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1 Introduction

Finite mixture models is a powerful tool for density estimation, cluster anal-
ysis and discriminant analysis. mixmod is a software for mixture modelling
which considered those three different aspects of mixtures and gives great
place to the multivariate context. In its present version, mixmod is dealing
with multivariate Gaussian mixture models for quantitative data, with multi-
variate multinomial mixture models for categorical data and with combined
multivariate Gaussian-multinomial mixture models for mixed quantitative
and categorical data. Basing cluster or discriminant analysis on Gaussian
mixture models is a classical and powerful approach since Gaussian models
are useful both for understanding and suggesting powerful clustering crite-
ria. One of the originality of mixmod is to consider a parameterization of
the variance matrix of a cluster through its eigenvalue decomposition leading
to many meaningful models for clustering and classification. In the same
manner, different more or less parsimonious parameterizations are entering
in the multinomial mixture models. Combining both the mixed case quanti-
tative/categorical beneficits from both advantages.

This documentation is organized as follows. In Section 2, the general
setting of finite mixture modelling is sketched. In Section 3, the different
available algorithms in mixmod for estimating mixture parameters are pre-
sented. In Section 4, the possible strategies for using mixmod algorithms
and for initiating them are described. Moreover criteria to select a model are
presented. Section 5 is devoted to the detailed presentation of the Gaussian
mixture models considered in mixmod and to a mixture of factor analyser
models useful to treat high dimensional supervised classification problems.
Section 6 is devoted to the detailed presentation of multivariate multino-
mial mixture models. Section 7 is devoted to the detailed presentation of
multivariate combined Gaussian-multivariate mixture models.

2 Mixture model

Let x = {x1, ...,xn} be n independent vectors in X such that each xi arises
from a probability distribution with density

f(xi|θ) =
K
∑

k=1

pkh(xi|λk) (1)
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where the pk’s are the mixing proportions (0 < pk < 1 for all k = 1, ..., K and
p1+ ...+pK = 1), h(·|λk) denotes a d-dimensional distribution parameterized
by λk. As we will see in Section 5, h is for instance the density of a Gaussian
distribution with X = R

d, mean µ and variance matrix Σ and thus, λ =
(µ,Σ).

It is worth noting that for a mixture distribution, a sample of indicator
vectors or labels z = {z1, ..., zn}, with zi = (zi1, . . . , ziK), zik = 1 or 0,
according to the fact that xi is arising from the kth mixture component
or not, is associated to the observed data x. The sample z can be known

in which case we are in a discriminant analysis context where the problem
is essentially to predict an indicator vector zn+1 from a new observed data
vector xn+1. But the sample z can be unknown in which case we are in a
density estimation context or cluster analysis context if the estimation of
the zi’s are of primary interest. In each case, the vector parameter to be
estimated is θ = (p1, . . . , pK , λ1, . . . , λK).

2.1 Density estimation from a mixture model

Mixture modelling can be regarded as a flexible way to represent a probabil-
ity density function, and thus providing a semi parametric tool for density
estimation. When the labels z are unknown, maximum likelihood estimation
of mixture models can be performed in mixmod via the EM algorithm of
Dempster, Laird and Rubin (1977) or by a stochastic version of EM called
SEM (see McLachlan and Peel, 2000). In each case, the parameter θ is chosen
to maximize the observed log-likelihood

L(θ|x1, . . . ,xn) =
n
∑

i=1

ln

(

K
∑

k=1

pkh(xi,λk)

)

. (2)

2.2 Clustering with mixture model

Cluster analysis is concerned with discovering a group structure in a n by d
data matrix x = {x1, ...,xn} where xi is an individual in X . Consequently,
the result provided by clustering is typically a partition of x into K groups
defined with the labels z̃ = {z̃1, ..., z̃n}, with z̃i = (z̃i1, . . . , z̃iK), z̃ik = 1 or 0
according to xi is assigned to the kth group or not.

Many authors have considered non hierarchical clustering methods in
which a mixture of distributions is used as a statistical model. In this con-
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text, two commonly used maximum likelihood (m.l.) approaches have been
proposed: the mixture approach and the classification approach. Loosely
speaking, the mixture approach is aimed to maximize the likelihood over the
mixture parameters, whereas the classification approach is aimed to maximize
the likelihood over the mixture parameters and over the mixture component
labels.

2.2.1 The mixture approach

In this approach, a partition of the data can directly be derived from the
m.l. estimates θ̂ of the mixture parameters obtained, for instance, by the
EM or the SEM algorithm described hereafter, by assigning each xi to the
component providing the largest conditional probability that xi arises from
it using a MAP (Maximum A Posteriori) principle. Denoting zi the label of
xi, the MAP principle is as follows

z̃ik =

{

1 if k = argmaxℓ=1...,K tℓ(xi|θ̂)
0 if not

(3)

where

tk(xi|θ̂) =
p̂kh(xi|λ̂k)

∑K
ℓ=1 p̂ℓh(xi|λ̂ℓ)

.

2.2.2 The classification approach

The second approach available in mixmod is the classification approach. In
this approach, the indicator vectors z = {z1, ..., zn}, identifying the mixture
component origin, are treated as unknown parameters. The Classification
Maximum Likelihood (c.m.l.) method is used to estimate both the parame-
ters θ and z. The classification likelihood criterion is defined by

CL(θ, z1, . . . , zn|x1, . . . ,xn) =

n
∑

i=1

K
∑

k=1

zik ln[pkh(xi|λk)]. (4)

The CL criterion can be maximized by making use of a classification version
of the EM algorithm, the so-called CEM algorithm (Celeux and Govaert
1992) which includes a classification step (C-step) between the E and M
steps.
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2.3 Discriminant Analysis

When the labels z are known, we are concerned with discriminant analysis: in
discriminant analysis, data are composed by n observations x = (x1, ...,xn}
(xi ∈ R

d) and a partition of x into K groups defined with the labels z =
{z1, ..., zn}. The aim is to estimate the group zn+1 of any new individual
xn+1 of Rd with unknown label.

In this context, the n couples (xi, zi),..., (xn, zn) are realizations of n iden-
tically and independently distributed random vectors (Xi,Zi),...,(Xn,Zn).
The distribution of each (Xi,Zi) (1 ≤ i ≤ n) is

f(xi, zi|θ) =
K
∏

k=1

pzikk [h(xi|λk)]
zik , (5)

where pk is the prior probability of the kth group (the mixing proportion),
h(xi|λk) is a probability density with parameters λk and the whole parameter
is θ = (p1, . . . , pK ,λ1, . . . ,λK).

An estimate θ̂ of θ is obtained by the m.l. method

θ̂ = argmax
θ

L(θ|x, z) (6)

where the log-likelihood function L(θ|x, z) is defined by

L(θ|x, z) =
n
∑

i=1

K
∑

k=1

zik ln(pkh(xi|λk)). (7)

This estimate θ̂ allows to assign any new point xn+1 with unknown member-
ship in one of the K groups by the maximum a posteriori (MAP) procedure.
Computing the conditional probability tk(xn+1|θ̂) that xn+1 arises from the
kth group

tk(xn+1|θ̂) =
p̂kh(xn+1|λ̂k)

∑K
ℓ=1 p̂ℓh(xn+1|λ̂ℓ)

, (8)

the MAP procedure consists of assigning xn+1 to the group maximizing this
conditional probability, i.e.

