
E. E. Holmes, M. D. Scheuerell, and E. J. Ward

Analysis of multivariate time
series using the MARSS package

version 3.11.4

December 14, 2021

NOAA Fisheries and USGS WA Cooperative Fish and
Wildlife Research Unit

Seattle, WA, USA

Holmes, E. E., M. D. Scheuerell and E. J. Ward. Analysis of multivariate
time-series using the MARSS package. Version 3.11.4. NOAA Fisheries,
Northwest Fisheries Science Center, 2725 Montlake Blvd E., Seattle, WA
98112. DOI: https://doi.org/10.5281/zenodo.5781847

Disclaimer: E. E. Holmes, E. J. Ward, and M. D. Scheuerell are U.S. federal
scientists employed by the U.S. National Marine Fisheries Service (EEH and
EJW) and U.S. Geological Society (MDS). The views and opinions presented
here are solely those of the authors and do not necessarily represent those of
our employer.

V

Preface

The initial motivation for our work with MARSS models was a collaboration
with Rich Hinrichsen. Rich developed a framework for analysis of multi-site
population count data using MARSS models and bootstrap AICb (Hinrich-
sen and Holmes, 2009). Our work (EEH and EJW) extended Rich’s frame-
work, made it more general, and led to the development of a parametric boot-
strap AICb for MARSS models, which allows one to do model-selection using
datasets with missing values (Ward et al., 2010; Holmes and Ward, 2010).
Later, we developed additional algorithms for simulation and confidence in-
tervals. Discussions with Mark Scheuerell led to an extensive revision of the
EM algorithm and to the development of a general EM algorithm for con-
strained MARSS models (Holmes, 2012). Discussions with Mark also led to a
complete rewrite of the model specification so that the package could be used
for MARSS models in general—rather than simply the form of MARSS model
used in our applications. Many collaborators have helped test the package; we
thank especially Yasmin Lucero, Kevin See, and Brice Semmens. Development
of the code into a R package would not have been possible without Kellie
Wills, who wrote much of the original package code outside of the algorithm
functions. Finally, we thank the participants of our MARSS workshops and
courses and the MARSS users who have contacted us regarding issues that
were unclear in the manual, errors, or suggestions regarding new applications.
Discussions with these users have helped us improve the manual and go in
new directions.

The application chapters were developed originally as part of workshops
on analysis of multivariate time-series data given at the Ecological Society of
America meetings since 2005 and taught by us along with Yasmin Lucero,
Stephanie Hampton, and Brice Semmens. The chapter on extinction estima-
tion and trend estimation was initially developed by Brice Semmens and later
extended by us for this user guide. The algorithm behind the TMU figure in
Chapter 7 was developed during a collaboration with Steve Ellner (Ellner and
Holmes, 2008). Later we further developed the chapters as part of a course we
teach on analysis of fisheries and environmental time-series data at the Uni-
versity of Washington. You can find online versions of our time-series analysis
course and an eBook from the course on our Applied Time Series Analysis
website http://atsa-es.github.io.

The authors are federal research scientists; EEH and EJW are with NOAA
Fisheries and MDS is with USGS (and University of Washington). This work
was conducted as part of our jobs with United States federal government
agencies. A CAMEO grant from the National Science Foundation and NOAA
Fisheries provided the initial impetus for the development of the package
as part of a research project with Stephanie Hampton, Lindsay Scheef, and
Steven Katz on analysis of marine plankton time series. During the initial
stages of this work, EJW was supported on a post-doctoral fellowship from the

http://atsa-es.github.io

VI

National Research Council and MDS was partially supported by a PECASE
award from the White House Office of Science and Technology Policy.

You are welcome to use the code and adapt it with full attribution. You
should use citation Holmes et al. (2012) for the {MARSS} package. It may not
be used in any commercial applications nor may it be copyrighted. Use of the
EM algorithm should cite Holmes (2012). Links to more code and publications
on MARSS applications can be found by following the links at our academic
websites:

• http://faculty.washington.edu/eeholmes

• http://faculty.washington.edu/scheuerl

• http://faculty.washington.edu/warde

http://faculty.washington.edu/eeholmes
http://faculty.washington.edu/scheuerl
http://faculty.washington.edu/warde

Contents

Part I The MARSS package

1 Overview . 3
1.1 What does the {MARSS} package do? . 4
1.2 Output: fitted values, residuals, predictions, plots etc 6
1.3 How to get started (quickly) . 6
1.4 Getting your data in right format . 6
1.5 Important notes about the algorithms . 7
1.6 Troubleshooting . 10
1.7 Other related packages . 11

2 The main package functions . 13
2.1 The MARSS() function: inputs . 13
2.2 The MARSS() function: outputs . 14
2.3 Core functions for fitting a MARSS model 14
2.4 Functions for a fitted marssMLE object . 15
2.5 Functions for marssMODEL objects . 16

3 Algorithms used in the {MARSS} package . 17
3.1 The full time-varying MARSS model . 17
3.2 Maximum-likelihood parameter estimation 18
3.3 Kalman filter and smoother . 19
3.4 The exact likelihood . 20
3.5 Parametric and innovations bootstrapping 21
3.6 Simulation and forecasting . 22
3.7 Model selection . 22

Part II Fitting models with {MARSS}

VIII Contents

4 The MARSS() function . 25
4.1 u, a and π model structures . 26
4.2 Q, R, Λ model structures . 28
4.3 B model structures . 29
4.4 Z model . 29
4.5 Default model structures . 31

5 Short Examples . 33
5.1 Fixed and estimated elements in parameter matrices 34
5.2 Different numbers of state processes . 35
5.3 Linear constraints . 44
5.4 Time-varying parameters . 45
5.5 Including inputs (or covariates) . 45
5.6 Printing and summarizing models and model fits 46
5.7 Tidy output . 47
5.8 Confidence intervals on a fitted model . 47
5.9 Vectors of just the estimated parameters 49
5.10 Kalman filter and smoother output . 49
5.11 Degenerate variance estimates . 50
5.12 Bootstrap parameter estimates . 53
5.13 Data simulation . 53
5.14 Bootstrap AIC . 54
5.15 Convergence . 54

6 Setting and searching initial conditions . 57
6.1 Fitting a model with a new set of initial conditions 57
6.2 Searching across initial values using a Monte Carlo routine . . . 62

Part III Applications

7 Count-based population viability analysis (PVA) using corrupted
data . 69
7.1 Background . 69
7.2 Simulated data with process and observation error 70
7.3 Maximum-likelihood parameter estimation 73
7.4 Probability of hitting a threshold Π(xd , te) 79
7.5 Certain and uncertain regions . 84
7.6 More risk metrics and some real data . 85
7.7 Confidence intervals . 86
7.8 Discussion . 88

Contents IX

8 Combining multi-site data to estimate regional population trends . . 89
8.1 Harbor seals in the Puget Sound, WA. 89
8.2 A single well-mixed population with i.i.d. errors 91
8.3 Single population with independent and non-identical errors . . 96
8.4 Two subpopulations, north and south . 97
8.5 Other population structures . 101
8.6 Discussion . 103

9 Identifying spatial population structure and covariance 105
9.1 Harbor seals on the U.S. west coast . 105
9.2 Question 1, How many distinct subpopulations? 107
9.3 Fit the different models . 110
9.4 Summarize the data support . 112
9.5 Question 2, Are the subpopulations independent? 113
9.6 Question 3, Is the Hood Canal independent? 117
9.7 Discussion . 118

10 Dynamic factor analysis (DFA) . 121
10.1 Overview of DFA . 121
10.2 The data . 124
10.3 Setting up the model for MARSS() . 125
10.4 Using model selection to determine the number of trends 130
10.5 Using varimax rotation to determine the loadings and trends . . 132
10.6 Examining model fits . 134
10.7 Adding covariates . 138
10.8 Discussion . 140

11 Analyzing noisy animal tracking data . 141
11.1 A simple random walk model of animal movement 141
11.2 Loggerhead sea turtle tracking data . 142
11.3 Estimate locations from the bad tag data 143
11.4 Estimate speeds for each turtle . 145
11.5 Using specialized packages to analyze tag data 149

12 Detection of outliers and structural breaks . 151
12.1 Background . 151
12.2 Different models for the Nile flow levels . 151
12.3 Observation and state residuals . 155
12.4 Discussion . 162

13 Incorporating covariates into MARSS models 163
13.1 Covariates as inputs . 163
13.2 Examples using plankton data . 163
13.3 Observation-error only model . 164
13.4 Process-error only model . 168
13.5 Both process- & observation-error model 170

X Contents

13.6 Including seasonal effects in MARSS models 171
13.7 Model diagnostics . 176
13.8 Covariates with missing values or observation error 177

14 Estimation of species interaction strengths . 183
14.1 Background . 183
14.2 Two-species example using wolves and moose 184
14.3 Some settings to improve performance when estimating B 190
14.4 Analysis a four-species plankton community 192
14.5 Stability metrics from estimated interaction matrices 203
14.6 Further information . 205

15 Combining data from multiple time series . 207
15.1 Overview . 207
15.2 Salmon spawner surveys . 208
15.3 American kestrel abundance indices . 211

16 Univariate dynamic linear models (DLMs) . 217
16.1 Overview of dynamic linear models . 217
16.2 Example of a univariate DLM . 218
16.3 Forecasting with a univariate DLM . 222

17 Multivariate linear regression . 229
17.1 Univariate linear regression . 229
17.2 Multivariate response example using longitudinal data 237
17.3 Discussion . 242

18 Lag-p MARSS models . 243
18.1 Background . 243
18.2 MAR(2) models . 244
18.3 MAR(p) models . 249
18.4 MARSS(p): models with observation error 250
18.5 Discussion . 252

19 Structural Time Series Models . 255
19.1 Univariate models . 255
19.2 Multivariate models . 267
19.3 Summary . 275

20 Comparison to the {KFAS} Package . 277
20.1 Nile River example . 277
20.2 Global temperature example . 301
20.3 Summary . 304

Contents XI

Part IV Appendices

A Package MARSS: Warnings and errors . 307

B Package MARSS: Object structures . 313

C Model specification in the core functions . 317
C.1 The fixed and free components of the model parameters 317
C.2 Examples . 317
C.3 Limits on the model forms that can be fit 320

D Textbooks and articles that use MARSS modeling for population
modeling . 321

References . 325

Part I

The MARSS package

1

Overview

MARSS stands for Multivariate Auto-Regressive(1) State-Space. The {MARSS}
package is an R package1 for estimating the parameters of linear MARSS mod-
els with Gaussian errors. This class of model is extremely important in the
study of linear stochastic dynamical systems, and these models are important
in many different fields, including economics, engineering, genetics, physics
and ecology (Appendix D). The model class has different names in differ-
ent fields, for example in some fields they are termed dynamic linear models
(DLMs) or vector autoregressive (VAR) state-space models. The {MARSS}
package allows you to easily fit time-varying constrained and unconstrained
MARSS models with or without covariates to multivariate time-series data
via maximum-likelihood using primarily an EM algorithm2.

