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Writing R Extensions in Rust
by David B. Dahl [Version 0.1.38 ]

Abstract This paper complements “Writing R Extensions,” the official guide for writing R extensions,
for those interested in developing R packages using Rust. It highlights idiosyncrasies of R and Rust
that must be addressed by any integration and describes how to develop Rust-based packages which
comply with the CRAN Repository Policy. This paper introduces the cargo framework, a transparent
Rust-based API which wraps commonly-used parts of R’s API with minimal overhead and allows a
programmer to easily add additional wrappers.

Introduction

Computationally-intensive R packages are typically implemented using C, Fortran, or C++ for the
sake of performance. The R Core Team maintains a document called “Writing R Extensions” which
describes R’s API for creating packages. This paper supplements that official guide by (i) discussing
issues involved in the integration of R and Rust and (ii) providing an R package to help those interested
in writing R packages based on Rust.

While both R and Rust provide foreign function interfaces (FFI) based on C (Kernighan and Ritchie,
2006), each language has its own idiosyncrasies that require some care when interfacing with the other.
Packages published on CRAN (https://cran.r-project.org/) are subject to the CRAN Repository
Policy. This paper also describes how to avoid pitfalls which may prevent acceptance of a Rust-based
package on CRAN or waste time of CRAN maintainers and package contributors.

The paper introduces the newly-released cargo (Dahl, 2021) package which provides a framework
for developing CRAN-compliant R packages using Rust and shows how to make Rust-based wrappers
for R’s C API. It is important to emphasize that a package developed with the cargo framework does
not depend on the cargo package, either in source or binary form. That is, the cargo package produces
an R package structure with all the necessary Rust code and scripts such that the package is then
independent of the cargo package. Developers can then extend the framework for their own purposes
within the generated package structure. Further, although a source package will obviously depend on
Rust, there are no runtime dependencies on Rust or any other libraries, resulting in a binary package
that is easy for others to use. Separate from package development, the cargo package also allows Rust
code to be directly embedded in an R script.

One of the purposes of this paper is to encourage developers to consider Rust for writing high-
performance R packages. A second purpose is to discuss technical issues which arise when interfacing
R and Rust and to document the design choices of the cargo framework. The cargo framework seeks
to: (i) provide a Rust interface for commonly used parts of the R API, (ii) show the developer how
they can easily extend the framework to cover other parts of the R API, (iii) minimize the runtime
overhead when interfacing between R and Rust, and (iv) be as transparent as possible on how the
framework interfaces R and Rust. This paper assumes some familiarity with “Writing R Extensions”
and package development using R’s API. The paper also assumes some familiarity with Rust. The
interested reader is directed to a plethora of resources online, including “The Rust Programming
Language” (https://doc.rust-lang.org/stable/book/).

The paper is organized as follows. A brief history on Rust and its use in R is outlined. Setting
up the Rust toolchain for R package development is discussed next, followed by an overview of
the various parts of an R package using the cargo framework. Low-level and high-level interfaces
between R and Rust are introduced. Threading issues and seeding a random number generator are
also discussed. Defining a R function by embedding Rust code directly in an R script is shown. Finally,
the paper ends with benchmarks and concluding comments.

Background on Rust and its use in R

Rust (https://www.rust-lang.org/) is a statically-typed, general-purpose programming language
which emphasizes memory safety without compromising runtime performance. Its memory safety
guarantees (against, e.g., buffer overflows, dangling pointers, and race conditions) are achieved
through the language’s design and the compiler’s borrow checker. This avoids the memory and
CPU overhead inherent in garbage-collected languages. Concurrent programming is straightforward
in Rust, where most concurrency errors are compile-time errors rather than difficult-to-reproduce
runtime errors. Developer productivity is aided by rustup (toolchain installer and upgrader), Cargo
(package manager for downloading dependencies, publishing code, and building dependencies and
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code), Rustfmt (automatic code formatter), and Clippy (linting tool to catch common mistakes and
improve performance and readability).

Rust first appeared in 2010 as a Mozilla project, had its first stable release in 2015, and has been
rated the “most loved programming language” in the Stack Overflow Annual Developer Survey
(https://insights.stackoverflow.com/survey/) every year since 2016. The Rust Foundation was
formed in 2021 with the founding members Amazon Web Services, Google, Huawei, Microsoft, and
Mozilla. Google recently announced support for Rust within Android Open Source Project (AOSP) as
an alternative to C and C++. Experimental Rust support for developing subsystems and drivers for
the Linux kernel has been submitted. Linus Torvalds has been quoted on several occasions as being
welcoming of the possibility of using Rust alongside C for kernel development.