ẑn+1 k =

{

1 if k = argmaxℓ=1...,K tℓ(xn+1|θ̂)
0 if not

. (9)
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3 Algorithms in mixmod

3.1 EM algorithm

Starting from an initial arbitrary parameter θ0, the mth iteration of the EM
algorithm consists of repeating the following E and M steps.

• E step: The current conditional probabilities that zik = 1 for i =
1, . . . , n and k = 1, . . . , K are computed using the current value θm−1

of the parameter:

tmik = tmk (xi|θ
m−1) =

pm−1
k h(xi|λ

m−1
k )

∑K
ℓ=1 p

m−1
ℓ h(xi|λ

m−1
ℓ )

. (10)

• M step: The m.l. estimate θm of θ is updated using the conditional
probabilities tmik as conditional mixing weights. It leads to maximize

F (θ|x1, . . . ,xn, t
m) =

n
∑

i=1

K
∑

k=1

tmik ln [pkΦ(xi|λk)] , (11)

where tm = (tmik, i = 1, . . . , n, k = 1, . . . , K). Updated expression of
mixture proportions are, for k = 1, . . . , K,

pmk =

∑n
i=1 t

m
ik

n
. (12)

Detailed formula for the updating of the λk’s are depending of the
component parameterization λ and cannot be detailed here.

3.2 SEM algorithm

The SEM algorithm is a stochastic version of EM incorporating between the
E and M steps a restoration of the unknown component labels zi, i = 1, . . . , n,
by drawing them at random from their current conditional distribution.
Starting from an initial parameter θ0, an iteration of SEM consists of three
steps.

• E step: The conditional probabilities tmik (1 ≤ i ≤ n, 1 ≤ k ≤ K) are
computed for the current value of θ as done in the E step of EM.
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• S step: A partition Pm = (Pm
1 , . . . , Pm

K ) of x1, . . . ,xn is designed by
assigning each point xi at random to one of the mixture components
according to the multinomial distribution with parameter (tmik, 1 ≤ k ≤
K).

• M step: The m.l. estimate of θ is updated using the cluster Pm
k as

sub-sample (1 ≤ k ≤ K) of the kth mixture component. This step
leads generally to simple formula. For instance,

pmk =
card(Pm

k )

n
. (13)

SEM does not converge pointwise. It generates a Markov chain whose sta-
tionary distribution is more or less concentrated around the m.l. parameter
estimator. A natural parameter estimate from a SEM sequence (θr)r=1,...,R

is the mean
∑R

r=b+1 θ
r/(R − b) of the iterates values where the first b burn-

in iterates have been discarded when computing this mean. An alternative
estimate is to consider the parameter value leading to the highest likelihood
in a SEM sequence.

A remark is to be made. When several observations are associated to the
same vector, they are assigned to the same mixture component in the S step.
This choice can make a difference when concerned with categorical data. It
is expected to give a larger influence to the random assignments.

3.3 CEM algorithm

This algorithm incorporates a classification step between the E and M steps
of EM. Starting from an initial parameter θ0, an iteration of CEM consists
of three steps.

• E step: The conditional probabilities tmik (1 ≤ i ≤ n, 1 ≤ k ≤ K) are
computed for the current value of θ as done in the E step of EM.

• C step: A partition Pm = (Pm
1 , . . . , Pm

K ) of x1, . . . ,xn is designed by
assigning each point xi to the component maximizing the conditional
probability (tmik, 1 ≤ k ≤ K).

• M step: The m.l. estimates (p̂k,λk) are computed using the cluster
Pm
k as sub-sample (1 ≤ k ≤ K) of the kth mixture component as done

in the M step of SEM.
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CEM is a K-means-like algorithm and contrary to EM, it converges in a finite
number of iterations. CEM is not maximizing the observed log-likelihood L
(2) but is maximizing in θ and z1, . . . , zn the complete data log-likelihood CL
(4) where the missing component indicator vector zi of each sample point is
included in the data set. As a consequence, CEM is not expected to converge
to the m.l. estimate of θ and yields inconsistent estimates of the parameters
especially when the mixture components are overlapping or are in disparate
proportions (see McLachlan and Peel 2000, Section 2.21).

4 Using mixmod

4.1 Stopping rules

In mixmod they are three ways to stop an algorithm.

• An algorithm can be stopped after a pre-defined number of iterations
(100 by default in mixmod). This possibility is available for EM, SEM
and CEM.

• An algorithm can be stopped using a threshold for the relative change
of the criterion at hand (the likelihood L or the classification likelihood
CL). This possibility is available with EM and CEM. It is not recom-
mended since EM can encounter slow convergence situations and CEM
is converging in a finite number of iterations.

• An algorithm can be stopped at stationarity. Obviously, this possibility
is only available for CEM.

4.2 Initialization strategies

The solution provided by EM can highly depend on its starting position es-
pecially in a multivariate context. Thus, it is important to have sensible ways
for initiating EM to get a sensible optimum of the likelihood. Obviously, in
some cases it is possible to start from a particular partition of the data or
from a pre-defined θ0 and those initializations of EM are possible in mixmod.
But there is the need to have more general strategies. In mixmod, it is possi-
ble to easily link the algorithms EM, SEM and CEM in all imaginable ways.
Thus, in Biernacki et al. (2003), we have experimented an efficient three step
Search/Run/Select (S/R/S) strategy for maximizing the likelihood:
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1. Build a search method for generating p initial positions. This could be
based on random starts or the output from an algorithm like a Clas-
sification EM (CEM) algorithm, a Stochastic EM (SEM) algorithm or
short runs of the standard EM algorithm. The parameter p is depend-
ing on an allotment of iterations.

2. Run the EM algorithm a set number of times at each initial position
with a fixed number of iterations.

3. Select the solution providing best likelihood among the p trials, say θ∗.

This three-step strategy can be compounded by repeating the three steps x
times and using the θ∗1, . . . , θ

∗
x as the starting positions in step 1. By com-

pounding, one increases starting position variation, but one must decrease
the length of the EM runs possible within the steps in order to fix the total
number of steps.

Possible variants of this strategy are now described.

Random initialization Usually this random initial position is obtained by
drawing at random component means in the data set. Since this is probably
the most employed way of initiating EM, it can be regarded as a reference
strategy. An extension of this simple strategy consists of repeating it x times
from different random positions and selecting the solution maximizing the
likelihood among those x runs. This “xEM” strategy is the basic S/R/S
algorithm.

Using the CEM algorithm Runs of CEM from random positions fol-
lowed by EM from the position providing the highest complete data log-
likelihood obtained with CEM. And, x repetitions of the previous strategy
give rise to an additional strategy denoted “xCEM-EM”.

Using short runs of EM By a short run of EM, we mean that we do not
wait for convergence and that we stop the algorithm as soon as

Lm − Lm−1

Lm − L0
≤ 10−2, (14)

Lm denoting the observed log-likelihood at mth iteration. Here 10−2 repre-
sents a threshold value which has to be chosen on a pragmatic ground. It
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leads to the following strategies : several short runs of EM from random
positions followed by a long run of EM from the solution maximizing the
observed log-likelihood. And, x repetitions of the previous strategy lead to
the so called “xem-EM” strategy.