A full MARSS model, with Gaussian errors, takes the form:

xt = Btxt−1 +ut +Ctct +Gtwt , where wt ∼ MVN(0,Qt) (1.1a)

yt = Ztxt +at +Dtdt +Htvt , where vt ∼ MVN(0,Rt) (1.1b)

x1 ∼ MVN(π,Λ) or x0 ∼ MVN(π,Λ) (1.1c)

The x equation is termed the state process and the y equation is termed the
observation process. Data enter the model as the y; that is the y is treated as
the data although there may be missing data. The ct and dt are inputs (aka,
exogenous variables, covariates or indicator variables). The Gt and Ht are also
typically inputs (fixed values with no missing values).

The bolded terms are matrices with the following definitions:

x is a m×T matrix of states. Each xt is a realization of the random variable
Xt at time t.

w is a m×T matrix of the process errors. The process errors at time t are
multivariate normal with mean 0 and covariance matrix Qt .

1 The curly brackets are used to denote an R package.
2 Fitting via the BFGS algorithm is also provided using R ’s optim() function, but
this is not the focus of the package.

4 1 Overview

y is a n×T matrix of the observations. Some observations may be missing.
v is a n×T column vector of the non-process errors. The observation errors

at time t are multivariate normal with mean 0 and covariance matrix Rt .
Bt and Zt are parameters and are m×m and n×m matrices.
ut and at are parameters and are m×1 and n×1 column vectors.
Qt and Rt are parameters and are g×g (typically m×m) and h×h (typically

n×n) variance-covariance matrices.
π is either a parameter or a fixed prior. It is a m×1 matrix.
Λ is either a parameter or a fixed prior. It is a m×m variance-covariance

matrix.
Ct and Dt are parameters and are m× p and n×q matrices.
c and d are inputs (no missing values) and are p×T and q×T matrices.
Gt and Ht are inputs (no missing values) and are m×g and n×h matrices.

In some fields, the u and a terms are routinely set to 0 or the model is
written in such a way that they are incorporated into B or Z. However, in other
fields, the u and a terms are the main objects of interest, and the model is
written to explicitly show them. We include them throughout our discussion,
but they can be set to zero if desired.

AR(p) models can be written in the above form by properly defining the x
vector and setting some of the R variances to zero; see Chapter 18. Although
the model appears to only include i.i.d. errors (vt and wt), in practice, AR(p)
errors can be included by moving the error terms into the state model. Simi-
larly, the model appears to have independent process (vt) and observation (wt)
errors, however, in practice, these can be modeled as identical or correlated
by using one of the state processes to model the errors with the B matrix set
appropriately for AR or white noise—although one may have to fix many of
the parameters associated with the errors to have an identifiable model. Study
the application chapters and textbooks on MARSS models (Appendix D) for
examples of how a wide variety of autoregressive models can be written in
MARSS form.

1.1 What does the {MARSS} package do?

Written in an unconstrained form3, a MARSS model can be written out as
follows. Two state processes (x) and three observation processes (y) are used
here as an example.

3 meaning all the elements in a parameter matrices are allowed to be different and
none constrained to be equal or related.

1.1 What does the {MARSS} package do? 5[
x1
x2

]
t
=

[
b11 b12
b21 b22

][
x1
x2

]
t−1

+

[
w1
w2

]
t
,

[
w1
w2

]
t
∼ MVN

([
u1
u2

]
,

[
q11 q12
q21 q22

])
y1

y2
y3


t

=

z11 z12
z21 z22
z31 z32

[x1
x2

]
t
+

v1
v2
v3


t

,

v1
v2
v3


t

∼ MVN

a1
a2
a3

 ,
r11 r12 r13

r21 r22 r23
r31 r32 r33


[

x1
x2

]
0
∼ MVN

([
π1
π2

]
,

[
ν11 ν12
ν21 ν22

])
or

[
x1
x2

]
1
∼ MVN

([
π1
π2

]
,

[
ν11 ν12
ν21 ν22

])
However not all parameter elements can be estimated simultaneously. Con-

straints are required in order to specify a model with a unique solution. The
{MARSS} package allows you to specify constraints by fixing elements in a
parameter matrix or specifying that some elements are estimated—and have
a linear relationship to other elements. Here is an example of a MARSS model
with fixed and estimated parameter elements:[

x1
x2

]
t
=

[
a 0
0 a

][
x1
x2

]
t−1

+

[
w1
w2

]
t
,

[
w1
w2

]
t
∼ MVN

([
0.1
u

]
,

[
q11 q12
q12 q22

])
y1

y2
y3


t

=

 d d
c c

1+2d +3c 2+3d

[x1
x2

]
t
+

v1
v2
v3


t

,

v1
v2
v3


t

∼ MVN

a1
a2
0

 ,
r 0 0

0 r 0
0 0 r


[

x1
x2

]
0
∼ MVN

([
π

π

]
,

[
1 0
0 1

])
Notice that some elements are fixed (in this case to 0, but could be any fixed
number), some elements are shared (have the same value), and some elements
are linear combinations of other estimated values (c, 1+ 2d + 3c and 2+ 3d
are linear combinations of c and d).

The {MARSS} package fits models via maximum likelihood. The pack-
age is unusual among packages for fitting MARSS models in that fitting is
performed via a constrained EM algorithm (Holmes, 2012) based on a vector-
ized form of Equation 1.1 (See Chapter 3 for the vectorized form used in the
algorithm). Although fitting via the BFGS algorithm is also provided using
method="BFGS" and the optim() function in R , the examples in this guide
use the EM algorithm primarily because it gives robust estimation for datasets
replete with missing values and for high-dimensional models with various con-
straints. However, there are many models/datasets where BFGS is faster and
we typically try both for problems. The EM algorithm is also often used to pro-
vide initial conditions for the BFGS algorithm (or an MCMC routine) in order
to improve the performance of those algorithms. In addition to the main model

6 1 Overview

fitting function, the {MARSS} package supplies functions for bootstrap and
approximate confidence intervals, parametric and non-parametric bootstrap-
ping, model selection (AIC and bootstrap AIC), simulation, and bootstrap
bias correction.

1.2 Output: fitted values, residuals, predictions, plots etc

MARSS models are used in many different ways and different users will want
different types of output. Some users will want the parameter estimates while
others want the smoothed states and others want to use MARSS models to
interpolate missing values and want the expected values of missing data.

The best way to find out how to get output is to type ?print.MARSS at
the command line after installing {MARSS}. The print help page discusses
how to get parameter estimates in different forms, the smoothed and filtered
states, all the Kalman filter and smoother output, all the expectations of y
(missing data), confidence intervals and bias estimates for the parameters,
and standard errors of the states. If you are looking only for Kalman filter
and smoother output, see the relevant section in Chapter 3 and see the help
page for the MARSSkf() function (type ?MARSSkf at the R command line).

You might also want to look at the tidy() and glance() functions which
will summarize commonly needed output from a MARSS() model fit. These
functions work as they do in the {broom} R package.

1.3 How to get started (quickly)

If you already work with models in the form of Equation 1.1, you can im-
mediately fit your model with the {MARSS} package. Install the {MARSS}
package and then type library(MARSS) at the command line to load the
package. Look at the Quick Start Guide and then skim through Chapter 5.
Appendix C also has many examples of how to specify different forms for your
parameter matrices.

1.4 Getting your data in right format

Your data need to be a matrix, not data frame, with time across the columns
(n×T matrix). Note a univariate or multivariate ts (time-series) object can
also be used and this will be converted to a n× T matrix. The {MARSS}
functions assume discrete time steps and you will need a column for each time
step. Replace any missing time steps with NA. Write your model down on
paper and identify which parameters correspond to which parameter matrices
in Equation 1.1. Call the MARSS() function (Chapter 4) using your data and
using the model argument to specify the structure of each parameter.

https://CRAN.R-project.org/package=MARSS/vignettes/Quick_Start.pdf

1.5 Important notes about the algorithms 7

1.4.1 Getting a ts object into the right form

A R ts object (time series object) stores information about the time steps
of the data and often seasonal information (the quarter or month). You can
pass in your data as a ts object and MARSS() will convert this to matrix form.
However if you have your data in ts form, then you may be using year and
season (quarter, month) as covariates to estimate trend and seasonality. Here
is how to get your ts into the form that MARSS() wants with a matrix of
covariates for season.

Univariate example. This converts a univariate ts object with year and
quarter into a matrix with a row for the response (here called Temp), year,
and quarter.

z = ts(rnorm(10), frequency = 4, start = c(1959, 2))

dat = data.frame(Yr = floor(time(z) + .Machine$double.eps),

Qtr = cycle(z), Temp=z)

dat = t(dat)

When you call MARSS(), dat["Temp",] is the data. dat[c("Yr","Qtr"),]
are your covariates.

Multivariate example. In this example, we have two temperature readings
and a salinity reading. The data are monthly.

z <- ts(matrix(rnorm(300), 100, 3), start = c(1961, 1),

frequency = 12, names=c("Temp1","Temp2","Sal"))

dat = data.frame(Yr = floor(time(z) + .Machine$double.eps),

Month = cycle(z), z)

When you call MARSS(), dat[c("Temp1","Temp2"),] are the data and your
covariates are dat[c("Yr","Month","Sal"),].

See the chapters that discuss seasonality for examples of how to model
seasonality. The brute force method of treating month or quarter as a factor
requires estimation of more parameters than necessary in many cases.

1.5 Important notes about the algorithms

Specification of a properly constrained model with a unique solution is the
responsibility of the user. {MARSS} includes a number of checks to catch
some cases of unsolvable models, but there are many othere cases where there
is no way to tell if you have specified an insufficiently constrained model—with
correspondingly an infinite number of solutions.

How do you know if the model is properly constrained? If you are using a
MARSS model form that is widely used, then you can probably assume that
it is properly constrained. If you go to papers where someone developed the
model or method, the issue of constraints necessary to ensure “identifiabil-
ity” will likely be addressed if it is an issue. Are you fitting novel MARSS

8 1 Overview

models? Then you will need to do some study on identifiability in this class
of models using textbooks (Appendix D). Often textbooks do not address
identifiability explicitly. Rather it is addressed implicitly by only showing a
model constructed in such a way that it is identifiable. In our work, if we
suspect identification problems, we will often first do a Bayesian analysis with
flat priors and look for oddities in the posteriors, such as ridges, plateaus or
bimodality.