Members of the R community have also been interested in Rust. The first major effort to integrate
R and Rust appears to have started in early 2016 with the now-deprecated https://github.com/rustr
project. The first Rust-based package appeared on CRAN in 2018 with Jeroen Ooms’ gifski package
(Ooms, 2021), with an accompanying presentation at the 2018 European R Users Meeting (eRum2018)
describing how a developer can use Rust code in an R package. The approach requires the package
developer to write C code which then calls Rust code. Under this approach, the Rust code itself does
not have access to R’s API.

In 2019, my salso package (Dahl et al., 2021) was the second Rust-based package on CRAN. It
followed gifski’s approach of writing C code that calls Rust code. Around the time that the third
Rust-based package baseflow (Pelletier et al., 2021) was accepted to CRAN, the CRAN maintainers
noted that gifski, salso, and baseflow violated the policy that “packages should not write ... on the file
system apart from the R session’s temporary directory” since Cargo caches downloaded dependencies
by default and uses all available CPU cores. This inspired me in early 2021 to write the cargo package
to facilitate using Cargo in conformance with CRAN’s policies and to download precompiled static
libraries in case the required version of the Rust toolchain is not available on a particular CRAN build
machine. It also became clear that writing C code that glues the R and Rust code is tedious, error prone,
and difficult to refactor. As such, I expanded the cargo package to facilitate developing Rust-based
packages that avoid the need to write the C glue code, allowing R to call directly into Rust code and
allowing Rust code to callback into R’s API directly. In 2021, CRAN accepted caviarpd (Dahl et al.)
as another package developed using the cargo framework and the salso package was ported to the
framework.

Another exciting project that interfaces R and Rust is the extendr project (https://github.com/
extendr). Andy Thomason started working on the extendr project in 2020, attracting Claus Wilke
and several other developers. The extendr project seeks not only to facilitate writing R packages in
Rust, but also to embed the R interpreter in a Rust program. In 2021, the project released the rextendr
package (Wilke et al., 2021) on CRAN to facilitate developing Rust-based packages. In 2021, the
baseflow package was ported to use rextendr, and the string2path package (Yutani, 2021) became
another package on CRAN developed with the aid of rextendr.

Those interested in interfacing Rust and R should keep an eye on the extendr project as it continues
to evolve. The project is working to provide extensive automatic conversion between R types (e.g.,
vectors, lists, data.frames, environments, etc.) and Rust types, including attempts to handle thorny
issues such as R’s missing value NA and R’s fluidity in vectors of storage mode ‘double’ and ‘integer’.
It aspires to eventually provide a Rust interface for all of the functionality provided by the R API to
alleviate the Rust developer from having to dive into the details of R’s API.

The rextendr package and the cargo package both seek to provide functionality to develop R
packages which can call directly into Rust and call back to R from Rust. The extendr project is hosted
on public GitHub repositories and is under rapid development; their project shows what is possible
and their open discussion influenced some of my choices for the cargo package. The rextendr package
and the cargo package address various technical issues differently and choose different design trade-
offs. The advantage of the cargo package is its transparency and extendability, whereas the benefit
of the rextendr package is that it provides many behind-the-scenes type conversions and aims to be
more comprehensive. The lean nature of the cargo framework makes it simple to understand how R
and Rust interface.

Installing the Rust toolchain

Developing Rust-based R packages requires the installation of several tools. The first step is to install
the usual toolchain bundle to compile C/C++/Fortran packages for the chosen operating system.
For example, on Windows, install Rtools (https://cran.r-project.org/bin/windows/Rtools/). On
MacOS, follow the instructions here: https://mac.r-project.org/tools/.

Install cargo from CRAN using install.packages("cargo") and run cargo::setup_rust(). This
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function downloads the rustup (https://rustup.rs) tool chain installer, runs it, and adds all the
targets listed by cargo::target(TRUE) to prepare for cross compiling Rust static libraries.