Using Stochastic EM The stochastic EM algorithm generates an ergodic
Markov chain. Thus a sequence of parameter estimates via SEM is expected
to visit the whole parameter space with long sojourns in the neighborhood
of sensible maxima of likelihood functions. This characteristic of SEM leads
to the following strategies.

• “SEMmean-EM”: A run of SEM, followed by a run of EM from the
solution obtained by computing the mean values of the sequence of
parameter estimates provided by SEM after a burn-in period. The
idea underlying this strategy is that SEM is expected to spend most
of the time near sensible likelihood maxima with a large attractive
neighborhood.

• “SEMmax-EM”: The same run of SEM followed by a run of EM from
the position leading to the highest maximum likelihood value reached
by SEM. Here, the idea is that a SEM sequence is expected to enter
rapidly in the neighborhood of the global maximum of the likelihood
function.

It is difficult to recommend a particular strategy among the ones presented
above. However, the strategy “xem-EM” gives generally good performances
and is the default strategy in mixmod.

4.3 Criteria to select a model

It is of high interest to automatically select a model and the number K of
mixture components. However, choosing a sensible mixture model is highly
dependent of the modelling purpose.

In mixmod, two criteria are proposed in a supervised setting: BIC and
cross-validation. In an unsupervised setting, three criteria are available: BIC,
ICL and NEC. In a density estimation perspective, BIC must be preferred.
But in a cluster analysis perspective, ICL and NEC can provide more par-
simonious answers. Nevertheless, NEC is essentially devoted to choose the
number of mixture components K, rather than the model parameterization.
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Before describing those criteria, it can be noted that if no information on K
is available, it is recommended to vary it between 1 and the smallest integer
larger than n0.3 (see Bozdogan 1993).

4.3.1 The Bayesian Information Criterion (BIC)

A finite mixture model is characterized by the number of components K
and the vector parameter θ = (p1, . . . , pK ,λ1, . . . ,λK). A classical way of
choosing a model is to select this one maximizing the integrated likelihood,

(m̂, K̂) = argmax
m,K

f(x | m,K) (15)

where the integrated likelihood is

f(x | m,K) =

∫

Θm,K

f(x | m,K, θ)π(θ | m,K)dθ, (16)

with the likelihood

f(x | m,K, θ) =

n
∏

i=1

f(xi | m,K, θ), (17)

and Θm,K being the parameter space of the model m with K components and
π(θ | m,K) a non informative or a weakly informative prior distribution on
θ for this model. An asymptotic approximation of the integrated likelihood,
valid under regularity conditions, has been proposed by Schwarz (1978)

log f(x | m,K) ≈ log f(x | m,K, θ̂)−
νm,K

2
log(n), (18)

where θ̂ is the m.l. estimate of θ

θ̂ = argmax
θ

f(x | m,K, θ) (19)

and νm,K is the number of free parameters in the model m with K compo-
nents. It leads to minimize the so-called BIC criterion

BICm,K = −2Lm,K + νm,K lnn, (20)

where Lm,K = log f(x | m,K, θ̂) is the maximum log-likelihood for m and K.
Despite the fact that those regularity conditions are not fulfilled for mixtures,
it has been proved that the criterion BIC is consistent (Keribin 2000) and
has been proved to be efficient on a practical ground (see for instance Fraley
and Raftery 1998).
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4.3.2 The Integrated Completed Likelihood (ICL)

The use of the integrated likelihood (16) does not take into account the ability
of the mixture model to give evidence for a clustering structure of the data.
An alternative is to consider the integrated likelihood of the complete data
(x, z) (or integrated completed likelihood) (Biernacki et al. 2000)

f(x, z | m,K) =

∫

Θm,K

f(x, z | m,K, θ)π(θ | m,K)dθ, (21)

where

f(x, z | m,K, θ) =

n
∏

i=1

f(xi, zi | m,K, θ) (22)

with

f(xi, zi | m,K, θ) =
K
∏

k=1

pzikk [h(xi | λk)]
zik . (23)

This integrated completed likelihood can be approximated from a BIC-like
approximation. That is

log f(x, z | m,K) ≈ log f(x, z | m,K, θ̂∗)−
νm,K

2
logn (24)

where
θ̂∗ = argmax

θ
f(x, z | m,K, θ). (25)

But z is unknown. It means that the objective functions to be maximized in
(21) and (25) are not available and so is θ̂∗. However, for n large enough, θ̂∗

can be approximated by the m.l. estimator θ̂. Moreover, the missing data z
can be replaced using the MAP principle: z̃ = MAP(θ̂). It leads finally to
the ICL criterion to be minimized (Biernacki et al. 2000)

ICLm,K = −2 log f(x, z̃ | m,K, θ̂)−
νm,K

2
logn, (26)

that we can also write as a BIC criterion penalized by an entropy term:

ICLm,K = BICm,K − 2

n
∑

i=1

K
∑

k=1

z̃ik ln tik. (27)
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4.3.3 The Normalized Entropy Criterion (NEC)

This entropy criterion measures the ability of a mixture model to provide
well-separated clusters and is derived from a relation highlighting the differ-
ences between the maximum likelihood (m.l.) approach and the classification
maximum likelihood (c.m.l.) approach to the mixture problem. Recall that
NEC is essentially devoted to choose the number of mixture components K,
not the model m.

We note θ̂ the m.l. estimator of θ and

tik = tk(xi|θ̂) =
p̂kh(xi|λ̂k)

∑K
k′=1 p̂k′h(xi|λ̂k′)

(28)

the associated conditional probability that xi arises from to the kth mixture
component. Direct calculations show that

LK = CK + EK , (29)

with LK the maximum log-likelihood,

CK =

K
∑

k=1

n
∑

i=1

tik ln [p̂kh(xi|λ̂k)], (30)

and

EK = −

K
∑

k=1

n
∑

i=1

tik ln tik ≥ 0. (31)

This relation with the fact that the entropy term EK measures the overlap
of the mixture components (If the mixture components are well-separated
EK ≃ 0. But if the mixture components are poorly separated, EK has a large
value.) leads to the normalized entropy criterion (Celeux and Soromenho
1996)

NECK =
EK

LK − L1
(32)

as a criterion to be minimized for assessing the number of clusters arising
from a mixture.

Note that NEC1 is not defined. Biernacki et al. (1999) proposed the
following efficient rule to deal with this problem. Let K⋆ be the value mini-
mizing NECK , (2 ≤ K ≤ Ksup), Ksup being an upper bound for the number
of mixture components. We choose K⋆ clusters if NECK⋆ ≤ 1, otherwise we
declare no clustering structure in the data.
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4.3.4 The cross-validation criterion (CV)

This criterion is valid only in the discriminant analysis (supervised) context.
In this situation, note that only the model m has to be selected. Cross
validation is a resampling method which can be summarised as follows: Let
S be the whole dataset. Consider random splits of S into V independent
datasets S1, . . . , SV of approximatively equal sizes n1, . . . , nV . (If n/V is an
integer h, we have n1 = . . . = nV = h.) The CV criterion is defined by

CVm =
1

n

V
∑

v=1

∑

i∈Sv

δ(ẑ
(v)
i , zi) (33)

with δ the 0-1 cost and ẑ
(v)
i denotes the group to which xi is assigned when

designing the assignment rule from the entire data set (x, z) without Sv.
When V = 1 the cross validation is known as the leave one out method, and,
in this case, fast estimation of the n discriminant rules is implemented in the
Gaussian situation (Biernacki and Govaert 1999). In mixmod, the default
value for the cross validation criterion is V = 10.