All the EM code in the {MARSS} package is currently in native R . Thus
the model fitting is slow. The classic Kalman filter/smoother algorithm, as
shown in Shumway and Stoffer (2006, p. 331-335), is based on the origi-
nal smoother presented in Rauch (1963). This Kalman filter is provided in
function MARSSkfss, but the default Kalman filter and smoother used in the
{MARSS} package is based on the algorithm in Kohn and Ansley (1989) and
papers by Koopman et al. This Kalman filter and smoother is provided in the
{KFAS} package (Helske 2012). Table 2 in Koopman (1993) indicates that the
classic algorithm is 40-100 times slower than the algorithm given in Kohn and
Ansley (1989), Koopman (1993), and Koopman et al. (1999). The {MARSS}
package function MARSSkfas provides a translator between the model objects
in {MARSS} and those in {KFAS} so that the {KFAS} functions can be used.
MARSSkfas also includes a lag-one covariance smoother algorithm as this is not
output by the {KFAS} functions, and it provides proper formulation of the
priors so that one can use the {KFAS} functions when the prior on the states
is set at t = 0 instead of t = 1. Simply off-setting your data to start at t=2
and sending that value to tinit = 1 in the {KFAS} Kalman filter would not be
mathematically correct!

EM algorithms will quickly get in the vicinity of the maximum likelihood,
but the final approach to the maximum is generally slow relative to quasi-
Newton methods. On the flip side, EM algorithms are quite robust to initial
conditions choices and can be extremely fast at getting close to the MLE
values for high-dimensional models. The {MARSS} package also allows one
to use the BFGS method to fit MARSS models, thus one can use an EM
algorithm to “get close” and then the BFGS algorithm to polish off the esti-
mate. Restricted maximum-likelihood algorithms are also available for AR(1)
state-space models, both univariate (Staples et al., 2004) and multivariate
(Hinrichsen and Holmes, 2009). REML can give parameter estimates with
lower variance than plain maximum-likelihood algorithms. However, the algo-
rithms for REML when there are missing values are not currently available
(although that will probably change in the near future). Another maximum-
likelihood method is data-cloning which adapts MCMC algorithms used in
Bayesian analysis for maximum-likelihood estimation (Lele et al., 2007).

Missing values are seamlessly accommodated with the {MARSS} package.
Simply specify missing data with NAs. The likelihood computations are exact
and will deal appropriately with missing values. However, no innovations4

4 referring to the non-parametric bootstrap developed by Stoffer and Wall (1991).

1.5 Important notes about the algorithms 9

bootstrapping can be done if there are missing values. Instead parametric
bootstrapping must be used.

You should be aware that maximum-likelihood estimates of variance in
MARSS models are fundamentally biased, regardless of the algorithm used.
This bias is more severe when one or the other of R or Q is very small, and
the bias does not go to zero as sample size goes to infinity. The bias arises
because variance is constrained to be positive. Thus if R or Q is essentially
zero, the mean estimate will not be zero and thus the estimate will be biased
high while the corresponding bias of the other variance will be biased low.
You can generate unbiased variance estimates using a bootstrap estimate of
the bias. The function MARSSparamCIs() will do this. However be aware that
adding an estimated bias to a parameter estimate will lead to an increase in
the variance of your parameter estimate. The amount of variance added will
depend on sample size.

You should also be aware that mis-specification of the prior on the initial
states (π and Λ) can have catastrophic effects on your parameter estimates
if your prior conflicts with the distribution of the initial states implied by
the MARSS model. These effects can be very difficult to detect because the
model will appear to be well-fitted. Unless you have a good idea of what the
parameters should be, you might not realize that your prior conflicts.

The most common problems we have found with priors on x0 are the
following. Problem 1) The correlation structure in Λ (whether the prior is
diffuse or not) does not match the correlation structure in x0 implied by your
model. For example, you specify a diagonal Λ (independent states), but the
implied distribution has correlations. Problem 2) The correlation structure in
Λ does not match the structure in x0 implied by constraints you placed on π.
For example, you specify that all values in π are shared, yet you specify that
Λ is diagonal (independent).

Unfortunately, using a diffuse prior does not help with these two problems
because the diffuse prior still has a correlation structure and can still conflict
with the implied correlation in x0. One way to get around these problems is to
set Λ = 0 (a m×m matrix of zeros) and estimate π ≡ x0 only. Now π is a fixed
but unknown (estimated) parameter, not the mean of a distribution. In this
case, Λ does not exist in your model and there is no conflict with the model.
Be aware however that estimating π as a parameter is not always robust. If
you specify that Λ=0 and specify that π corresponds to x0, but your model
“explodes” when run backwards in time, you cannot estimate π because you
cannot get a good estimate of x0. Sometimes this can be avoided by specifying
that π corresponds to x1 so that it can be constrained by the data y1.

In summary, if the implied correlation structure of your initial states is
independent (diagonal variance-covariance matrix), you should generally be
ok with a diagonal and high variance prior or with treating the initial states as
parameters (with Λ = 0). But if your initial states have an implied correlation
structure that is not independent, then proceed with caution. ‘With caution’

10 1 Overview

means that you should assume you have problems and test how your model
fits with simulated data.

There is a large class of models in the statistical finance literature that
have the form

xt+1 = Bxt +Γηt

yt = Zxt +ηt

For example, ARMA(p,q) models can be written in this form. The MARSS
model framework in this package will not allow you to write models in that
form. You can put the ηt into the xt vector and set R = 0 to make models
of this form using the MARSS form, but the EM algorithm in the {MARSS}
package won’t let you estimate parameters because the parameters will drop
out of the full likelihood being maximized in the algorithm. You can try using
BFGS by passing in the method argument to the MARSS() call.

1.6 Troubleshooting

Numerical errors due to ill-conditioned matrices are not uncommon when
fitting MARSS models. The Kalman and EM algorithms need inverses of
matrices. If those matrices become ill-conditioned, for example all elements
are close to the same value, then the algorithm becomes unstable. Warning
messages will be printed if the algorithms are becoming unstable and you
can set control$trace=1, to see details of where the algorithm is becoming
unstable. Whenever possible, you should avoid using shared π values in your
model5. The way our algorithm deals with Λ tends to make this case unstable,
especially if R is not diagonal. In general, estimation of a non-diagonal R is
more difficult, more prone to ill-conditioning, and more data-hungry.

You may also see non-convergence warnings, especially if your MLE model
turns out to be degenerate. This means that one of the elements on the di-
agonal of your Q or R matrix are going to zero (are degenerate). It will take
the EM algorithm forever to get to zero. BFGS will have the same problem,
although it will often get a bit closer to the degenerate solution. If you are
using method="kem", MARSS() will warn you if it looks like the solution is de-
generate. If you use control=list(allow.degen=TRUE), the EM algorithm
will attempt to set the degenerate variances to zero (instead of trying to get to
zero using an infinite number of iterations). However, if one of the variances is
going to zero, first think about why this is happening. This is typically caused
by one of three problems: 1) you made a mistake in inputting your data, e.g.,
used -99 as the missing value in your data but did not replace these with NAs
before passing to MARSS(), 2) your data are not sufficient to estimate multiple
variances or 3) your data are inconsistent with the model you are trying to
fit.

5 An example of a π with shared values is π =
[a

a
a

]
.

1.7 Other related packages 11

The algorithms in the {MARSS} package are designed for cases where
the Q and R diagonals are all non-minuscule. For example, the EM update
equation for u will grind to a halt (not update u) if Q is tiny (like 1E-7).
Conversely, the BFGS equations are likely to miss the maximum-likelihood
when R is tiny because then the likelihood surface becomes hyper-sensitive
to π. The solution is to use the EM update equations with the degenerate
likelihood function. MARSS() will implement this automatically by trying to
set Q and R diagonal terms to zero if they are going to zero6.

One odd case can occur when R goes to zero (a matrix of zeros), but
you are estimating π. If model$tinitx=1, then π = x0

1 and y1 −Zx0
1 can go

to 0 as well as var(y1 −Zx0
1) by driving R to zero. But as this happens, the

log-likelihood associated with y1 will go (correctly) to infinity and thus the
log-likelihood goes to infinity. But if you set R = 0, the log-likelihood will
be finite. The reason is that R ≈ 0 and R = 0 specify different likelihoods
associated with y1−Zx0

1. With R = 0, y1−Zx0
1 does not have a distribution; it

is just a fixed value. So there is no likelihood to go to infinity. If some elements
of the diagonal of R are going to zero, you should be suspect of the parameter
estimates. Sometimes the structure of your data, e.g., one data value followed
by a long string of missing values, is causing an odd spike in the likelihood at
R ≈ 0. Try manually setting R equal to zero to get the correct log-likelihood7.

1.7 Other related packages

Packages that will do Kalman filtering and smoothing are many, but pack-
ages that estimate the parameters in a MARSS model, especially constrained
MARSS models, are much less common. The following are those with which
we are familiar, however there are certainly more packages for estimating
MARSS models in engineering and economics of which we are unfamiliar.
The {MARSS} package is unusual in that it uses an EM algorithm for max-
imizing the likelihood as opposed to a Newton-esque method (e.g., BFGS).
The package is also unusual in that it allows you to specify the initial condi-
tions at t = 0 or t = 1 qne allows degenerate models (with some of the diagonal
elements of R or Q equal to zero). Lastly, model specification in the {MARSS}
package has a one-to-one relationship between the model list in MARSS and
the model as you would write it on paper (in matrix form). However, the
{MARSS} package has not been optimized for speed and probably will be
very slow if you have time-series data with many time points.

atsar atsar is an R package we wrote for fitting MARSS models using STAN. It
allows fast and flexible fitting of MARSS models in a Bayesian framework.

6 You can turn off this behavior by passing in control=list(allow.degen=FALSE).
7 The likelihood returned when R ≈ 0 is not incorrect. It is just not the likelihood
that you probably want. You want the likelihood where the R term is dropped
because it is zero.

https://asts-es.github.io/atsar/

12 1 Overview

Our book from our time-series class has example applications Applied
Time-Series Analysis for Fisheries and Environmental Sciences.

stats The {stats} package (part of base R) has functions for fitting univariate
structural time series models (MARSS models with a univariate y). Read
the help file at ?StructTS. The Kalman filter and smoother functions are
described here: ?KalmanLike.

DLM DLM is an R package for fitting MARSS models. It is mainly Bayesian
focused but it also allows MLE estimation via the optim() function. It
has a book, Dynamic Linear Models with R by Petris et al., which has
many examples of how to write MARSS models for different applications.

sspir sspir an R package for fitting ARSS (univariate) models with Gaussian,
Poisson and binomial error distributions.

dse dse (Dynamic Systems Estimation) is an R package for multivariate Gaus-
sian state-space models with a focus on ARMA models.

SsfPack SsfPack is a package for Ox/Splus that fits constrained multivariate
Gaussian state-space models using mainly (it seems) the BFGS algorithm
but the newer versions support other types of maximization. SsfPack is
very flexible and written in C to be fast. It has been used extensively
on statistical finance problems and is optimized for dealing with large
(financial) data sets. It is used and documented in Time Series Analysis
by State Space Methods by Durbin and Koopman, An Introduction to
State Space Time Series Analysis by Commandeur and Koopman, and
Statistical Algorithms for Models in State Space Form: SsfPack 3.0, by
Koopman, Shephard, and Doornik.