Rust has a six-week release cycle and the Rust toolchain is easily upgraded by running ‘rustup
update’ at the terminal. Incompatible changes are opt-in only, so new releases are always guaranteed
to run old code. Because there are immediate benefits and no costs to upgrading, Rust developers
frequently develop against the latest Rust version to take advantage of new features, optimizations,
and bug fixes.

Rust’s rapid release cycle, however, presents challenges when submitting Rust-based packages
to CRAN, as a CRAN build server may not have a recent version of the Rust toolchain. Moreover,
the toolchain may not even be available on a particular CRAN build machine. A solution to this
problem is to host precompiled static libraries, which is a common practice for packages unrelated
to Rust. (See, for example, https://github.com/rwinlib.) The cargo framework provides tools to
cross compile static library for the Rust component of an R package and to download them when a
sufficient version of the Rust toolchain cannot be found during installation. Compiling from source
is completely supported by the cargo framework if the Rust toolchain meets the minimum version
specified in the package’s ‘DESCRIPTION’ file.

Overview of package development using the cargo framework

The cargo package facilitates the development of R packages based on Rust. Development starts
by creating a new package using, for example, cargo::new_package("/path/to/package/foo") to
generate the package foo at the filesystem path ‘/path/to/package/’. If using RStudio, this can be
accomplished using "File" -> "New Project..." -> "New Directory" -> "R Package Using Rust and the
’cargo’ Framework". This generates and installs a complete working package that developers can
modify for their own needs.

The directory structure of the new foo package is:

foo
DESCRIPTION
INSTALL
LICENSE
NAMESPACE
R

convolve2.R
myrnorm.R
rustlib.R
zero.R

man ...
src

Makevars
Makevars.win
rustlib

Cargo.toml
roxido ...
roxido_macro ...
src

lib.rs
registration.rs

shim.c
tools

cargo.R
staticlib.R

Several of the resulting files and directories are specific to packages developed with the cargo frame-
work. The ‘src/Makevars’ and ‘src/Makevars.win’ direct R to use the ‘tools/staticlib.R’ script to compile
the static Rust library defined in ‘src/rustlib’ or, as a fallback, to download a precompiled static li-
brary. The download URL needs to be provided in the ‘tools/staticlib.R’ script. These static libraries
can built by the cargo::cross_compile function. Notice that the ‘DESCRIPTION’ file has an entry
‘SystemRequirements: Cargo (>= 1.54) for installation from sources: see INSTALL file’. The
minimum required Cargo version should be updated and the developer can determine this using
cargo-msrv (https://crates.io/crates/cargo-msrv). The ‘tools/cargo.R’ script finds and runs the
Cargo package manager according to CRAN policies by, for example, using no more than two CPU
threads and downloading dependencies to a temporary directory. Unfortunately, the dependencies
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must then be redownloaded and recompiled every time the package is reinstalled, which is a hassle
during package development. To avoid these limitations on a local development machine, the package
developer can add the followings to their personal ‘.Rprofile’ file:

Sys.setenv(R_CARGO_SAVE_CACHE="TRUE")
Sys.setenv(R_CARGO_BUILD_JOBS="0")

As an aid to other Rust-based packages not using the cargo framework, the functionality provided by
the ‘tools/cargo.R’ script is also available as the run function in the cargo package.

There are several calls to the .Call function among the scripts in the ‘R’ directory. The function in
‘R/myrnorm.R’, for example, has .Call(.myrnorm,n,mean,sd) which calls the Rust function myrnorm
defined in ‘src/rustlib/src/lib.rs’:

1 mod registration;
2 use roxido::*;
3

4 #[roxido]
5 fn myrnorm(n: Rval, mean: Rval, sd: Rval) -> Rval {
6 unsafe {
7 use rbindings::*;
8 use std::convert::TryFrom;
9 let (mean, sd) = (Rf_asReal(mean.0), Rf_asReal(sd.0));

10 let length = isize::try_from(Rf_asInteger(n.0)).unwrap();
11 let vec = Rf_protect(Rf_allocVector(REALSXP, length));
12 let slice = Rval(vec).slice_double().unwrap();
13 GetRNGstate();
14 for x in slice { *x = Rf_rnorm(mean, sd); }
15 PutRNGstate();
16 Rf_unprotect(1);
17 Rval(vec)
18 }
19 }