4.3.5 The double cross-validation criterion (DCV)

The CV error rate described above gives an optimistic estimate of the actual
error rate because the method includes the selection of one model among
several ones. Thus, there is a need to assess the actual error rate from an
independent sample. This is the purpose of the DCV criterion, implemented
in mixmod version 1.7.

The double cross-validated error rate is computed in mixmod as follows:
Repeat the three following steps for v in 1, . . . , V with S−

v = S \ Sv

◮ build the models using the S−
v dataset

◮ select the best model regarding the CV criterion: m⋆
v

◮ estimate the error rate ev of m⋆
v using Sv

ev =
1

nv

∑

i∈Sv

δ(ẑ
m⋆

v

i , zi). (34)
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The DCV error rate (ē) is finally obtained by averaging the e1, . . . , eV . The
empirical standard error of the error rate is given by σe

ē =
1

V

V
∑

v=1

ev , σe =

(

1

V − 1

V
∑

v=1

(ev − ē)2

)1/2

. (35)

Recall that in mixmod, the default value of V is 10.

4.4 Partial labeling of individuals

MIXMOD allows partial labeling. Recall that in density estimation or
clustering context, observed data are x = {x1, ...,xn}, the corresponding
labels z = {z1, ..., zn} being unknown. On the contrary, in the discrimi-
nant analysis context, all the labels z are available to estimate the mixture
parameter θ. In some cases, the following intermediate situation may oc-
cur: the set x of individuals is divided into two sets x = (xℓ,xu) where
xℓ = {x1, ...,xm} (1 ≤ m ≤ n) are units with known labels zℓ = {z1, ..., zm},
and xu = {xm+1, ...,xn} units with unknown labels zu = {zm+1, ..., zn}.

The m.l. mixture parameter estimate is derived by maximizing the fol-
lowing log-likelihood

L(θ|x, zℓ) =

m
∑

i=1

K
∑

k=1

zik ln[pkh(xi|λk)] +

n
∑

i=m+1

ln

(

K
∑

k=1

pkh(xi|λk)

)

. (36)

In a clustering context using the classification approach, the c.m.l. method,
is maximizing the following completed log-likelihood

CL(θ, zu|x, zℓ) =

m
∑

i=1

K
∑

k=1

zik ln[pkh(xi|λk)] +

n
∑

i=m+1

K
∑

k=1

zik ln[pkh(xi|λk)].

(37)
In practice, the modifications of the algorithms are straightforward. It is
simply necessary to replace tik by zik for all k and i = 1, . . . , m in the M step
of EM, and to fix zik to constant known values for all k and i = 1, . . . , m in
the M step of SEM and CEM.

4.5 Weighting the units

In some cases, it arises that some units are duplicated. Typically, it happens
when the number of possible values for the units is low in regard to the
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sample size.
To avoid entering unnecessarily large lists of units, mixmod allows to

specify a weight wi for each unit yi (i = 1, . . . , r). The set
yw = {(y1, w1), . . . , (yr, wr)} is strictly equivalent to the set with eventual
replications x = {x1, ...,xn}, so we have the relation n = w1 + . . .+ wr.

All formula are easily adapted to take account of this weighting scheme.
For instance, the log-likelihood L becomes

L(θ|x) = L(θ|yw) =
r
∑

i=1

wi ln

(

K
∑

k=1

pkh(yi|λk)

)

, (38)

and the proportion estimation equation at the mth iteration becomes

pmk =

∑r
i=1wit

m
ik

n
. (39)

5 The Gaussian mixture model

5.1 Definition

In the Gaussian mixture model, X = R
d and each xi is assumed to arise

independently from a mixture with density

f(xi|θ) =
K
∑

k=1

pkh(xi|µk,Σk) (40)

where pk is the mixing proportion (0 < pk < 1 for all k = 1, ..., K and
p1 + ... + pK = 1) of the kth component and h(·|µk,Σk) denotes the d-
dimensional Gaussian density with mean µk and variance matrix Σk,

h(xi|µk,Σk) = (2π)−d/2|Σk|
−1/2 exp

{

−
1

2
(xi − µk)

′Σ−1
k (xi − µk)

}

, (41)

and θ = (p1, . . . , pK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK) is the vector of the mixture
parameters. Thus, clusters associated to the mixture components are ellip-
soidal, centered at the means µk and variance matrices Σk determine their
geometric characteristics.
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5.2 Fourteen Gaussian models

5.2.1 Eigenvalue decomposition of variance matrices

Following Banfield and Raftery (1993) and Celeux and Govaert (1995), we
consider a parameterization of the variance matrices of the mixture compo-
nents consisting of expressing the variance matrix Σk in terms of its eigen-
value decomposition

Σk = λkDkAkD
′
k (42)

where λk = |Σk|
1/d, Dk is the matrix of eigenvectors of Σk and Ak is a diagonal

matrix, such that |Ak| = 1, with the normalized eigenvalues of Σk on the
diagonal in a decreasing order. The parameter λk determines the volume of
the kth cluster, Dk its orientation and Ak its shape. By allowing some but not
all of these quantities to vary between clusters, we obtain parsimonious and
easily interpreted models which are appropriate to describe various clustering
situations.

5.2.2 The general family

First, we can allow the volumes, the shapes and the orientations of clusters
to vary or to be equal between clusters. Variations on assumptions on the
parameters λk, Dk and Ak (1 ≤ k ≤ K) lead to 8 general models of inter-
est. For instance, we can assume different volumes and keep the shapes and
orientations equal by requiring that Ak = A (A unknown) and Dk = D (D
unknown) for k = 1, . . . , K. We denote this model [λkDAD′]. With this
convention, writing [λDkAD

′
k] means that we consider the mixture model

with equal volumes, equal shapes and different orientations.

5.2.3 The diagonal family

Another family of interest consists of assuming that the variance matrices
Σk are diagonal. In the parameterization (42), it means that the orientation
matrices Dk are permutation matrices. We write Σk = λkBk where Bk is a
diagonal matrix with |Bk| = 1. This particular parameterization gives rise
to 4 models: [λB], [λkB], [λBk] and [λkBk].
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5.2.4 The spherical family

The last family of models consists of assuming spherical shapes, namely Ak =
I, I denoting the identity matrix. In such a case, two parsimonious models
are in competition: [λI] and [λkI].