Brodgar The Brodgar software was developed by Alain Zuur to do (among
many other things) dynamic factor analysis, which involves a special type
of MARSS model. The methods and many example analyses are given in
Analyzing Ecological Data by Zuur, Ieno and Smith. This package also
uses an EM algorithm for parameter estimation.

eViews eViews is a commercial economics software that will estimate at least
some types of MARSS models.

KFAS The KFAS R package provides a fast Kalman filter and smoother.
Examples in the package show how to estimate MARSS models using the
{KFAS} functions and R ’s optim() function. The {MARSS} package
uses the filter and smoother functions from the {KFAS} package.

S+FinMetrics S+FinMetrics is a S-plus module for fitting MAR models,
which are called vector autoregressive (VAR) models in the economics
and finance literature. It has some support for state-space VAR models.
It was developed by Andrew Bruce, Doug Martin, Jiahui Wang, and Eric
Zivot, and it has a book associated with it: Modeling Financial Time Series
with S-plus by Eric Zivot and Jiahui Wang.

https://atsa-es.github.io/atsa-labs/
https://atsa-es.github.io/atsa-labs/
https://cran.r-project.org/package=dlm
https://cran.r-project.org/package=sspir
https://cran.r-project.org/package=dse
http://www.ssfpack.com/
https://cran.r-project.org/package=KFAS
http://faculty.washington.edu/ezivot/MFTS2ndEditionFinMetrics.htm

2

The main package functions

The {MARSS} package is object-based. It has two main types of objects: a
model object (class marssMODEL) and a maximum-likelihood fitted model
object (class marssMLE). A marssMODEL object specifies the structure of
the model to be fitted. It is an R code version of the MARSS equation (Equa-
tion 1.1). A marssMLE object specifies both the model and the information
necessary for fitting (initial conditions, controls, method). If the model has
been fitted, the marssMLE object will also have the parameter estimates and
(optionally) confidence intervals and bias.

2.1 The MARSS() function: inputs

The function MARSS() is an interface to the core fitting functions in the
{MARSS} package. It allows a user to fit a MARSS model using a list to de-
scribe the model structure. It returns marssMODEL and marssMLE objects
which the user can later use in other functions, e.g., simulating or computing
bootstrap confidence intervals.

MLEobj=MARSS(data, model=list(), ..., fit=TRUE) This function will fit
a MARSS model to the data using a model list which is a list describing
the structure of the model parameter matrices. In the default model, i.e.,
if you use MARSS(dat) with no model argument, Z and B are the identity
matrix, R is a diagonal matrix with one variance, Q is a diagonal ma-
trix with unique variances, u is unique, a is scaling, and C, c, D, and d
are all zero. The output is a marssMLE object where the estimated pa-
rameter matrices are in MLEobj$par. If fit=FALSE, it returns a minimal
marssMLE object that is ready for passing to a fitting function (below)
but with no par element.

14 2 The main package functions

2.2 The MARSS() function: outputs

The marssMLE object returned by a MARSS() call includes the estimated
parameters, states, and expected values of any missing data. Derived statistics,
such as confidence intervals and standard errors, can be computed using the
functions described below.

estimated parameters coef(MLEobj) The coef function can output parame-
ters in a variety of formats, such as a list of matrices versus a vector of
the estimates. See ?coef.marssMLE.

residuals residuals(MLEobj). See ?MARSSresiduals for a discussion of stan-
dardized residuals in the context of MARSS models.

Kalman filter and smoother output tsSmooth(MLEobj). The smoothed states
are in MLEobj$states. tsSmooth(MLEobj) provides filter and smoother
output as a data frame, but the full Kalman filter and smoother output
is available in matrix form from MARSSkf(MLEobj). See ?MARSSkf for a
discussion of the Kalman filter and smoother outputs. If you just want
the estimated states conditioned on all the data, use tsSmooth(MLEobj);
you can pass in interval="confidence".

expected value of missing y tsSmooth(MLEobj, type="ytT") returns these
as a data frame. MARSShatyt(MLEobj) returns the same (and much more)
as matrices. See ?MARSShatyt for a discussion of the expectations involv-
ing Y.

log-likelihood logLik(MLEobj) returns the log-likelihood.
AIC AIC(MLEobj) ({stats} package) returns the uncorrected AIC. Use MLEobj$AICc

to return the small sample size corrected AIC.

Note the print method for marssMLE objects will print or compute all the
frequently needed output using the what= argument in the print call. Type
?print.MARSS at the R command line to see the print help file which will also
point you to the more standard functions (like coef()).

2.3 Core functions for fitting a MARSS model

The following core functions are designed to work with ‘unfitted’ marssMLE
objects, that is a marssMLE object without the par element. Users do not nor-
mally need to call the MARSSkem() or MARSSoptim() functions since MARSS()
will call those. Note, these functions can be called with a marssMLE object
with a par element, but these functions will overwrite that element.

MLEobj=MARSSkem(MLEobj) This will fit a MARSS model via the EM algo-
rithm to the data using a properly specified marssMLE object, which
has data, the marssMODEL object and the necessary initial condition
and control elements. See the appendix on the object structures in the
{MARSS} package. MARSSkem() does no error-checking. See is.marssMLE()
for error-checking. MARSSkem() uses MARSSkf() described below.

2.4 Functions for a fitted marssMLE object 15

MLEobj=MARSSoptim(MLEobj) This will fit a MARSS model via the BFGS al-
gorithm provided in optim(). This requires a properly specified marssMLE
object, such as would be passed to MARSSkem().

is.marssMLE(MLEobj) This will check that a marssMLE object is properly
specified and ready for fitting. This should be called before MARSSkem()

or MARSSoptim() is called. This function is not typically needed if using
MARSS() since MARSS() builds the model object for the user and does
error-checking on model structure.

2.4 Functions for a fitted marssMLE object

The following functions use a marssMLE object that has a populated par

element, i.e., a marssMLE object returned from one of the fitting functions
(MARSS(), MARSSkem(), MARSSoptim()). Below MODELobjmeans the argument
is a marssMODEL object and MLEobj means the argument is a marssMLE
object. Type ?function.name to see information on function usage and ex-
amples.

standard functions The standard R functions for fitted objects are provided:
residuals(), fitted(), logLik(), AIC(), coef(), predict() and tsSmooth().

summary functions Standard functions for printing output are also avail-
able: summary() and print() along with ‘tidyverse’ output: tidy() and
glance().

In addition, the following are special functions for {MARSS} fitted models:

kf=MARSSkf(MLEobj) This will compute the expected values of the hidden
states given data via the Kalman filter (to produce estimates conditioned
on the data from t = 1 to t − 1) and the Kalman smoother (to produce
estimates conditioned on data from t = 1 to t = T). The function also
returns the exact likelihood of the data conditioned on MLEobj$par. A
variety of other Kalman filter/smoother information is also output (kf is
a list of output); see ?MARSSkf for details. tsSmooth.marssMLE() returns
this information as a data frame that is ggplot() friendly.

MLEobj=MARSSaic(MLEobj) This adds model selection criteria, AIC, AICc,
and AICb, to a marssMLE object. Note, AIC and AICc are added to
marssMLE objects by the MARSS() function but AICb is not.

boot=MARSSboot(MLEobj) This returns a list containing bootstrapped pa-
rameters and data via parametric or innovations bootstrapping.

MLEobj=MARSShessian(MLEobj) This adds the Hessian matrix for the esti-
mated parameters to a marssMLE object. The default algorithm is the
analytical solution for the Hessian. See ?MARSShessian.

MLEobj=MARSSparamCIs(MLEobj) This adds standard errors, confidence in-
tervals, and bootstrap estimated bias for the maximum-likelihood param-
eters using bootstrapping or the Hessian to the marssMLE object.

16 2 The main package functions

sim.data=MARSSsimulate(MLEobj) This returns simulated data from aMARSS
model specified via a list of parameter matrices in MLEobj$parList (this
is a list with elements Q, R, U, etc.).

paramVec=MARSSvectorizeparam(MLEobj) This returns the estimated (and
only the estimated) parameters as a vector. This is useful for storing the
results of simulations or for writing functions that fit MARSS models using
R ’s optim function. coef(MLEobj) will return the same vector.

new.MLEobj=MARSSvectorizeparam(MLEobj, paramVec) This will return a
marssMLE object in which the estimated parameters (which are in MLEobj$par)
are replaced with the values in paramVec.

2.5 Functions for marssMODEL objects

is.marssMODEL(MODELobj) This will check that the free and fixed matrices
in a marssMODEL object are properly specified. This function is not
typically needed if using MARSS() since MARSS() builds the marssMODEL
object for the user and does error-checking on model structure.

summary(MODELobj) This will print the model parameter matrices showing
the fixed values (in parentheses) and the location of the estimated ele-
ments. The estimated elements are shown as g1, g2, g3, ... which indicates
which elements are shared, i.e., forced to have the same value. For exam-
ple, an i.i.d. R matrix would appear as a diagonal matrix with just g1 on
the diagonal.

3

Algorithms used in the {MARSS} package

3.1 The full time-varying MARSS model

In mathematical form, the model that is being fit with the package is

xt = (x⊤t−1 ⊗ Im)vec(Bt)+(u⊤
t ⊗ Im)vec(Ut)+wt , Wt ∼ MVN(0,Qt)

yt = (x⊤t ⊗ In)vec(Zt)+(a⊤t ⊗ In)vec(At)+vt , Vt ∼ MVN(0,Rt)

xt0 = π+F ≪,L ∼ MVN(0,Λ)

(3.1)

Each model parameter matrix, Bt , Ut , Qt , Zt , At , and Rt , is written as a time-
varying linear model, ft +Dtm, where f and D are fully-known (not estimated
and no missing values) and m is a column vector of the estimates elements of
the parameter matrix:

vec(Bt) = ft,b +Dt,bβββ vec(Ut) = ft,u +Dt,uυυυ vec(Qt) = ft,q +Dt,qq
vec(Zt) = ft,z +Dt,zζζζ vec(At) = ft,a +Dt,aααα vec(Rt) = ft,r +Dt,rr

vec(Λ) = fλ +Dλλλλ vec(π) = fπ +Dπp

The internal model specification (element $marss in a fitted marssMLE
object output by a MARSS() call) is a list with the ft (“fixed”) and Dt (“free”)
matrices for each parameter. The output from fitting are the vectors, βββ, υυυ, etc.
The trick is to rewrite the user’s linear multivariate problem into the general
form (Equation 3.1). MARSS does this using functions that take more familiar
arguments as input and then constructs the ft and Dt matrices. Because the ft
and Dt can be whatever the user wants (assuming they are the right shape),
this allows users to include covariates, trends (linear, sinusoidal, etc) or indi-
cator variables in a variety of ways. It also means that terms like 1+ b+ 2c
can appear in the parameter matrices.

Although the above form looks unusual, it is equivalent to the commonly
seen form but leads to a log-likelihood function where all terms have form Mm,
where M is a matrix and m is a column vector of only the different estimated

18 3 Algorithms used in the {MARSS} package

values. This makes it easy to do the partial differentiation with respect to
m necessary for the EM algorithm and as a result, easy to impose linear
constraints and structure on the elements in a parameter matrix (Holmes,
2012).