Notice that the myrnorm function has the #[roxido] attribute and takes three arguments n, mean, and
sd, all of type Rval, and returns a value of type Rval. The #[roxido] attribute is a procedural macro
defined in ‘src/rustlib/roxido_macro/src/lib.rs’ which adds the qualifiers #[no_mangle] extern "C" when
compiling to tell the Rust compiler to make the myrnorm function callable directly from R. The attribute
also ensures that all arguments are of type Rval and that the return type is Rval. The #[roxido]
attribute also wraps the body of the function in a call to Rust’s std::panic::catch_unwind since
unwinding from Rust code into foreign code is undefined behavior and likely crashes R. When a panic
is caught, it is turned into an R error which gives the corresponding message from Rust and the line
number of the panic. The package developer is encouraged to study the definition of the #[roxido]
attribute in ‘src/rustlib/roxido_macro/src/lib.rs’ to better understand the interface between R and Rust.

When a developer wants to make another Rust function callable by R, say a function named
bar taking two arguments x and y, the developer adds the .Call(.bar,x,y) in a script under the
‘R’ directory of the package and then runs cargo::register_calls("/path/to/package/foo"). This
automatically regenerates the ‘src/rustlib/src/registration.rs’ file and does two things. First, the updated
file provides a stub for a Rust function bar with arguments x and y in a commented-out block. This
stub can then be copied to the ‘src/rustlib/src/lib.rs’ file and the function can be implemented. Second,
code is generated to register functions when R loads the shared library. Again, the package developer
is encouraged to study the ‘src/rustlib/src/registration.rs’ for examples on calling R’s API from Rust.

Low-level interface to R’s API

The myrnorm function in Rust illustrates directly using R’s API in Rust. Line 7 of the listing is ‘use
rbindings::*’, which provides direct access to R’s API through Rust bindings. These are automatically
generated by the bindgen utility (https://rust-lang.github.io/rust-bindgen/) from the following
R header files: ‘Rversion.h’, ‘R.h’, ‘Rinternals.h’, ‘Rinterface.h’, ‘R_ext/Rdynload.h’, and ‘Rmath.h’, although
only those definitions and functions that are documented to be part of R’s API (as specific by “Writing
R Extensions”) should be used. The documentation for the Rust bindings can be browsed using the
cargo::api_documentation function or by executing ‘cargo doc --open’ when in the ‘src/rustlib/roxido’
directory. Note that most of the functions in the rbindings module require an SEXP value, i.e., a pointer
to R’s internal SEXPREC structure. The Rval is defined as ‘pub struct Rval(pub SEXP)’, a newtype
pattern that wraps the SEXP value. The newtype pattern provide type safety and encapsulation, which

https://rust-lang.github.io/rust-bindgen/
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we utilize in the high-level interface described in the next section. Because of zero-cost abstraction, the
Rust compiler generates code as if SEXP were used directly. The upshot is that, when calling R API
functions, the SEXP must be extracted from an Rval value, e.g., if mean is an Rval, use mean.0 to extract
its SEXP, as in line 9. Conversely, when returning from a function marked with #[roxido] attribute,
wrap the SEXP value x in Rval(x), as in line 17.

When accessing an R API function from Rust, care should be taken so that the R function does
not throw an error. If Rust code calls an R function that throws an error, a long jump occurs over
Rust stack frames, which prevents Rust from doing its usual freeing of heap allocations, resulting in a
memory leak. For example, before calling REAL(x) to receive a pointer of type *mut f64 (i.e., *double
in C), the developer should check that the storage mode of x is indeed ‘double’ by checking against
Rf_isReal(x). If not, a long jump will occur when calling REAL(x).

Care must also be taken when calling R API functions that might catch a user interrupt (e.g,
pressing Ctrl-C or hitting the stop button in RStudio) because an interrupt also produces a long jump
and leaks memory. One R API function that catches interrupts, for example, is the Rprintf function
for printing to R’s console.

High-level interface wrapping R’s API

To avoid the pitfalls of R API functions throwing errors or catching interrupts when called from Rust,
the cargo package also provides a high-level interface defined in the r module. This high-level interface
also alleviates the developer from deciding when results from R API functions should be protected
from the R’s garbage collection and the necessary bookkeeping involved in calling the Rf_unprotect
function. Finally, the high-level interface provides a more idiomatic API for Rust developers. The
high-level interface is not a comprehensive wrapper over R’s API, but it covers common use cases and
the developer can easily expand it by adding to the ‘src/rustlib/roxido/src/r.rs’ in the package. That is, the
developer does not need to wait for the release of a new version of the cargo package. The high-level
interface provides a check_user_interrupt function to test whether the user has tried to interrupt
execution. The rprintln! macro behaves just like Rust’s standard println! macro, but prints to the
R console and returns true if the user interrupted. Much of the interface is provided by associated
functions for the Rval structure. See the API documentation for details.