Finally, we get 14 different models (see Table 1). Those 14 Gaussian
mixture models are implemented, specifying different clustering situations
from the eigenvalue decomposition of the variance matrices of the mixture
components. The main advantage of variance matrices eigenvalue decompo-
sition is the simple geometric interpretation of the models. To stress this
point, Figure 1 shows a contour plot for each model, for K = 2 groups with
dimension d = 2, consisting of a single ellipse of isodensity per group.

model number of parameters M step inertia criteria
[λDAD′] α + β CF |W |
[λkDAD′] α+ β +K − 1 IP -
[λDAkD

′] α + β + (K − 1)(d− 1) IP -
[λkDAkD

′] α + β + (K − 1)d IP -
[λDkAD

′
k] α +Kβ − (K − 1)d CF |ΣkΩk|

[λkDkAD
′
k] α +Kβ − (K − 1)(d− 1) IP -

[λDkAkD
′
k] α +Kβ − (K − 1) CF Σk|Wk|

1
d

[λkDkAkD
′
k] α +Kβ CF Σknk ln(

|Wk|
nk

)

[λB] α + d CF |diag(W )|
[λkB] α+ d+K − 1 IP -

[λBk] α +Kd−K + 1 CF Σk|diag(Wk)|
1
d

[λkBk] α +Kd CF Σknk ln(
|diag(Wk)|

nk
)

[λI] α + 1 CF tr(W )
[λkI] α +K CF Σknk ln tr(

Wk

nk
)

Table 1: Some characteristics of the 14 models. We have α = Kd +K − 1
in the case of free proportions and α = Kd in the case of equal proportions,
and β = d(d+1)

2
; CF means that the M step is closed form, IP means that the

M step needs an iterative procedure. The last column gives the inertia type
criterion to be minimized in the case of equal proportions for each model.
Exact definition of W and Wk are given in (46) and (47).
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[LBk]

[LI]

[LkI]

[LB]

[LkB]

[lkBk]

[LDAD’]

[LkDAD’]

[LDAkD’]

[LkDAkD’]

[LDkADk’]

[LkDkADk’]

[LDkAkDk’]

[LkDkAkDk’]

Figure 1: For two groups in two dimensions, this graphic displays the typical
ellipse of isodensity per group for each of the 14 Gaussian models.
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5.3 M step for each of the 14 models

The M step has to be detailed for each of the 14 models. It is obviously
present in the EM algorithm and its variants (SEM, CEM), but it is also
useful for the discrimination purpose since maximizing the likelihood with
complete data (x, z) can be performed with a single iteration of the M step.

To unify the presentation, we make use of a classification matrix c =
(cik, i = 1, . . . , n; k = 1, . . . , K) with 0 ≤ cik ≤ 1 and

∑K
k=1 cik = 1, with

the constraint cik ∈ {0, 1} when c defines a partition as in the classification
approach. With this convention, in both the mixture and the classification
approaches, the M step consists of maximizing in θ the function:

F (θ|x1, . . . ,xn, c) =

n
∑

i=1

K
∑

k=1

cik ln [pkh(xi|µk,Σk)] (43)

for fixed c and x1, . . . ,xn. When we are concerned with the EM algorithm,
c defines a fuzzy classification and we have cik = tik for 1 ≤ i ≤ n and
1 ≤ k ≤ K. When we are concerned with the CEM algorithm, c defines a
partition and we have cik = 1 if xi belongs to the group k and 0 otherwise
(1 ≤ i ≤ n, 1 ≤ k ≤ K). Thus, for both approaches and for each of the
considered models, the updating formulas for the proportions and the mean
vectors of the mixture are, for 1 ≤ k ≤ K,

µ̂k = x̄k =

∑n
i=1 cikxi

nk

(44)

where

nk =
n
∑

i=1

cik. (45)

Remark that when c defines a partition nk = card(Pk). Moreover, we note
W the within cluster scattering matrix

W =
K
∑

k=1

n
∑

i=1

cik(xi − x̄k)(xi − x̄k)
′ (46)

andWk the scattering matrix of a cluster (or fuzzy cluster) , for k = 1, . . . , K,

Wk =

n
∑

i=1

cik(xi − x̄k)(xi − x̄k)
′. (47)
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The updating formulas for the variance matrices depend on the considered
mixture model and are presented in the next subsections.

Table 1 summarizes some features of the 14 models. In this table, the
first column specifies the model. The second column gives the number of
parameters to be estimated. The third column indicates if the M step can be
achieved with closed form formulas (CF) or if there is a need to make use of an
iterative procedure (IP). The last column displays the inertia type criterion
to be minimized for the case of equal proportions when the M step is closed
form. These criteria can be derived from standard algebraic calculations.
Some of them corresponds to standard criteria that was proposed without
any reference to a statistical model. For instance, in clustering, tr(W ) is
the K-means criterion of Ward (1963), |W | was suggested by Friedman and
Rubin (1967) and Σknk ln tr(

Wk

nk
) was proposed by Scott and Symons (1971).

In discrimination, models [λC] and [λkCk] with equal proportions respectively
correspond to classical linear and quadratic allocation rules (see for instance
McLachlan 1982).

5.3.1 The general family

From Table 1, it can be seen that the inertia type criteria derived from the
models [λDAD′], [λDkAkD

′
k] and [λkDkAkD

′
k] are classical clustering criteria

(see Scott and Symons 1971, Maronna, Jacovkis 1974). On the contrary, the
unusual models [λkDAD′], [λkDAkD

′] and [λkDkAD
′
k] which allow different

volumes for the clusters do not lead to any inertia type criteria. Moreover, it
is worth noting that the 8 models of the general family are invariant under
any linear transformation of the data. We now detail the m.l. estimations of
the variance matrices from a classification matrix c for the 8 situations.

Model [λDAD′] In this well-known situation, the common variance matrix
Σ is estimated by

Σ̂ =
W

n
. (48)

Model [λkDAD′] In this situation, it is convenient to write Σk = λkC with
C = DAD′. M-step consists of two steps to minimize

∑K
k=1 tr(WkC

−1)/λk +
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d
∑K

k=1 nk ln(λk)

Step 1 (C fixed): λk =
tr(WkC

−1)

dnk

(49)

Step 2 (λk’s fixed): C =

∑K
k=1

1
λk
Wk

|
∑K

k=1
1
λk
Wk|

1
d

. (50)

Model [λDAkD
′] In this situation and in the next one, there is no interest

to assume that the terms of the diagonal matrices Ak are in decreasing order.
Thus for the models [λDAkD

′] and [λkDAkD
′] we do not assume that the

diagonal terms of Ak are in decreasing order. First, direct calculation of λ is

λ =

∑K
k=1 tr(DA−1

k D′Wk)

nd
. (51)

Then, M-step performs iteratively two steps to minimize
∑K

k=1 tr(DA−1
k D′Wk)

Step 1 (D fixed): Ak =
diag(D′WkD)

|diag(D′WkD)|
1
d

(52)

Step 2 (Ak’s fixed): see Flury and Gautschi (1986). (53)

Model [λkDAkD
′] In this situation, there is no need to isolate the volume

and it is convenient to write Σk = DAkD
′ where |Ak| = |Σk|. M-step consists

of two steps to minimize
∑K

k=1

[

tr(DA−1
k D′Wk) + nkd ln |Ak|

]

Step 1 (D fixed): Ak = diag(D′WkD) (54)

Step 2 (Ak’s fixed): see Flury and Gautschi (1986). (55)