3.2 Maximum-likelihood parameter estimation

3.2.1 EM algorithm

Function MARSSkem() in the {MARSS} package provides a maximum-likelihood
algorithm for parameter estimation based on an Expectation-Maximization
(EM) algorithm (Holmes, 2012). EM algorithms are widely used algorithms
that extend maximum-likelihood estimation to cases where there are hidden
random variables in a model (Dempster et al., 1977; Harvey, 1989; Harvey and
Shephard, 1993; McLachlan and Krishnan, 2008). Expectation-Maximization
algorithms for unconstrained MARSS models have been around for many years
and algorithms for certain constrained cases have also been published. What
makes the EM algorithm in MARSS different is that it is a general constrained
algorithm that allows generic linear constraints among matrix elements (thus
allows fixed, shared and linear combinations of estimated elements).

The EM algorithm finds the maximum-likelihood estimates of the parame-
ters in a MARSS model using an iterative process. Starting with an initial set
of parameters1, which we will denote Θ̂1, an updated parameter set Θ̂2 is ob-
taining by finding the Θ̂2 that maximizes the expected value of the likelihood
over the distribution of the states (X) conditioned on Θ̂1. This distributon of
states is computed via the Kalman smoother (Section 3.3). Mathematically,
each iteration of an EM algorithm does this maximization:

Θ̂2 = argmax
Θ

EX|Θ̂1
[logL(Θ|Y = yT

1 ,X)]

Then using Θ̂2, the distibution of X conditioned on Θ̂2 is computed. Then that
distibution along with Θ̂2 in place of Θ̂1 is used in Equation ?? to produce an
updated parameter set Θ̂3. This is repeated until the expected log-likelihood
stops increasing (or increases less than some set tolerance level).

Implementing this algorithm is straight-forward, hence its popularity.

1. Set an initial set of parameters, Θ̂1
2. E step: using the model for the hidden states (X) and Θ̂1, calculate the

expected values of X conditioned on all the data yT
1 ; this is xtT output

by the Kalman smoother (function MARSSkf()). Also calculate expected
values of any functions of X (or Y if there are missing Y values) that
appear in your expected log-likelihood function.

1 You can choose these however you wish, however choosing something not too far
off from the correct values will make the algorithm go faster.

3.3 Kalman filter and smoother 19

3. M step: put those E[X|Y = yT
1 ,Θ̂1] and E[g(X)|Y = yT

1 ,Θ̂1] into your ex-
pected log-likelihood function in place of X (and g(X)) and maximize with
respect to Θ. This gives you Θ̂2.

4. Repeat the E and M steps until the log likelihood stops increasing.

The EM equations used in the {MARSS} package (function MARSSkem())
are described in Holmes (2012) and are extensions of those in Shumway and
Stoffer (1982) and Ghahramani and Hinton (1996). Our EM algorithm is an
extended version because our algorithm is for cases where there are constraints
within the parameter matrices (shared values, linear combinations, diagonal
structure, block-diagonal structure, ...), where there are fixed values within
the parameter matrices, or where there may be 0s on the diagonal of Q, R
and Λ.

The EM algorithm is a hill-climbing algorithm and like all hill-climbing
algorithms can get stuck on local maxima. See Chapter 6 for a discussion on
how to implement a Monte-Carlo initial conditions search based on Biernacki
et al. (2003) to minimize this problem. EM algorithms are also known to get
close to the maximum very quickly but then creep toward the absolute maxi-
mum. Once in the vicinity of the maximum, quasi-Newton methods find the
absolute maximum much faster, but they can be sensitive to initial conditions.
In practice, we have found the EM algorithm to be much faster for some types
of MARSS models while BFGS is faster for others, so often we will try both.

3.3 Kalman filter and smoother

The Kalman filter (Kalman, 1960) is a recursive algorithm that solves for the
expected value of the hidden states (the X) in a MARSS model (Equation
1.1) at time t conditioned on the data up to time t: E[Xt |yt

1]. The Kalman
filter gives the optimal (lowest mean square error) estimate of the unobserved
xt based on the observed data up to time t for this class of linear dynamical
system. The Kalman smoother (Rauch et al., 1965) solves for the expected
value of the hidden state(s) conditioned on all the data: E[Xt |yT

1]. If the errors
in the stochastic process are Gaussian, then the estimators from the Kalman
filter and smoother are also the maximum-likelihood estimates.

However, even if the the errors are not Gaussian, the estimators are opti-
mal in the sense that they are estimators with the least variability possible.
This robustness is one reason the Kalman filter is so powerful—it provides
well-behaving estimates of the hidden states for all kinds of multivariate au-
toregressive processes, not just Gaussian processes. The Kalman filter and
smoother are widely used in time-series analysis, and there are many text-
books covering it and its applications. In the interest of giving the reader a
single point of reference, we use Shumway and Stoffer (2006) as our primary
reference.

The MARSSkf() function provides the Kalman filter and smoother out-
put using one of two algorithms (specified by fun.kf). The algorithm in

20 3 Algorithms used in the {MARSS} package

MARSSkfss() is that shown in Shumway and Stoffer (2006). This algorithm
is not computationally efficient; see Koopman et al. (1999, section 4.3) for a
more efficient Kalman filter implementation. The Koopman et al. implemen-
tation is provided in the functions MARSSkfas() using the {KFAS} package
(Helske, 2017). MARSSkfss() (and MARSSkfas() with a few exceptions) has
the following outputs:

xtt1 The expected value of Xt conditioned on the data up to time t −1.
xtt The expected value of Xt conditioned on the data up to time t.
xtT The expected value of Xt conditioned on all the data from time 1 to T .

These are called the smoothed state estimates.
Vtt1 The variance of Xt conditioned on the data up to time t −1. Denoted

Pt−1
t in section 6.2 in Shumway and Stoffer (2006).

Vtt The variance of Xt conditioned on the data up to time t. Denoted Pt
t in

section 6.2 in Shumway and Stoffer (2006).
VtT The variance of Xt conditioned on all the data from time 1 to T .
Vtt1T The lag-one covariance of Xt and Xt−1 conditioned on all the data, 1

to T .
Kt The Kalman gain. This is part of the update equations and relates to the

amount xtt1 is updated by the data at time t to produce xtt. Not output
by MARSSkfas.

J This is similar to the Kalman gain but is part of the Kalman smoother. See
Equation 6.49 in Shumway and Stoffer (2006). Not output by MARSSkfas.

Innov This has the innovations at time t, defined as εt ≡ yt -E[Yt]. These are
the residuals, the difference between the data and their predicted val-
ues. See Equation 6.24 in Shumway and Stoffer (2006). Not output by
MARSSkfas.

Sigma This has the Σt , the variance-covariance matrices for the innovations
at time t. This is used for the calculation of confidence intervals, the s.e.
on the state estimates and the likelihood. See Equation 6.25 in Shumway
and Stoffer (2006) for the Σt calculation. Not output by MARSSkfas.

logLik The log-likelihood of the data conditioned on the model parameters.

3.4 The exact likelihood

The likelihood of the data given a set of MARSS parameters is part of the
output of the MARSSkfss() and MARSSkfas() functions. The likelihood com-
putation is based on the innovations form of the likelihood (Schweppe, 1965)
and uses the output from the Kalman filter:

log L(Θ|data) =− N
2log(2π)

− 1
2

(
T

∑
t=1

log |Σt |+
T

∑
t=1

(εt)
⊤

Σ
−1
t εt

)
(3.2)

where N is the total number of data points, εt is the innovations at time t and
|Σt | is the determinant of the innovations variance-covariance matrix at time

3.5 Parametric and innovations bootstrapping 21

t. This likelihood function is shown in Equation 6.62 in Shumway and Stoffer
(2006). However there are a few differences between the log-likelihood output
by MARSSkf() and that described in Shumway and Stoffer (2006).

The standard likelihood calculation (Equation 6.62 in Shumway and Stoffer
(2006)) is biased when there are missing values in the data, and the missing
data modifications discussed in Section 6.4 in Shumway and Stoffer (2006) do
not correct for this bias. Harvey (1989), Section 3.4.7, discusses at length that
the standard missing values correction leads to an inexact likelihood when
there are missing values. The bias is minor if there are few missing values, but
it becomes severe as the number of missing values increases. Many ecological
datasets have high fractions of missing values and this leads to a very biased
likelihood if one uses the inexact formula. Harvey (1989) provides some non-
trivial ways to compute the exact likelihood.

The {MARSS} package uses instead the exact likelihood correction for
missing values that is presented in Section 12.3 in Brockwell and Davis (1991).
This solution is straight-forward to implement. The correction involves the
following changes to εt and Σt in the Equation 3.2. Suppose the value yi,t is
missing. First, the corresponding i-th value of εt is set to 0. Second, the i-th
diagonal value of Σt is set to 1 and the off-diagonal elements on the i-th column
and i-th row are set to 0.

3.5 Parametric and innovations bootstrapping

Bootstrapping can be used to construct frequentist confidence intervals on
the parameter estimates (Stoffer and Wall, 1991) and to compute the small-
sample AIC corrector for MARSS models (Cavanaugh and Shumway, 1997);
the functions MARSSparamCIs() and MARSSaic() do these computations.

The MARSSboot() function provides both parametric and innovations boot-
strapping of MARSS models. The innovations bootstrap algorithm by Stoffer
and Wall (1991) bootstraps the model residuals (the innovations). This is a
semi-parametric bootstrap since is uses, partially, the maximum-likelihood pa-
rameter estimates. This algorithm cannot be used if there are missing values
in the data. Also for short time series, it gives biased bootstraps because one
cannot resample the first few innovations.

MARSSboot() also provides a fully parametric bootstrap. This uses the
maximum-likelihood MARSS parameters to simulate data from which boot-
strap parameter estimates are obtained. Our research (Holmes and Ward,
2010) indicates that this provides unbiased bootstrap parameter estimates,
and it works with datasets with missing values. Lastly, MARSSboot() can also
output parameters sampled from the Hessian matrix.

22 3 Algorithms used in the {MARSS} package

3.6 Simulation and forecasting

The MARSSsimulate() function simulates from a fitted marssMLE object
(e.g., output from a MARSS() call). It uses rmvnorm() (in package {mvtnorm})
to produce draws of the process and observation errors from multivariate nor-
mal distributions for each time step.

3.7 Model selection

The package provides the MARSSaic() function (accessed with AIC()) for com-
puting AIC, AICc and AICb. The latter is a small-sample corrector for au-
toregressive state-space models. The bias problem with AIC and AICc for
short time-series data has been shown in Cavanaugh and Shumway (1997)
and Holmes and Ward (2010). AIC and AICc tend to select overly com-
plex MARSS models when the time-series data are short. AICb corrects this
bias. The algorithm for a non-parametric AICb is given in Cavanaugh and
Shumway (1997). Their algorithm uses the innovations bootstrap (Stoffer and
Wall, 1991), which means it cannot be used when there are missing data. We
added a parametric AICb (Holmes and Ward, 2010), which uses a parametric
bootstrap. This algorithm allows one to compute AICb when there are miss-
ing data and it provides unbiased AIC even for short time series. See Holmes
and Ward (2010) for discussion and testing of parametric AICb for MARSS
models.