The package generated by the cargo::new_package function provides two examples of the high-
level interface. These are translations of examples in “Writing R Extensions”. Consider first the
convolve2 function from Section 5.10.1 “Calling .Call”. The translation is provided in ‘src/rustlib/src/lib.rs’
and shown below.

21 #[roxido]
22 fn convolve2(a: Rval, b: Rval) -> Rval {
23 let (a, xa) = a.coerce_double(&mut pc).unwrap();
24 let (b, xb) = b.coerce_double(&mut pc).unwrap();
25 let (ab, xab) = Rval::new_vector_double(a.len() + b.len() - 1, &mut pc);
26 for xabi in xab.iter_mut() { *xabi = 0.0 }
27 for (i, xai) in xa.iter().enumerate() {
28 for (j, xbj) in xb.iter().enumerate() {
29 xab[i + j] += xai * xbj;
30 }
31 }
32 ab
33 }

Notice on lines 23 and 24 the calls to Rval’s coerce_double method. The developer is encouraged to
read the definition of this method in ‘src/rustlib/roxido/src/r.rs’, but the gist of the method is to check R’s
type of the Rval and convert it to R’s storage mode ‘double’, if needed and if possible. The method
returns either a tuple giving a (potentially-new) Rval and an f64 slice into it, or an error. If the
developer is confident that the method will not fail, the developer can simply call the unwrap method,
as in lines 23 and 44, but more formal error handling can be implemented in the usual Rust manner. If
unwrap is called on an error message, the code will panic and a helpful message regarding the location
of the panic is displayed in the R console. No memory leak occurs and the R session is still valid. Thus,
panics in the cargo framework are controlled events.

In contrast to the coerce_double method, a slice into R’s memory for vectors of doubles, inte-
gers, and logicals can be obtained without a potential memory allocation using x.slice_double(),
x.slice_integer(), and x.slice_logical() when x is an Rval. In any case, these slices are views
into R’s internal memory. Care should be taken when dealing with R’s special values. For example, R’s
NA value for an element of an ‘integer’ vector corresponds to Rust’s i32::MIN (which is not a special
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value in Rust). So, for example, NA_integer_ * 0L in R equals NA_integer_, but it equals 0 in Rust.
Associated functions, such as Rval::is_na_integer, are provided to test against R’s special values.
See Section 5.10.3 “Missing and special values” in “Writing R Extensions” for a discussion of this issue.

Notice the argument to the coerce_double method on lines 23 and 24 is &mut pc. The wrapper
code provided by the #[roxido] attribute includes let mut pc = Pc::new(). Many of the functions
take a shared mutable reference to a Pc structure. The purpose of the Pc structure is to handle the
bookkeeping associated with Rf_protect and Rf_unprotect calls related to R’s garbage collection.
It has a single public method protect which takes an SEXP, calls Rf_protect on it, increments an
interval counter, and returns the SEXP. When an instance of the Pc structure goes out of scope, the
Rust compiler automatically inserts a call to its associated drop function which calls Rf_unprotect(x)
using its interval counter x. Not only does the developer not need to manually track the number of
protected items, the developer does not need to worry about when a value should be protected. If
the method requires a shared mutable reference to a Pc, then protection is needed and automatically
handled by the function and not the developer.

Now consider the zero function described in Section 5.11.1 “Zero-finding” of “Writing R Ex-
tensions”. The translation to the cargo framework is provided in the package generated by the
new_package function. The code is provided in ‘src/rustlib/src/lib.rs’ and shown below. As with the
previous convolve2 function, this is a “drop-in” replacement for the function defined in “Writing R
Extensions”.

