values))) 
 
R> q_values <- univariate_correlation(data = ALLScaled$scaledData, Outcome = "Class", pvalue = 0.05) 
R> qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)]) 
R> mv <- cbind(mv,match(thenames,names(q_values))) 
 
R> q_values <- univariate_correlation(data = ALLScaled$scaledData, Outcome = "Class", pvalue = 0.05, 
method = "pearson") 
 
#The qValueMatrix has the qValues of all filter methods.                                   
R> qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)]) 
 
R> colnames(qValueMatrix) <- c("IDI","NRI","F","t","W","K","P") 
#Do the log transform to display the heatmap 
R> qValueMatrix <- -log10(qValueMatrix) 
R> qValueMatrix[is.infinite(qValueMatrix)] <- 25 
#the Heatmap of the q-values 
R> gplots::heatmap.2(qValueMatrix,Rowv = FALSE,dendrogram = "col", 
                  main = "Method q.values",cexRow = 0.4,mar = c(5,5)) 

 

The code extracts features that improve the net reclassification (NRI), the integrated 
discriminant (IDI) in logistic models. It also extracts features that separate cases and 
controls based on Wilcoxon-test and t-tests.  Two correlation filters were used: The 
Pearson correlation and the Kendall correlation. All these approaches compute the p-values 
for every single feature, then those values are FDR adjusted by the BH procedure finally 
they return the feature named vector of the q-values that were lower than the specified p-
value. The last lines of the code name the matrix that stored all the discovered features and 
displays the resulting features using the heatmap.2 function. Figure 9(a) shows the 
corresponding plot. 



 
(a)                                                                                       (b) 

Figure 9: (a) the heat map showing the log10 of the p-values of the association between the features with the 
binary outcome. (b) The heat map plot shows the rank of the statistically associated features to the outcome. 

The last component of the comparison is to get the rank of the features and compare the 
ranks to the ranks observed by BSWiMS selection frequency, the CV BSWiMS, and the rank 
obtained by the classic mRMR method. The next lines of code achieve that: 

# Add the mRMR and CV Sel Frequency 
# mv already has MV,IDI,NRI,F,t,Wil,Kend and Pear 
R> mv <- cbind(mv,match(thenames,names(q_values))) 
R> mrmr <- mRMR.classic_FRESA(data = ALLScaled$scaledData, Outcome = "Class") 
R> mv <- cbind(mv,match(thenames,names(mrmr))) 
 
#mv contains the feature rank by the method, adding the univariate 
R> mv <- cbind(mv,match(thenames,as.character(univ$parent))) 
 
#Lets add the repeated BSWiMS 
R> sm <- summary(BSWiMSMODEL_ALL) 
R> smcoeff <- sm$coefficients 
R> BSWiMFf <- smcoeff$Frequency 
R> names(BSWiMFf) <- rownames(smcoeff) 
R> BSWiMFf <- BSWiMFf[order(-BSWiMFf)] 
 
R> mv <- cbind(mv,match(thenames,names(BSWiMFf))) 
 
#Set the names 
R> colnames(mv) <- c("CVBSWiMS","IDI","NRI","F","t","Wil","Kend","Pear","mRMR","Univ","BSWiMS") 
R> rownames(mv) <- thenames 
#Heat map 
R> gplots::heatmap.2(mv,Rowv = FALSE,dendrogram = "col",mar = c(5,5), 
                  main = "Feature Rank by Method",cexRow = 0.4,cexCol = 0.75) 
 

Figure 9(b) shows the heat map generated by the last line of code. The features are ordered 
by the repeated holdout CV BSWiMS method and clustered in how similar are the feature 
ranks. As expected the ranks of the CV BSWiMS and the repeated BSWiMS are very similar 
and with close proximity to the mRMR. The univariate methods share similar rankings but 
different from BSWiMS. It is clear that there are several features that were poorly ranked 
by univariate methods, but that is top-ranked by the BSWiMS method. This result can be 
explained by the fact that BSWiMS is a wrapper multivariate method that selects features 
based on the importance to add discriminant power; hence, correlated features can be 
detected by multivariate methods, something that univariate analyzes can´t. 
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Appendix A: Holdout Cross-Validation and the Ensemble Prediction  

The repeated holdout CV and the repeated k-fold cross validation provide an assessment of 
the test performance by evaluating the mean prediction of the repeated test results. In this 
section, we will validate that the repeated assessment approach gives accurate estimations 
of the models in an independent test set. Furthermore, we will introduce the ensemble 
prediction, as an alternative to the linear prediction of BSWiMS. The validation will start by 
creating an independent test set that will contain 50% of the original set. The other 50% of 
the data will be used to train and get estimations of the test performance.  

 

# Code snipped that creates a train/test holdout sets 

R> trainControlSample <- sample(nrow(ALLcontrolSubjects),nrow(ALLcontrolSubjects)/2) 
R> trainCaseSample <- sample(nrow(ALLCaseSubjects),nrow(ALLCaseSubjects)/2) 
 
R> trainSet <- rbind(ALLcontrolSubjects[trainControlSample,],ALLCaseSubjects[trainCaseSample,]) 
R> testSet <- rbind(ALLcontrolSubjects[-trainControlSample,],ALLCaseSubjects[-trainCaseSample,]) 
 
R> controlSubjects <- subset(trainSet,Class == 0) 
 
R> trainScaled <- FRESAScale(trainSet,refFrame = controlSubjects,method = "RankInv") 
R> testScaled <- FRESAScale(testSet,refFrame = controlSubjects,method = "RankInv") 
 