AICb is comprised of the familiar AIC fit term, −2logL, plus a penalty
term that is the mean difference between the log likelihood the data under the
bootstrapped maximum-likelihood parameter estimates and the log likelihood
of the data under the original maximum-likelihood parameter estimate:

AICb =−2log L(Θ̂|y)+2
(

1
Nb

Nb

∑
i=1

− log
L(Θ̂∗(i)|y)
L(Θ̂|y)

)
(3.3)

where Θ̂ is the maximum-likelihood parameter set under the original data y,
Θ̂∗(i) is a maximum-likelihood parameter set estimated from the i-th boot-
strapped data set y∗(i), and Nb is the number of bootstrap data sets. It is
important to notice that the likelihood in the AICb equation is L(Θ̂∗|y) not
L(Θ̂∗|y∗). In other words, we are taking the average of the likelihood of the
original data given the bootstrapped parameter sets.

Part II

Fitting models with {MARSS}

4

The MARSS() function

From the user perspective, the main package function is MARSS(). This fits a
MARSS model (Equation 1.1) to a matrix of data. The function call takes the
form:

MARSS(data, model=list(), form="marxss"))

The model argument is a list with names B, U, C, c, Q, Z, A, D, d, R, x0,
V0. Elements can be left off to use default values. The form argument tells
MARSS() how to use the model list elements. The default is form="marxss"

which is the model in Equation 1.1.
The data must be passed in as a n×T matrix (time goes across columns)

or a ts object or vector (which will be converted to a n×T matrix with time
across the columns). A data matrix consisting of three time series (n = 3) with
six time steps might look like

y =

1 2 NA NA 3.2 8
2 5 3 NA 5.1 5
1 NA 2 2.2 NA 7


where NA denotes a missing value.

The argument model specifies the structure of the MARSS model. It is a
list, where the list elements for each model parameter specify the form of that
parameter.

The most general way to specify model structure is to use a list matrix.
The list matrix allows one to combine fixed and estimated elements in one’s
parameter specification. It allows a one-to-one correspondence between how
you write the parameter matrix on paper and how you specify it in R . For
example, let’s say Q and u have the following forms in your model:

Q =

q 0 0
0 q 0
0 0 1

 and u =

0.05
u1
u2



26 4 The MARSS() function

So Q is a diagonal matrix with the 3rd variance fixed at 1 and the 1st and
2nd estimated and equal. The 1st element of u is fixed, and the 2nd and 3rd
are estimated and different. You can specify this using a list matrix:

Q=matrix(list("q",0,0,0,"q",0,0,0,1),3,3)

U=matrix(list(0.05,"u1","u2"),3,1)

If you print out Q and U, you will see they look exactly like Q and u written
above. MARSS will keep the fixed values fixed and estimate q, u1, and u2.

List matrices allow the most flexible model structures, but MARSS() also
has text shortcuts for a number of common model structures. Below, the
possible ways to specify each model parameter are shown, using m = 3 (the
number of hidden state processes) and n = 3 (number of observation time
series).

4.1 u, a and π model structures

u, a and π are all row matrices and the options for specifying their structures
are the same. a has one special option, "scaling" described below. The al-
lowable structures are shown using u as an example. Note that you should be
careful about specifying shared structure in π because you need to make sure
the structure in Λ matches. For example, if you require that all the π values
are shared (equal) then Λ cannot be a diagonal matrix since that would be
saying that the π values are independent, which they are clearly not if you
force them to be equal.

U=matrix(list(),m,1): This is the most general form and allows one
to specify fixed and estimated elements in u. Each character string in
u is the name of one of the u elements to be estimated. For example if
U=matrix(list(0.01,"u","u"),3,1), then u in the model has the fol-
lowing structure: 0.01

u
u


U=matrix(c(),m,1), where the values in c() are all character strings:
each character string is the name of an element to be estimated. For ex-
ample if U=matrix(c("u1","u1","u2"),3,1), then u in the model has
the following structure: u1

u1
u2


with two values being estimated. U=matrix(list("u1","u1","u2"),3,1)
has the same effect.

4.1 u, a and π model structures 27

U="unequal" or U="unconstrained": Both of these stings indicate that
each element of u is estimated. If m = 3, then u would have the form:u1

u2
u3


U="equal": There is only one value in u:u

u
u


U=matrix(c(),m,1), where the values in c() all numerical values: u is
fixed and has no estimated values. If U=matrix(c(0.01,1,-0.5),3,1),
then u in the model is:  0.01

1
−0.5


U=matrix(list(0.01,1,-0.5),3,1) would have the same effect.

U="zero": u is all zero: 0
0
0


The a parameter has a special option, "scaling", which is the default
behavior. In this case, a is treated like a scaling parameter. If there is only
one y row associated with an x row, then the corresponding a element is
0. If there are more than one y rows associated with an x row, then the
first a element is set to 0 and the others are estimated. For example, say
m = 2 and n = 4 and Z looks like the following:

Z =


1 0
1 0
1 0
0 1


Then the 1st-3rd rows of y are associated with the first row of x, and the
4th row of y is associated with the last row of x. Then if a is specified as
"scaling", a has the following structure:

0
a1
a2
0



28 4 The MARSS() function

4.2 Q, R, Λ model structures

The possible Q, R, and Λ model structures are identical, except that R is n×n
while Q and Λ are m×m. All types of structures can be specified using a list
matrix, but there are also text shortcuts for specifying common structures.
The structures are shown using Q as the example.

Q=matrix(list(),m,m): This is the most general way to specify the pa-
rameters and allows there to be fixed and estimated elements. Each char-
acter string in the list matrix is the name of one of the Q elements to be
estimated, and each numerical value is a fixed value. For example if
Q=matrix(list("s2a",0,0,0,"s2a",0,0,0,"s2b"),3,3),
then Q has the following structure:σ2

a 0 0
0 σ2

a 0
0 0 σ2

b


Note that diag(c("s2a","s2a","s2b")) will not have the desired effect
of producing a matrix with numeric 0s on the off-diagonals. It will have
character 0s and MARSS will interpret “0” as the name of an element of
Q to be estimated. Instead, the following two lines can be used:
Q=matrix(list(0),3,3)

diag(Q)=c("s2a","s2a","s2b")

Q="diagonal and equal": There is only one process variance value in this
case: σ2 0 0

0 σ2 0
0 0 σ2


Q="diagonal and unequal": There are m process variance values in this
case: σ2

1 0 0
0 σ2

2 0
0 0 σ2

3


Q="unconstrained": There are values on the diagonal and the off-diagonals
of Q and the variances and covariances are all different: σ2

1 σ1,2 σ1,3
σ1,2 σ2

2 σ2,3
σ1,3 σ2,3 σ2

3


There are m process variances and (m2 −m)/2 covariances in this case, so
(m2 +m)/2 values to be estimated. Note that variance-covariance matrices
are never truly unconstrained since the upper and lower triangles of the
matrix must be equal.

4.4 Z model 29

Q="equalvarcov": There is one process variance and one covariance:σ2 β β

β σ2 β

β β σ2


Q=matrix(c(), m, m), where all values in c() are character strings: Each
element in Q is estimated and each character string is the name of a value
to be estimated. Note if m = 1, you still need to wrap its value in matrix()

so that its class is matrix.

Q=matrix(c(), m, m), where all values in c() are numeric values: Each
element in Q is fixed to the values in the matrix.

Q="identity": The Q matrix is the identity matrix:1 0 0
0 1 0
0 0 1


Q="zero": The Q matrix is all zeros:0 0 0

0 0 0
0 0 0


Be careful when setting Λ model structures. Mis-specifying the structure

of Λ can have catastrophic, but difficult to discern, effects on your estimates.
See the comments on priors in Chapter 1.

4.3 B model structures

Like the variance-covariance matrices (Q, R and Λ), B can be specified with
a list matrix to allow you to have both fixed and shared elements in the B
matrix. Character matrices and matrices with fixed values operate the same
way as for the variance-covariance matrices. In addition, the same text short-
cuts are available: “unconstrained”, “identity”, “diagonal and equal”, “diagonal
and unequal”, “equalvarcov”, and “zero”. A fixed B can be specified with a
numeric matrix, but all eigenvalues must fall within the unit circle; meaning
all(abs(eigen(B)$values)<=1) must be true.

4.4 Z model

Like B and the variance-covariance matrices, Z can be specified with a list
matrix to allow you to have both fixed and estimated elements in Z. If Z is a

30 4 The MARSS() function

square matrix, many of the same text shortcuts are available: “diagonal and
equal”,“diagonal and equal”, and“equalvarcov”. If Z is a design matrix1, then a
special shortcut is available using factor() which allows you to specify which
y rows are associated with which x rows. See Chapter 5 and the applications
chapters for more examples.

Z=factor(c(1,1,1)): All y time series are observing the same (and only)
hidden state trajectory x (n = 3 and m = 1):

Z =

1
1
1


Z=factor(c(1,2,3)): Each time series in y corresponds to a different
hidden state trajectory. This is the default Z model and in this case n = m:

Z =

1 0 0
0 1 0
0 0 1


Z=factor(c(1,1,2)): The first two time series in y corresponds to one
hidden state trajectory and the third y time series corresponds to a differ-
ent hidden state trajectory. Here n = 3 and m = 2:

Z =

1 0
1 0
0 1


The Z model can be specified using either numeric or character factor
levels. c(1,1,2) is the same as c("north","north","south")

Z="identity": This is the default behavior. This means Z is a n×n identity
matrix and m = n. If n = 3, it is the same as Z=factor(c(1,2,3)).

Z=matrix(c(), n, m), where the elements in c() are all strings: Passing
in a n×m character matrix, means that each character string is a value
to be estimated. Be careful that you are specifying an identifiable model
when using this option.

Z=matrix(c(), n, m), where the elements in c() are all numeric: Passing
in a n×m numeric matrix means that Z is fixed to the values in the matrix.
The matrix must be numeric but it does not need to be a design matrix.

Z=matrix(list(), n, m): Passing in a n×m list matrix allows you to
combine fixed and estimated values in the Z matrix. Be careful that you
are specifying an identifiable model.

1 a matrix with only 0s and 1s and where the row sums are all equal to 1

4.5 Default model structures 31

4.5 Default model structures

The defaults for the model arguments in form="marxss" are

Z="identity" each y in y corresponds to one x in x
B="identity" no interactions among the x’s in x
U="unequal" the u’s in u are all different
Q="diagonal and unequal" process errors are independent but have dif-
ferent variances
R="diagonal and equal" the observations are i.i.d.
A="scaling" a is a set of scaling factors
C="zero" and D="zero" no inputs.
c="zero" and d="zero" no inputs.
x0="unequal" all initial states are different
V0="zero" the initial condition on the states (x0 or x1) is fixed but un-
known
tinitx=0 the initial state refers to t = 0 instead of t = 1.