35 #[roxido]
36 fn zero(f: Rval, guesses: Rval, stol: Rval, rho: Rval) -> Rval {
37 let slice = guesses.slice_double().unwrap();
38 let (mut x0, mut x1, tol) = (slice[0], slice[1], stol.as_f64());
39 if tol <= 0.0 { panic!("non-positive tol value"); }
40 let symbol = Rval::new_symbol("x", &mut pc);
41 let feval = |x: f64| {
42 let mut pc = Pc::new();
43 symbol.assign(Rval::new(x, &mut pc), rho);
44 f.eval(rho, &mut pc).unwrap().as_f64()
45 };
46 let mut f0 = feval(x0);
47 if f0 == 0.0 { return Rval::new(x0, &mut pc); }
48 let f1 = feval(x1);
49 if f1 == 0.0 { return Rval::new(x1, &mut pc); }
50 if f0 * f1 > 0.0 { panic!("x[0] and x[1] have the same sign"); }
51 loop {
52 let xc = 0.5 * (x0 + x1);
53 if (x0 - x1).abs() < tol { return Rval::new(xc, &mut pc); }
54 let fc = feval(xc);
55 if fc == 0.0 { return Rval::new(xc, &mut pc); }
56 if f0 * fc > 0.0 { x0 = xc; f0 = fc; } else { x1 = xc; }
57 }
58 }

This example shows the creation of new R objects from Rust values (e.g., lines 40, 43, 47, etc.) and
extracting Rust values from R objects (e.g., 37, 38, and 44). Line 44 demonstrates evaluating an R
expression such that errors are caught rather than causing a long jump. Again, the full high-level API
can be browsed using the cargo::api_documentation function or by executing ‘cargo doc --open’
when in the ‘src/rustlib/roxido’ directory.

Miscellaneous: Threading issues and seeding a RNG

Rust supports “fearless concurrency,” making it safe and easy to harness the power of multiple CPU
cores. One should bear in mind, however, that R’s internals are fundamentally designed for single-
threaded access. Any callbacks into R (using the low-level or high-level interface) should come from
the same thread from which R originally called the Rust code.

R users expect to get reproducible results from simulation code when they use R’s set.seed
function. There are two options for Rust code to achieve this: (i) produce random numbers using
R’s API (as in the previous myrnorm example) or (ii) seed a Rust random number generator from
R’s random number generator. To aid with the second approach, the cargo framework provides the
random_bytes function.



7

Embedding Rust code in an R script

Beyond package development, the cargo package also supports defining functions by embedding Rust
code directly in an R script. This facilitates experimentation and avoids the need to set up a new R
package. The approach, however, loses the developer aids of an integrated development environment.
As such, it is only recommended to use this for small code snippets. To demonstrate, consider the
balanced linear assignment problem, a combinatorial optimization problem in which N workers are
assigned to N tasks such that the sum of costs of getting all tasks completed is minimized. Suppose
there are four workers and tasks and the cost matrix in R is as follows, with each row being the costs
of the four tasks for a particular worker.

cost_matrix <- matrix(c(
5, 9, 4, 6,
8, 7, 8, 6,
6, 7, 9, 3,
2, 3, 3, 1

), nrow=4, byrow=TRUE)

The Hungarian algorithm (Kuhn, 1955) solves the linear assignment problem and is implemented in
the RcppHungarian package (Silverman, 2019) on CRAN. The Jonker-Volgenant algorithm (Jonker
and Volgenant, 1987), however, is faster and available in the lapjv Rust crate (Dmytrenko, 2020). The
following code uses the rust_fn from the cargo package to define an R function based on embedded
Rust code utilizing the lapjv crate.

library("cargo")
lapjv <- rust_fn(weights, dependencies='lapjv = "0.2.0"', '

if !weights.is_square_matrix() || !weights.is_double_or_integer() {
panic!("The weights argument must be a square numeric matrix.");

}
let weights_vec = weights.coerce_double(&mut pc).unwrap().1.to_vec();
let n = weights.nrow();
let weights = lapjv::Matrix::from_shape_vec((n, n), weights_vec).unwrap();
let solution = lapjv::lapjv(&weights).unwrap().0;
let cost = lapjv::cost(&weights, &solution[..]);
let (pairs, slice) = Rval::new_matrix_integer(n, 2, &mut pc);
for (i, x) in slice[..n].iter_mut().enumerate() { *x = i as i32 + 1; }
let s = &mut slice[n..];
for (i, y) in solution.into_iter().enumerate() { s[y] = i as i32 + 1; }
let result = Rval::new_list(2, &mut pc);
result.names_gets(Rval::new(["cost", "pairs"], &mut pc));
result.set_list_element(0, Rval::new(cost, &mut pc));
result.set_list_element(1, pairs);
result