Model [λDkAD
′
k] Considering for k = 1, . . . , K the eigenvalue decompo-

sition Wk = LkΩkL
′

k of the symmetric definite positive matrix Wk with the
eigenvalues in the diagonal matrix Ωk in decreasing order, we have

Dk = Lk, A =

∑K
k=1Ωk

|
∑K

k=1Ωk|
1
d

, λ =
|
∑K

k=1Ωk|
1
d

n
. (56)
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Model [λkDkAD
′
k] Using again the eigenvalue decompositionWk = LkΩkL

′
k,

M-step consists of three steps to minimize
∑K

k=1 tr(WkDkA
−1D′

k)/λk+

d
∑K

k=1 nk ln(λk)

Step 1 (Dk’s, A fixed): λk =
tr(WkDkA

−1D
′

k)

dnk
(57)

Step 2 (λk’s, A fixed): Dk = Lk (58)

Step 3 (λk’s, Dk’s fixed): A =

∑K
k=1

1
λk
Ωk

|
∑K

k=1
1
λk
Ωk|

1
d

. (59)

Model [λDkAkD
′
k] In this situation, it is convenient to write Σk = λCk

where Ck = DkAkD
′
k. Direct calculation shows that

Ck =
Wk

|Wk|
1
d

, λ =

∑K
k=1 |Wk|

1
d

n
. (60)

Model [λkDkAkD
′
k] This is the most general situation and we have

Σ̂k =
1

nk

Wk. (61)

5.3.2 The diagonal family

For this more parsimonious family of models, the eigenvectors of Σk (1 ≤ k ≤
K) are the vectors generating the basis associated to the d variables (Dk =
Jk). If the Jk are equal, the variables are independent. If the Jk are different,
the variables are independent conditionally to the zi (1 ≤ i ≤ n). In this
situation, Gaussian mixture with diagonal variance matrices can be viewed as
an elegant model for weighting variables in a cluster analysis context. It leads
to adaptive weighting algorithms assuming same weights for each cluster if
the Jk’s are assumed equal and different weights for each cluster if the Jk’s
are assumed different. We considered four models of interest. The main
features of these four models are summarized in Table 1. The three inertia
type criteria for the models [λB], [λBk] and [λkBk] are simple adaptations of
the corresponding criteria of the general family. The interesting model [λkB]
does not lead to an inertia type criterion. Moreover, it is worth noting that
the 4 models of the diagonal family are invariant under any scaling of the
variables but not under any linear transformation. We now derive the m.l.
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estimation of the variance matrices from a classification matrix c for each of
the four situations.

Model [λB] We have

B =
diag(W )

|diag(W )|
1
d

, λ =
|diag(W )|

1
d

n
. (62)

Model [λkB] M-step consists of two steps to minimize
∑K

k=1 tr(WkB
−1) +

d
∑K

k=1 nk ln(λk)

Step 1 (B fixed): λk =
tr(WkB

−1)

dnk
(63)

Step 2 (λk’s fixed): B =
diag

(

∑K
k=1

1
λk
Wk

)

|diag
(

∑K
k=1

1
λk
Wk

)

|
1
d

. (64)

Model [λBk] We have

Bk =
diag(Wk)

|diag(Wk)|
1
d

, λ =

∑K
k=1 |diag(Wk)|

1
d

n
. (65)

Model [λkBk] We get

Bk =
diag(Wk)

|diag(Wk)|
1
d

, λk =
|diag(Wk)|

1
d

nk
. (66)

5.3.3 The spherical family

We consider here very parsimonious models for which the variance matrices
are spherical. Two situations have to be considered: Σk = λI and Σk = λkI,
I denoting the (d×d) identity matrix. The inertia type criterion tr(W ) of the
model [λI] is certainly the oldest and the most employed clustering criterion.
On the contrary, as far as we know, the criterion

K
∑

k=1

nk ln
tr(Wk)

nk

(67)
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has been proposed for the first time by Banfield and Raftery (1993). Note
that the 2 models of the spherical family are invariant under any isometric
transformation. We derive the m.l. estimations of the volumes of the clusters
for these models.

Model [λI] We get

λ =
tr(W )

dn
. (68)

Model [λkI] We get

λk =
tr(Wk)

dnk

. (69)

Formally models [λI] and [λkI] do not seem to be very different and the
increase of the number of parameters when considering model [λkI] instead
of model [λI] is small (see Table 1). In fact, these two models can lead to
very different clustering structures.

5.4 Mixture of Factor Analyzers

In order to deal with high dimensional data, mixture of factor analyzers
have been considered by several authors including Bouveyron et al. (2007),
McNicholas and Murphy (2008), McLachlan and Peel (2000), Chapter 8,
Tipping and Bishop (1999). In mixmod, a family of eight Gaussian mixture
models introduced by Bouveyron et al. (2007) have been implemented for
discriminant analysis in high dimensional spaces. They are denoted as HD
(for High Dimensional) models in the following.

5.4.1 The general high dimensional model

The same eigenvalue decomposition of the mixture component variance ma-
trices Σk, ∀k = 1, ..., K, is considered:

Σk = Dk∆kD
t
k,

where Dk is the orthogonal matrix of the eigenvectors of Σk and ∆k is a
diagonal matrix containing the eigenvalues of Σk. It is further assume that
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∆k has the following form (Note that in this section, there is no need to
isolate the volume of the variance matrices.):

∆k =





















ak1 0
. . .

0 akδk

0

0

bk 0
. . .

0 bk



























δk







(d− δk)

where akj ≥ bk, for j = 1, ..., δk and δk < d. The class-specific subspace
generated by the δk first eigenvectors corresponding to the eigenvalues akj
and containing the mean µk is denoted Ek. In the orthogonal of Ek, the com-
ponent variance is characterized with a single parameter bk. The projectors
on Ek and E

⊥
k are denoted Pk and P⊥

k . Figure 2 summarizes the model which
is referred as [akjbkDkδk] in the following.

Figure 2: The parameters of the model [akjbkDkδk] in the case of two classes.

5.4.2 Sub-models of model [akjbkDkδk]

Starting from the general model [akjbkDkδk] and allowing the elements of the
model to vary or to be equal between classes, leads to 28 different models
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related to different types of regularization. In mixmod eight useful models
have been selected:

• Two models with free dimension δk:

– the model [akjbkDkδk]

– the model [akbkDkδk]

• Six models with fixed dimension δ:

– the model [akjbkDkδ]

– the model [ajbkDkδ]

– the model [akjbDkδ]

– the model [ajbDkδ]

– the model [akbkDkδ]

– the model [akbDkδ]

Their main features are summarized in Table 2. The second column of this
table gives the number of parameters to be estimated. The third column
provides the asymptotic order of the number of parameters to be estimated
(with the assumption K ≪ δk ≪ d). The last column gives this number in
the particular case K = 4, d = 100 and ∀k, δk = 10. These values are also
given for the standard classification methods QDA and LDA. It is worthwhile
to note that, in this cases, all HD models are more parsimonious than both
QDA and LDA. Some particular situations lead to standard discriminant
methods. For example, if δk = (d− 1), for k = 1, ..., K, the model reduces to
QDA. Moreover, if akj = aj , bk = b and Dk = D, for i = 1, ..., k, it reduces
to LDA.