5

Short Examples

In this chapter, we work through a series of short examples to illustrate
the {MARSS} package functions. This chapter is oriented towards those who
are already somewhat familiar with multivariate (or vector) autoregressive
state-space (MARSS or VARSS) models and want to get started quickly. We
provide little explanatory text. Those unfamiliar with MARSS (or VARSS)
models might prefer to start with the application chapters.

In these examples, we will use the default form="marxss" argument for a
MARSS() call. This specifies a MARSS model of the form:

xt = Btxt−1 +ut +Ctct +Gtwt , where wt ∼ MVN(0,Qt) (5.1a)

yt = Ztxt +at +Dtdt +Htvt , where vt ∼ MVN(0,Rt) (5.1b)

x1 ∼ MVN(π,Λ) or x0 ∼ MVN(π,Λ) (5.1c)

The c and d are inputs (not estimated). In the examples here, we leave off
c and d. We address including inputs only briefly at the end of the chapter.
See Chapter 13 for extended examples of including covariates as inputs in a
MARSS model. We will also not use Gt or Ht in this chapter.

5.0.1 Output from model fits

{MARSS} provides the following functions for output from fitted model ob-
jects. These functions output data frames in long form. There are companion
functions which return the same information as lists in matrix form.

• fitted(fit) Model and state fitted values (predictions). This is the right-
side of the y and x equations without the error terms. Will return confi-
dence and prediction intervals.

Type RShowDoc("Quick_Examples.R",package="MARSS") at the R command line
to open a file with all the code for the examples in this chapter.

34 5 Examples

• broom::tidy(fit) or tidy.marssMLE(fit) Parameter estimates and con-
fidence intervals.

• logLik(fit), AIC(fit) Log-likelihood and AIC.
• residuals(fit) Innovations, smoothations, and contemporaneous model

and state residuals.
• predict(fit), forecast::forecast(fit) Predictions and forecasts. Use

?predict.marssMLE for information. ggplot2::autoplot(fr), where fr <- forecast(fit),
plots the forecasts.

• plot(fit), ggplot2::autoplot(fit) A series of informative and diag-
nostic plots. Individual plots can be selected.

• stats::tsSmooth(fit, type=...), with ... equal to "xtT", "xtt" or
"xtt1. Kalman filter and smoother output. Expected value of X (states)
conditioned on all data, data 1 to t or data 1 to t−1. MARSSkf(fit) returns
the same in a list of matrices.

• stats::tsSmooth(fit, type=...), with ... equal to "ytT", "ytt" or
"ytt1. These are the expected values of the y (left side of the y equation
with the error terms). MARSShatyt(fit) returns the same in matrix form.
Analogous to MARSSkf(fit) but for the y equation. Most users will likely
want fitted() which is the model fitted values (expected value of the
right side of the y equation without the error term).

5.1 Fixed and estimated elements in parameter matrices

Suppose one has a MARSS model (Equation 5.1) with the following structure:[
x1,t
x2,t

]
=

[
b1 0.1
b2 2

][
x1,t−1
x2,t−1

]
+

[
u
u

]
+

[
w1,t
w2,t

]
, wt ∼ MVN

([
0
0

]
,

[
q1 q3
q3 q2

])
y1,t

y2,t
y3,t

=

z1 0
z2 z2
0 3

[x1,t
x2,t

]
+

0
0
0

+
v1,t

v2,t
v3,t

 , vt ∼ MVN

0
0
0

 ,
r 0 0

0 r 0
0 0 1


x0 ∼ MVN

([
π1
π2

]
,

[
1 0
0 1

])
Notice how this model mixes fixed values, estimated values and shared values.

In MARSS, model structure is specified using a list with the names, Z, A,
R, B, U, Q, x0 and V0. Each element is matrix (class matrix) with the same
dimensions as the matrix of the same name in the MARSS model. {MARSS}
distinguishes between the estimated and fixed values in a matrix by using a
list matrix in which you can have numeric and character elements. Numeric
elements are fixed; character elements are names of things to be estimated.
The model above would be specified as:

5.2 Different numbers of state processes 35

Z <- matrix(list("z1", "z2", 0, 0, "z2", 3), 3, 2)

A <- matrix(0, 3, 1)

R <- matrix(list(0), 3, 3)

diag(R) <- c("r", "r", 1)

B <- matrix(list("b1", 0.1, "b2", 2), 2, 2)

U <- matrix(c("u", "u"), 2, 1)

Q <- matrix(c("q1", "q3", "q3", "q2"), 2, 2)

x0 <- matrix(c("pi1", "pi2"), 2, 1)

V0 <- diag(1, 2)

model.gen <- list(Z = Z, A = A, R = R, B = B, U = U,

Q = Q, x0 = x0, V0 = V0, tinitx = 0)

Notice that there is a one-to-one correspondence between the model list in R
and the model on paper. Fitting the model is then just a matter of passing
the data and model list to the MARSS function:

kem <- MARSS(dat, model = model.gen)

If you work often with MARSS models then you will probably know
whether prior sensitivity is a problem for your types of MARSS applications.
If so, note that the {MARSS} package is unusual in that it allows you to set
Λ = 0 and treat π (initial x) as an unknown estimated parameter. This elimi-
nates the prior and thus the prior sensitivity problems—at the cost of adding
m parameters. Depending on your application, you may need to set the initial
conditions at t = 1 instead of the default of t = 0. If you are unsure, look in
the index and read all the sections that talk about troubleshooting priors.

5.2 Different numbers of state processes

Here we show a series of short examples using a dataset on Washington harbor
seals (?harborSealWA), which has five observation time series. The dataset is
a little unusual in that it has four missing years from years 2 to 5. This causes
some interesting issues with prior specification. Before starting the harbor
seal examples, we set up the data, making time go across the columns and
removing the year column:

dat <- t(harborSealWA)

dat <- dat[2:nrow(dat),] # remove the year row

5.2.1 One hidden state process for each observation time series

This is the default model for the MARSS() function. In this case, n = m, the
observation errors are i.i.d. and the process errors are independent and have
different variances. The elements in u are all different (meaning, they are not
forced to be the same). Mathematically, the MARSS model being fit is:

36 5 Examples
x1,t
x2,t
x3,t
x4,t
x5,t

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1

+


u1
u2
u3
u4
u5

+


w1,t
w2,t
w3,t
w4,t
w5,t

 , wt ∼ MVN




0
0
0
0
0

 ,


q1 0 0 0 0
0 q2 0 0 0
0 0 q3 0 0
0 0 0 q4 0
0 0 0 0 q5





y1,t
y2,t
y3,t
y4,t
y5,t

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




x1,t
x2,t
x3,t
x4,t
x5,t

+


0
0
0
0
0

+


v1,t
v2,t
v3,t
v4,t
v5,t

 , vt ∼ MVN




0
0
0
0
0

 ,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




This is the default model, so you can fit it by simply passing dat to MARSS().

kem <- MARSS(dat)

Success! abstol and log-log tests passed at 38 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 38 iterations.

Log-likelihood: 19.13428

AIC: -6.268557 AICc: 3.805517

Estimate

R.diag 0.00895

U.X.SJF 0.06839

U.X.SJI 0.07163

U.X.EBays 0.04179

U.X.PSnd 0.05226

U.X.HC -0.00279

Q.(X.SJF,X.SJF) 0.03205

Q.(X.SJI,X.SJI) 0.01098

Q.(X.EBays,X.EBays) 0.00706

Q.(X.PSnd,X.PSnd) 0.00414

Q.(X.HC,X.HC) 0.05450

x0.X.SJF 5.98647

x0.X.SJI 6.72487

x0.X.EBays 6.66212

x0.X.PSnd 5.83969

x0.X.HC 6.60482

5.2 Different numbers of state processes 37

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

The output warns you that the convergence tolerance is high. You can set it
lower by passing in control=list(conv.test.slope.tol=0.1). MARSS() is
automatically creating parameter names since you did not tell it the names.
To see exactly where each parameter element appears in its parameter matrix,
type summary(kem$model).

Though it is not necessary to specify the model for this example since it
is the default, here is how you could do so using matrices:

B <- Z <- diag(1, 5)

U <- matrix(c("u1", "u2", "u3", "u4", "u5"), 5, 1)

x0 <- A <- matrix(0, 5, 1)

R <- Q <- matrix(list(0), 5, 5)

diag(R) <- "r"

diag(Q) <- c("q1", "q2", "q3", "q4", "q5")

Notice that when a matrix has both fixed and estimated elements (like R and
Q), a list matrix is used to allow you to specify the fixed elements as numeric
and to give the estimated elements character names.

The default MLE method is the EM algorithm (method="kem"). You can
also use a quasi-Newton method (BFGS) by setting method="BFGS".

bfgs <- MARSS(dat, method = "BFGS")

Success! Converged in 99 iterations.

Function MARSSkfas used for likelihood calculation.

MARSS fit is

Estimation method: BFGS

Estimation converged in 99 iterations.

Log-likelihood: 19.13936

AIC: -6.278712 AICc: 3.795362

Estimate

R.diag 0.00849

U.X.SJF 0.06838

U.X.SJI 0.07152

U.X.EBays 0.04188

U.X.PSnd 0.05233

U.X.HC -0.00271

Q.(X.SJF,X.SJF) 0.03368

Q.(X.SJI,X.SJI) 0.01124

Q.(X.EBays,X.EBays) 0.00722

38 5 Examples

Q.(X.PSnd,X.PSnd) 0.00437

Q.(X.HC,X.HC) 0.05600

x0.X.SJF 5.98437

x0.X.SJI 6.72169

x0.X.EBays 6.65689

x0.X.PSnd 5.83527

x0.X.HC 6.60425

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Using the default EM convergence criteria, the EM algorithm stops at
a log-likelihood a little lower than the BFGS algorithm does, but the EM
algorithm was faster, 6.8 times faster, in this case. If you wanted to use the
EM fit as the initial conditions, pass in the inits argument using the $par

element (or coef(fit,form="marss")) of the EM fit.

bfgs2 <- MARSS(dat, method = "BFGS", inits = kem$par)

The BFGS algorithm now converges in 103 iterations. Output not shown.
We mentioned that the missing years from year 2 to 4 creates an interesting

issue with the prior specification. The default behavior of MARSS is to treat
the initial state as at t = 0 instead of t = 1. Usually this doesn’t make a
difference, but for this dataset, if we set the prior at t = 1, the MLE estimate
of R becomes 0. If we estimate x1 as a parameter and let R go to 0, the
likelihood will go to infinity (slowly but surely). This is neither an error nor a
pathology, but is probably not what you would like to have happen. Note that
the BFGS algorithm will not find the maximum in this case; it will stop before
R gets small and the likelihood gets very large. However, the EM algorithm
will climb up the peak. You can try it by running the following code. It will
report warnings which you can read about in Appendix A.

kem.strange <- MARSS(dat, model = list(tinitx = 1))

5.2.2 Five correlated hidden state processes

This is the same model except that the five hidden states have correlated
process errors. Mathematically, this is the model:

5.2 Different numbers of state processes 39
x1,t
x2,t
x3,t
x4,t
x5,t

=


x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1

+


u1
u2
u3
u4
u5

+


w1,t
w2,t
w3,t
w4,t
w5,t

 , wt ∼ MVN

0,


q1 c1,2 c1,3 c1,4 c1,5

c1,2 q2 c2,3 c2,4 c2,5
c1,3 c2,3 q3 c3,4 c3,5
c1,4 c2,4 c3,4 q4 c4,5
c1,5 c2,5 c3,5 c4,5 q5





y1,t
y2,t
y3,t
y4,t
y5,t

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




x1,t
x2,t
x3,t
x4,t
x5,t

+


0
0
0
0
0

+


v1,t
v2,t
v3,t
v4,t
v5,t

 , vt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




B is not shown in the top equation; it is a m×m identity matrix. To fit, use
MARSS() with the model argument set (output not shown).

kem <- MARSS(dat, model = list(Q = "unconstrained"))

This shows one of the text shortcuts, "unconstrained", which means esti-
mate all elements in the matrix. This shortcut can be used for all parameter
matrices.