')
lapjv(cost_matrix)

The lapjv function takes one unnamed argument weights, which is passed to the embedded Rust
code as the variable weights of type Rval. This code depends on version 0.2.0 of the lapjv crate and is
automatically downloaded and compiled by Cargo because of the argument dependencies='lapjv
= "0.2.0"' in the call to the rust_fn function. Downloading and compiling the dependencies
can take several seconds, but subsequent compilations are very fast due to caching. For example,
on our machine, the first compilation took 12.95 CPU seconds and 6.57 elapsed seconds, whereas
recompilation of slightly changed code only took 1.81 CPU seconds and 0.97 elapsed seconds. This
caching persists between R sessions. When a function defined by rust_fn is garbage collected, its
associated shared library is automatically unloaded.

Running the code produces a list giving the total cost and a matrix which pairs each worker to a
task. Note that when the cost matrix is 1000 × 1000 of standard normal values, this implementation
takes only 0.068 seconds whereas the RcppHungarian package finds the same solution in 4.866
seconds, i.e., 70 times slower. The point is not that C++ is slower than Rust, rather that the choice of
algorithms can be important and that the cargo package makes it easy to pull in high quality Rust
code from others with little effort.

https://CRAN.R-project.org/package=RcppHungarian
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Benchmarks

Here the overhead of calling a Rust function from R using our cargo framework is investigated.
Benchmarks are shown against the rextendr framework and the standard mechanism for calling a
C function from R. For this benchmark, we use version 0.1.37 of cargo and version 0.2.0 of rextendr,
running in R version 4.1.0. An algorithm that executes quickly is purposefully used to benchmark
the overhead of calling into and returning from compiled code. Rust and C themselves are not
benchmarked here, but the reader is referred to The Computer Language Benchmarks Game (https:
//benchmarksgame-team.pages.debian.net/benchmarksgame/), which shows Rust beating GCC’s C
in about half of the benchmarks.

Consider various implementations to compute the Euclidean norm sqrt(sum(x^2)). Several
versions based on rextendr are provided to account for the following: (i) rextendr can automatically
convert Robj (its wrapper over an SEXP value) and many Rust types, and (ii) when defining embedded
functions, rextendr does not cache the lookup of the function pointer.

writeLines(con="f_C.c", "
#include <Rinternals.h>
SEXP f_C(SEXP x) {

int n = Rf_length(x); double *y = REAL(x); double ss = 0.0;
for ( int i=0; i<n; i++ ) ss += y[i];
return Rf_ScalarReal(sqrt(ss));

}")
system("R CMD SHLIB f_C.c")
dyn.load("f_C.so")
.f_C <- getNativeSymbolInfo("f_C", "f_C")$address
f_C <- function(x) .Call(.f_C, x)

f_cargo <- cargo::rust_fn(x, '
let ss = x.slice_double().unwrap().iter().fold(0.0, |s,z| s + (*z)*(*z));
Rval::new(ss.sqrt(), &mut pc)

')

rextendr::rust_function('fn f_rextendr1(x: Robj) -> Robj {
let ss = x.as_real_slice().unwrap().iter().fold(0.0, |s,z| s + (*z)*(*z));
Robj::from(ss.sqrt())

}')

rextendr::rust_function('fn f_rextendr2(x: &[f64]) -> f64 {
let ss = x.iter().fold(0.0, |s,z| s + (*z)*(*z));
ss.sqrt()

}')

.f1 <- getNativeSymbolInfo("wrap__f_rextendr1", "librextendr1")$address
f_rextendr1_cached <- function(x) .Call(.f1, x)

.f2 <- getNativeSymbolInfo("wrap__f_rextendr2", "librextendr2")$address
f_rextendr2_cached <- function(x) .Call(.f2, x)

x <- rnorm(10)
microbenchmark::microbenchmark(f_C(x), f_cargo(x), f_rextendr1(x), f_rextendr2(x),

f_rextendr1_cached(x), f_rextendr2_cached(x), times=1000000)

A summary of the performance is included below. Notice that the implementation based on cargo is
competitive with the C version and faster than the rextendr implementations.