5.4.3 The MAP step

The MAP decision rule for model [akjbkDkδk] yields to classify x in class Ck∗

if k∗ = argmink=1,...,K{Γk(x)} with

Γk(x) = ‖µk − Pk(x)‖
2
Ak

+
1

bk
‖x− Pk(x)‖

2

+

δk
∑

j=1

log(akj) + (d− δk) log(bk)− 2 log(πk) + p log(2π),
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Model
Number of

parameters n
Asymptotic

order
Values of n for K = 4,
p = 100 and d = 10

[akjbkDkδk] ρ+ τ̄ + 2K +D Kdδ 4231
[akbkDkδk] ρ+ τ̄ + 3K Kdδ 4195

[akjbkDkd] ρ+K(τ + δ + 1) + 1 Kdδ 4228
[ajbkDkd] ρ+K(τ + 1) + δ + 1 Kdδ 4198
[akjbDkd] ρ+K(τ + δ) + 2 Kdδ 4225
[ajbDkd] ρ+Kτ + δ + 2 Kdδ 4195
[akbkDkd] ρ+K(τ + 2) + 1 Kdδ 4192
[akbDkd] ρ+K(τ + 1) + 2 Kdδ 4189

QDA ρ+Kd(δ + 1)/2 Kp2/2 20603
LDA ρ+ δ(δ + 1)/2 p2/2 5453

Table 2: Features of the HD models: ρ = Kd + K − 1 is the num-
ber of parameters required for the estimation of means and proportions,
τ̄ =

∑K
k=1 δk[p − (δk + 1)/2] and τ = δ[d − (δ + 1)/2] are the number of

parameters required for the estimation of D̃k and D̃, and D =
∑K

k=1 δk. For
asymptotic order, it is assumed that K ≪ δ ≪ d.

‖.‖Ak
being a norm on Ek such that ‖x‖2Ak

= xtAkx with Ak = D̃k∆
−1
k D̃k

t
.

This decision rule is based on two distances: the distance between the
observation and the subspace Ek, and the distance between the projection
of x on Ek and the mean of the class. It also depends on the variances akj
and bk and on prior probabilities πk. Figure 3 depicts the decision rule. It
illustrates the fact the projection on E

⊥
k is not required, reducing dramatically

the number of parameters to be estimated and avoiding numerical difficulties.

5.4.4 Estimation of the model parameters

The parameters of the mixture of factor analyzers models are estimated
through the maximum likelihood approach. Estimation of parameters πk

and µk of class Ck are

π̂k =
nk

n
, µ̂k =

1

nk

∑

xk∈Ck

xj .

In what follows, we make use of Wk =
∑

xj∈Ck
(xj − µ̂k)

t(xj − µ̂k), nk =

card(Ck), W =
∑K

i=k π̂kWk, λkj which denotes the jth largest eigenvalue of
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Figure 3: The subspaces Ek and E
⊥
k of the class Ck.
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Wk and λj the jth largest eigenvalue of W , to define the m.l. estimate of the
mixture component variance that are now presented. Details can be found
in Bouveyron et al. (2007).

Models with free δk Assuming that dimensions δk are known for k =
1, ..., K, the following closed form estimators of model parameters are derived.

Subspace Ek The δk first columns of Dk are estimated by the eigenvectors
associated with the δk largest eigenvalues λkj of Wk.

Model [akjbkDkδk] The estimators of akj are the δk largest eigenvalues λkj

of Wk divided by nk and

b̂k =
1

nk(d− δk)

(

trace(Wk)−

δk
∑

j=1

λkj

)

. (70)

Model [akbkDkδk] The estimator of bk is given by (70) and

âk =
1

nkδk

δk
∑

j=1

λkj, (71)

Models with common δk Assuming that parameter δ is known, we obtain
the following closed form estimators for the parameters of the models with
common δk, equal to δ.

Subspace Ek The δ first columns of Dk are estimated by the eigenvectors
associated with the δ largest eigenvalues λkj of Wk.

Model [akjbkDkd] The estimators of akj are the δ largest eigenvalues λkj

of Wk divided by nk and

b̂k =
1

nk(d− δ)

(

trace(Wk)−
d
∑

j=1

λkj

)

. (72)
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Model [ajbkDkd] The estimator of bk is given by (72) and

âj =
1

n

K
∑

k=1

π̂kλkj. (73)

Model [akjbDkd] The estimators of akj are the δ largest eigenvalues λkj of
Wk divided by nk and

b̂ =
1

n(d− δ)

(

trace(W )−

K
∑

k=1

π̂k

d
∑

j=1

λkj

)

. (74)

Model [ajbDkd] The estimators of aj are given by (73) and the estimator
of b is given by (74).

Model [akbkDkd] The estimator of bk is given by (72) and

âk =
1

nd

d
∑

j=1

λkj, (75)

Model [akbDkd] The estimator of ak is given by (75) and the estimator of
b is given by (74).

Estimation of intrinsic dimensions The last parameters to be estimated
are the intrinsic dimensions δk of the K classes. It is not possible to estimate
the dimensions δk using the maximum likelihood approach and minimizing
the cross validated error rate is considered. However, this minimization tech-
nique is not implemented in the present version of mixmod and the user has
to provide all the intrinsic dimensions δk.

6 The multinomial mixture model

6.1 Definition

We consider now that data are n objects described by d categorical variables,
with respective number of categories m1, . . . , md, so X = {1, . . . , m1}× . . .×
{1, . . . , md}. The data can be represented by n binary vectors xi = (xjh

i ; j =

32



1, . . . , d; h = 1, . . . , mj) (i = 1, . . . , n) where xjh
i = 1 if the object i belongs

to the category h of the variable j and 0 otherwise. Denoting m =
∑d

j=1mj

the total number of categories, the data are defined by the matrix x =
(x1, . . . ,xn) with n rows and m columns. Binary data can be seen as a
particular case of categorical data with d dichotomous variables, i.e. mj = 2
for any j = 1, . . . , d.

The latent class model assumes that the d categorical variables are in-
dependent given the latent variable. Formulated in mixture terms (Everitt
1984), each xi arises independently from a mixture of multivariate multino-
mial distributions defined by

f(xi|θ) =

K
∑

k=1

pkh(xi|αk) (76)

where pk is the mixing proportion (0 < pk < 1 for all k = 1, ..., K and
p1 + ... + pK = 1) of the kth component and where, for k = 1, . . . , K,

h(xi|αk) =

d
∏

j=1

mj
∏

h=1

(αjh
k )x

jh
i (77)

with αk = (αjh
k ; j = 1, . . . , d; h = 1, . . . , mj). In (77), we recognize the prod-

uct of d conditionally independent multinomial distributions of parameters
α

j
k. The mixture parameters is denoted by θ = (p1, . . . , pK−1,α1, . . . ,αK).
This model may present problems of identifiability (see for instance Good-

man 1974) but most situations of interest are identified.

6.2 Five multinomial models

In order to propose more parsimonious models than the previous one, we
present the following extension of the parameterization of Bernoulli distribu-
tions used by Celeux and Govaert (1991) for clustering and also by Aitchison
and Aitken (1976) for kernel discriminant analysis.