 

The above code shows that we got a random sample of cases and controls. The random 
sample was merged into a train and a test set with an equal number of cases and controls. 
From the train data, I will compute two BSWiMS models (One simple model, and the other 
obtained by 25 FS-BE repetitions), and  holdout CV that used 90% of the train data for 
training and 10% for the test, and it was repeated 50 times: 

R> BSWiMSMODEL_1 <- BSWiMS.model(formula = "Class ~ 1",data = trainScaled$scaledData) 
R> BSWiMSMODEL <- BSWiMS.model(formula = "Class ~ 1",data = trainScaled$scaledData,NumberofRepeats = 25) 
R> cv <- randomCV(trainScaled$scaledData,"Class",BSWiMS.model,trainFraction = 0.9,repetitions = 50); 
 

  



The prediction of the two BSWiMS models on the test data and the cross-validation results 
will be compared by the barPlotCiError(…). To do that I will run the following code: 

#Get the CV stats of the model that used all the data 
R> ALLpsCV <- predictionStats_binary(ALLcv$medianTest,plotname = "Cross-Validation (All Subjects)",cex = 
0.8) 

#Get the CV stats of the model that used the train data  

R> psCV <- predictionStats_binary(cv$medianTest,plotname = "Cross-Validation Train Set",cex = 0.8) 

#Predict the test set using the simple BSWiMS and the test performance   

R> BaggedPre1 <- predict(BSWiMSMODEL_1,testScaled$scaledData) 
R> psBaggedPre1 <- predictionStats_binary(cbind(testSet$Class,BaggedPre1),plotname = "BSWiMS(n=1) Test 
Set",cex = 0.8) 

#Predict the test set using the 25 repeat BSWiMS and the test performance   

R> BaggedPre25 <- predict(BSWiMSMODEL,testScaled$scaledData) 
R> psBaggedPre25 <- predictionStats_binary(cbind(testSet$Class,BaggedPre25),plotname = "BSWiMS(n=25) Test 
Set",cex = 0.8) 

#Ensemble prediction using the 25 repeat BSWiMS and the test performance   

R> ensemblepred10 <- 
ensemblePredict(BSWiMSMODEL$formula.list,trainScaled$scaledData,testScaled$scaledData) 
R> pm <- plotModels.ROC(ensemblepred10$predictions,main = "Test Set",cex = 0.8) 

R> psensemblepred10 <- predictionStats_binary(cbind(testSet$Class,ensemblepred10$ensemblePredict),plotname 
= "Ensemble Test Set",cex = 0.8) 

#Create the matrix for the balanced error rate with thei 95% CI   

R> balancedError <- rbind(ALL_CV = ALLpsCV$berror, Train_CV = psCV$berror,Bagg_1 = 
psBaggedPre1$berror,Bagg_25 = psBaggedPre25$berror,Median_25 = psensemblepred10$berror) 
#Plot   
R> bpCI <- barPlotCiError(as.matrix(balancedError),metricname = "Balanced Error", 
                       thesets =  c("Test Set"), 
                       themethod = rownames(balancedError), 
                       main = "Balanced Error", 
                       offsets = c(0.5,1), 
                       scoreDirection = "<",ho = 0.5, 
                       args.legend = list(bg = "white",x = "bottomright"), 
                       col = terrain.colors(nrow(balancedError))) 

#Create the matrix of the AUC with 95%CI   

R> AUC <- rbind(ALL_CV = ALLpsCV$auc, Train_CV = psCV$aucs,Bagg_1 = psBaggedPre1$aucs,Bagg_25 = 
psBaggedPre25$aucs,Median_25 = psensemblepred10$aucs) 
#Plot   
R> AUCCI <- barPlotCiError(as.matrix(AUC),metricname = "ROC AUC", 
                       thesets =  c("Test Set"), 
                       themethod = rownames(balancedError), 
                       main = "ROC AUC", 
                       offsets = c(0.5,1), 
                       args.legend = list(bg = "white",x = "bottomright"), 
                       col = terrain.colors(nrow(balancedError))) 

The code will produce the plots showcased in figures 10 and 11. Figure 10 plots were 
generated by predictionStats_binary(…) function. Specifically the creation of figure 
10(e) and 10(f) required ensemble predictions form model-nuggets. The call: 
ensemblePredict(formula.list,trainData,predictData) (Highlighted in yellow in the 
above code) will use the elements of the formula list to train the model using the trainData 
sets and each model will produce a test prediction of the predictData. All the test 
predictions can be seen in figure 10(e), while figure 10(f) shows the final test result. 



 
(a)                                                                                           (b) 

 
(c)                                                                                         (d) 

 
(e)                                                                                            (f) 

Figure 10: ROC plots of CV and 50% Holdout CV.(a) CV test result by using all the data. (b) CV results of the 
train data set. (c) Test result of the model repeated 25 times. (d) Test result of the model repeated only 
once.(e) Each one of the model nuggets predictions on the test set. (f) Test ROC of ensemble of the nuggets. 

 



            

Figure 11: Error comparison and ROC AUC comparison. The left plots indicate that there was no statistical 
difference between test results. CV test results and 50% Holdout test results are equivalent. Right, the 
Comparison of the AUC yields similar conclusions. The Holdout test results were similar to the predicted CV 
performance.  

 

Conclusion 

The results obtained in this experiment indicate that the repeated CV performance is 
accurate. The CV error rate estimated using the train data was statistically equivalent to the 
observed performance of the test results obtained by predicting the holdout test data. None 
of the methods used to predict the test data was superior to any other. 

 

 