Unit: nanoseconds
expr min lq mean median uq max neval

f_C(x) 349 504 616.3403 545 597 2329566 1e+06
f_cargo(x) 389 523 684.6221 563 625 54627019 1e+06

f_rextendr1(x) 4918 5818 6282.8506 6011 6226 3925556 1e+06
f_rextendr2(x) 3789 4504 4941.8917 4707 4918 6396105 1e+06

f_rextendr1_cached(x) 4244 5197 5606.6939 5391 5586 6669919 1e+06
f_rextendr2_cached(x) 3145 3849 4256.3246 4070 4278 6602903 1e+06

https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
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Summary

The hope is that this paper contributes to interest in developing R packages with Rust. The paper high-
lights idiosyncrasies of R and Rust that must be addressed by any integration. The cargo framework
provides a Rust interface for commonly used parts of the R API that can easily be extended to cover
other parts of the R API. The framework minimizes the runtime overhead and seeks to be transparent
on how it interfaces R and Rust.

Bibliography

D. B. Dahl. cargo: Run Cargo, the Rust Package Manager, 2021. URL https://CRAN.R-project.org/
package=cargo. R package version 0.1.37. [p1]

D. B. Dahl, J. Andros, and J. B. Carter. caviarpd: Cluster Analysis via Random Partition Distributions. URL
https://CRAN.R-project.org/package=caviarpd. R package version 0.2.17. [p2]

D. B. Dahl, D. J. Johnson, and P. Müller. salso: Search Algorithms and Loss Functions for Bayesian Clustering,
2021. URL https://CRAN.R-project.org/package=salso. R package version 0.2.23. [p2]

A. Dmytrenko. Linear Assignmment Problem solver using Jonker-Volgenant algorithm, 2020. URL https:
//crates.io/crates/lapjv. Rust crate version 0.2.0. [p7]

R. Jonker and A. Volgenant. A shortest augmenting path algorithm for dense and sparse linear
assignment problems. Computing, 38(4):325–340, 1987. [p7]

B. W. Kernighan and D. M. Ritchie. The C programming language. 2006. [p1]

H. W. Kuhn. The Hungarian method for the assignment problem. Naval research logistics quarterly, 2
(1-2):83–97, 1955. [p7]

J. Ooms. gifski: Highest Quality GIF Encoder, 2021. URL https://CRAN.R-project.org/package=gifski.
R package version 1.4.3-1. [p2]

A. Pelletier, V. Andréassian, and O. Delaigue. baseflow: Computes Hydrograph Separation, 2021. URL
https://CRAN.r-project.org/package=baseflow. R package version 0.13.2. [p2]

J. Silverman. RcppHungarian: Solves Minimum Cost Bipartite Matching Problems, 2019. URL https:
//CRAN.R-project.org/package=RcppHungarian. R package version 0.1. [p7]

C. O. Wilke, A. Thomason, M. M. Reimert, I. Kosenkov, H. Yutani, and M. Barrett. rextendr: Call Rust
Code from R using the ’extendr’ Crate, 2021. URL https://CRAN.R-project.org/package=rextendr.
R package version 0.2.0. [p2]

H. Yutani. string2path: Rendering Font into ’data.frame’, 2021. URL https://CRAN.R-project.org/
package=string2path. R package version 0.0.2. [p2]

David B. Dahl
Brigham Young University
Provo, Utah
University States of America
(ORCiD: 0000-0002-8173-1547)
dahl@stat.byu.edu

https://CRAN.R-project.org/package=cargo
https://CRAN.R-project.org/package=cargo
https://CRAN.R-project.org/package=caviarpd
https://CRAN.R-project.org/package=salso
https://crates.io/crates/lapjv
https://crates.io/crates/lapjv
https://CRAN.R-project.org/package=gifski
https://CRAN.r-project.org/package=baseflow
https://CRAN.R-project.org/package=RcppHungarian
https://CRAN.R-project.org/package=RcppHungarian
https://CRAN.R-project.org/package=rextendr
https://CRAN.R-project.org/package=string2path
https://CRAN.R-project.org/package=string2path
mailto:dahl@stat.byu.edu

	Writing R Extensions in Rust
	Introduction
	Background on Rust and its use in R
	Installing the Rust toolchain
	Overview of package development using the cargo framework
	Low-level interface to R's API
	High-level interface wrapping R's API
	Miscellaneous: Threading issues and seeding a RNG
	Embedding Rust code in an R script
	Benchmarks
	Summary