The basic idea is to impose the vector α
j
k = (αj1

k , . . . , α
jmj

k ) to take the

form (βj
k, . . . , β

j
k, γ

j
k, β

j
k, . . . , β

j
k) with γj

k > βj
k. Since

∑mj

h=1 α
jh
k = 1, we have

(mj−1)βj
k+γj

k = 1 and, consequently, βj
k = (1−γj

k)/(mj−1). The constraint
γj
k > βj

k becomes finally γj
k > 1/mj. Then, the vector α

j
k can be broken up

into the two following parameters:
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• aj
k = (aj1k , . . . , a

jmj

k ) where ajhk = 1 if h corresponds to the rank of γj
k

(in the following, this rank will be noted h(k, j)), 0 otherwise;

• εjk = 1−γj
k which corresponds to the probability that the data xi arising

from the kth component are such that x
jh(k,j)
i 6= 1.

In other words, the multinomial distribution associated to the jth variable
of the kth component is reparameterized by a center aj

k and the dispersion
εjk around this center. Thus, it allows us to give an interpretation similar to
the center and the variance matrix used for continuous data in the Gaussian
mixture context.

Since, the relationship between the initial parameterization and the new
one is given by:

αjh
k =

{

1− εjk if h = h(k, j)

εjk/(mj − 1) otherwise,
(78)

Equation (77) can be rewritten with ak = (aj
k; j = 1, . . . , d) and εk = (εjk; j =

1, . . . , d)

h(xi|αk) = h̃(xi|ak, εk) =
d
∏

j=1

mj
∏

h=1

(

(1− εjk)
ajh
k (εjk/(mj − 1))1−ajh

k

)xjh
i

. (79)

In the following, this model will be denoted by [εjk]. In this context, three
other models can be easily deduced. We note [εk] the model where εjk is
independent of the variable j, [εj] the model where εjk is independent of the
component k and, finally, [ε] the model where εjk is independent of both the
variable j and the component k. In order to maintain some unity in the
notation, we will denote also [εjhk ] the most general model introduced at the
previous section. The number of free parameters associated to each models
is given in Table 3.

6.3 M step for each of the five models

The M step has to be detailed for each of the five models presented above.
Using notation already defined in the Gaussian mixture context, the M step
consists of maximizing in θ the function:

F (θ|x, c) =
n
∑

i=1

K
∑

k=1

cik ln [pkh(xi|αk)] (80)
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model number of parameters
[ε] δ + 1
[εj] δ + d
[εk] δ +K

[εjk] δ +Kd

[εjhk ] δ +K
∑d

j=1(mj − 1)

Table 3: Number of free parameters of the five multinomial models. We have
δ = K − 1 in the case of free proportions and δ = 0 in the case of equal
proportions.

for fixed classification matrix c (obtained at the previous E or S or C steps)
and with data matrix x. We now detail the m.l. estimations of the parameters
α1, . . . ,αK of the multinomial distributions. In the following, we adopt the
notation ejhk = nk −

∑

i cikx
jh
i and also h(k, j) for the value of h which

minimizes ejhk . In other terms, h(k, j) still denotes the rank of the modality
which occurs the most frequently for a given variable j and a given component
k. For convenience, we use also ejk = e

jh(k,j)
k .

Model [εjhk ]

αjh
k = 1− ejhk /nk. (81)

Model [εjk]

αjh
k =

{

1− ejk/nk if h = h(k, j)

ejk/(nk(mj − 1)) otherwise.
(82)

Model [εk]

αjh
k =

{

1− (
∑

j e
j
k)/(nkd) if h = h(k, j)

(
∑

j e
j
k)/(nkd(mj − 1)) otherwise.

(83)

Model [εj]

αjh
k =

{

1− (
∑

k e
j
k)/n if h = h(k, j)

(
∑

k e
j
k)/(n(mj − 1)) otherwise.

(84)
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Model [ε]

αjh
k =

{

1− (
∑

j,k e
j
k)/(nd) if h = h(k, j)

(
∑

j,k e
j
k)/(nd(mj − 1)) otherwise.

(85)

Using the new parameterization In fact, we could prefer to express the
M step with the new parameterization ak and εk (for models [εjk], [εk], [ε

j ]
and [ε]) instead of αk, in particular for the meaningful interpretation of the
terms ak and εk. In this case, it is easy to deduce expressions of ak and εk
from the expressions given above for αk with the following relationships:

ajhk =

{

1 if h = h(k, j)
0 otherwise,

(86)

and
εjk = 1− α

jh(k,j)
k . (87)

7 The Gaussian-multinomial mixture model

7.1 Definition

We consider now that data are n objects described by d variables mixing d(q)

quantitative variables and d(c) categorical variables with respective number of
categories m1, . . . , md(c). Thus, X = R

d(q)×{1, . . . , m1}× . . .×{1, . . . , md(c)},

with d = d(q) + d(c). Each individual can be written xi = (x
(q)
i ,x

(c)
i ), where

x
(q)
i ∈ R

d(q) and x
(c)
i ∈ {1, . . . , m1} × . . .× {1, . . . , md(c)} denote respectively

the quantitative and the categorical parts of xi.
The latent class model (Everitt 1984) is assumed for all d variables which

means that the d variables (quantitative and categorical) are independent
given the latent variables. Restricting not only categorical variables but also
quantitative ones to be independent avoids to favor information provided
by quantitative variables in the estimation process. Formulated in mixture
terms, each xi arises independently from a mixture of combined multivariate
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diagonal Gaussian and multivariate distribution defined by

f(xi|θ) =
K
∑

k=1

pkh(xi|λk) (88)

=

K
∑

k=1

pk

{

h(q)(x
(q)
i |µk) + h(c)(x

(c)
i |αk)

}

, (89)

where

• λk = (µk, Bk,αk).

• h(q)(·|µk, Bk) is a d(q) dimensional Gaussian density of center µk and
diagonal variance matrix Bk (see Section 5.1).

• h(c)(·|αk) is a d(c) dimensional multivariate distribution of parameter
αk (see Section 6.1).

The whole mixture parameter is denoted by

θ = (p1, . . . , pK−1,µ1, . . . ,µK , B1, . . . , BK ,α1, . . . ,αK).

7.2 Thirty combined Gaussian-multinomial models

In order to propose more parsimonious models than the previous ones, one
may combine the four Gaussian diagonal models [λB], [λkB], [λBk], [λkBk]
or the two spherical Gaussian models [λI], [λkI] respectively defined in Sec-
tion 5.2.3 and 5.2.4 with the five multivariate multinomial models [ε], [εj],
[εk], [ε

j
k], [ε

jh
k ] defined in Section 6.2. It leads to considering 30 different com-

bined Gaussian-multinomial models. For instance, the Gaussian-multinomial
model denoted by [λB, ε] indicates a combination of the Gaussian model [λB]
and of the multinomial model [ε], and so on.

7.3 M step for the 30 models

The M step has to be performed independently for the multivariate Gaussian
and for the multivariate multinomial distributions:

• For the Gaussian part, use the M step in Section 5.3 to estimate all µk

and Bk which correspond to the Gaussian model at hand.

• For the multinomial part, use the M step in Section 6.3 to estimate all
αk which correspond to the multinomial model at hand.
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