5.2.3 Five equally correlated hidden state processes

This is the same model except that now there is only one process error variance
and one process error covariance. Mathematically, the model is:

x1,t
x2,t
x3,t
x4,t
x5,t

=


x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1

+


u1
u2
u3
u4
u5

+


w1,t
w2,t
w3,t
w4,t
w5,t

 , wt ∼ MVN

0,


q c c c c
c q c c c
c c q c c
c c c q c
c c c c q





y1,t
y2,t
y3,t
y4,t
y5,t

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




x1,t
x2,t
x3,t
x4,t
x5,t

+


0
0
0
0
0

+


v1,t
v2,t
v3,t
v4,t
v5,t

 , vt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




Again B is not shown in the top equation; it is a m×m identity matrix. To
fit, use the following code (output not shown):

kem <- MARSS(dat, model = list(Q = "equalvarcov"))

The shortcut ‘"equalvarcov" means one value on the diagonal and one on
the off-diagonal. It can be used for all square matrices (B, Q, R, and Λ).

40 5 Examples

5.2.4 Five hidden state processes with a “north” and a “south” u and Q
elements

Here we fit a model with five independent hidden states where each observa-
tion time series is an independent observation of a different hidden trajectory
but the hidden trajectories 1-3 share their u and Q elements, while hidden
trajectories 4-5 share theirs. This is the model:

x1,t
x2,t
x3,t
x4,t
x5,t

=


x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1

+


un
un
un
us
us

+


w1,t
w2,t
w3,t
w4,t
w5,t

 , wt ∼ MVN

0,


qn 0 0 0 0
0 qn 0 0 0
0 0 qn 0 0
0 0 0 qs 0
0 0 0 0 qs





y1,t
y2,t
y3,t
y4,t
y5,t

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




x1,t
x2,t
x3,t
x4,t
x5,t

+


0
0
0
0
0

+


v1,t
v2,t
v3,t
v4,t
v5,t

 , vt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




To fit we use the following code:

regions <- list("N", "N", "N", "S", "S")

U <- matrix(regions, 5, 1)

Q <- matrix(list(0), 5, 5)

diag(Q) <- regions

kem <- MARSS(dat, model = list(U = U, Q = Q))

Only u and Q need to be specified since the other parameters are at their
default values.

5.2.5 Fixed observation error variance

Here we fit the same model but with a known observation error variance. This
is the model:

5.2 Different numbers of state processes 41
x1,t
x2,t
x3,t
x4,t
x5,t

=


x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1

+


un
un
un
us
us

+


w1,t
w2,t
w3,t
w4,t
w5,t

 , wt ∼ MVN

0,


qn 0 0 0 0
0 qn 0 0 0
0 0 qn 0 0
0 0 0 qs 0
0 0 0 0 qs





y1,t
y2,t
y3,t
y4,t
y5,t

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




x1,t
x2,t
x3,t
x4,t
x5,t

+


0
0
0
0
0

+


v1,t
v2,t
v3,t
v4,t
v5,t

 ,

vt ∼ MVN

0,


0.01 0 0 0 0

0 0.01 0 0 0
0 0 0.01 0 0
0 0 0 0.01 0
0 0 0 0 0.01




To fit this model, use the following code (output not shown):

regions <- list("N", "N", "N", "S", "S")

U <- matrix(regions, 5, 1)

Q <- matrix(list(0), 5, 5)

diag(Q) <- regions

R <- diag(0.01, 5)

kem <- MARSS(dat, model = list(U = U, Q = Q, R = R))

5.2.6 One hidden state and five i.i.d. observation time series

Instead of five hidden state trajectories, we specify that there is only one and
all the observations are observing that one trajectory. Mathematically, the
model is:

xt = xt−1 +u+wt , wt ∼ N(0,q)


y1,t
y2,t
y3,t
y4,t
y5,t

=


1
1
1
1
1

xt +


0
a2
a3
a4
a5

+


v1,t
v2,t
v3,t
v4,t
v5,t

 , vt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




42 5 Examples

Note the default model for R is "diagonal and equal"’ so we can leave this
off when specifying the model argument. To fit, use this code (output not
shown):

Z <- factor(c(1, 1, 1, 1, 1))

kem <- MARSS(dat, model = list(Z = Z))

Success! abstol and log-log tests passed at 28 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 28 iterations.

Log-likelihood: 3.593276

AIC: 8.813447 AICc: 11.13603

Estimate

A.SJI 0.80153

A.EBays 0.28245

A.PSnd -0.54802

A.HC -0.62665

R.diag 0.04523

U.U 0.04759

Q.Q 0.00429

x0.x0 6.39199

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

You can also pass in Z exactly as it is in the equation: Z=matrix(1,5,2),
but the factor shorthand is handy if you need to assign different observed
time series to different underlying state time series (see next examples). The
default a form is "scaling", which means that the first y row associated with
a given x has a = 0 and the rest are estimated.

5.2.7 One hidden state and five independent observation time series with
different variances

Mathematically, this model is:

5.2 Different numbers of state processes 43

xt = xt−1 +u+wt , wt ∼ N(0,q)


y1,t
y2,t
y3,t
y4,t
y5,t

=


1
1
1
1
1

xt +


0
a2
a3
a4
a5

+


v1,t
v2,t
v3,t
v4,t
v5,t

 , vt ∼ MVN

0,


r1 0 0 0 0
0 r2 0 0 0
0 0 r3 0 0
0 0 0 r4 0
0 0 0 0 r5




To fit this model:

Z <- factor(c(1, 1, 1, 1, 1))

R <- "diagonal and unequal"

kem <- MARSS(dat, model = list(Z = Z, R = R))

Success! abstol and log-log tests passed at 24 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 24 iterations.

Log-likelihood: 16.66199

AIC: -9.323982 AICc: -3.944671

Estimate

A.SJI 0.79555

A.EBays 0.27540

A.PSnd -0.53694

A.HC -0.60874

R.(SJF,SJF) 0.03229

R.(SJI,SJI) 0.03528

R.(EBays,EBays) 0.01352

R.(PSnd,PSnd) 0.01082

R.(HC,HC) 0.19609

U.U 0.05270

Q.Q 0.00604

x0.x0 6.26676

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

44 5 Examples

5.2.8 Two hidden state processes

Here we fit a model with two hidden states (north and south) where observa-
tion time series 1-3 are for the north and 4-5 are for the south. We make the
hidden state processes independent (meaning a diagonal Q matrix) but with
the same process variance. We make the observation errors i.i.d. (the default)
and the u elements equal. Mathematically, this is the model:[

xn,t
xs,t

]
=

[
xn,t−1
xs,t−1

]
+

[
u
u

]
+

[
wn,t
ws,t

]
, wt ∼ MVN

(
0,
[

q 0
0 q

])


y1,t
y2,t
y3,t
y4,t
y5,t

=


1 0
1 0
1 0
0 1
0 1


[

xn,t
xs,t

]
+


0
a2
a3
0
a5

+


v1,t
v2,t
v3,t
v4,t
v5,t

 , vt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




To fit the model, use the following code (output not shown):

Z <- factor(c("N", "N", "N", "S", "S"))

Q <- "diagonal and equal"

U <- "equal"

kem <- MARSS(dat, model = list(Z = Z, Q = Q, U = U))

You can also pass in Z exactly as it is in the equation as a numeric matrix
Z=matrix(c(1,1,1,0,0,0,0,0,1,1),5,2); the factor notation is a shortcut
for making a design matrix (as Z is in these examples). "equal" is a shortcut
meaning all elements in a matrix are constrained to be equal. It can be used
for all column matrices (a, u and π). "diagonal and equal" can be used as
a shortcut for all square matrices (B, Q, R, and Λ).

5.3 Linear constraints

Your model can have simple linear constraints within all the parameters except
Q, R and Λ. For example 1+2a−3b is a linear constraint. When entering this
value for your matrix, you specify this as "1+2*a+-3*b". NOTE: +’s join
parts so use "+-3*b" to specify −3b. Anything after * is a parameter. So 1*1

has a parameter called "1". Example, let’s specify the following B, Q and Z
matrices:

U =

[
u−0.1
u+0.1

]
Q =

[
q11 0
0.01 0

]
Z =


z1 − z2 2z1

0 z1
z2 0
0 z3
0 1+ z3



5.5 Including inputs (or covariates) 45

This would be specified as (notice "1*z1+-1*z2" for z1 − z2):

U <- matrix(list("-0.1+1*u","0.1+1*u"),2,1)

Q <- matrix(list("q11",0,0,0.01),2,2)

Z <- matrix(list("1*z1+-1*z2",0,"z2",0,0,"2*z1","z1",0,"z3","1+z3"),5,2)

We need to fix A if Z is estimated.

kem <- MARSS(dat, model = list(Z = Z, Q = Q, U = U, A="zero"))

5.4 Time-varying parameters

Time-varying parameters are specified by passing in an array of matrices (list,
numeric or character) where the 3rd dimension of the array is time and must
be the same value as the 2nd (time) dimension of the data matrix. No text
shortcuts are allowed for time-varying parameters; you need to use the matrix
form.

For example, let’s say we wanted a different u for the first half versus
second half of the harbor seal time series. We would pass in an array for u as
follows:

U1 <- matrix("t1", 5, 1)

U2 <- matrix("t2", 5, 1)

Ut <- array(U2, dim = c(dim(U1), dim(dat)[2]))

TT <- dim(dat)[2]

Ut[, , 1:floor(TT / 2)] <- U1

kem.tv <- MARSS(dat, model = list(U = Ut, Q = "diagonal and equal"))

You can have some elements in a parameter matrix be time-constant and some
be time-varying:

U1 <- matrix(c(rep("t1", 4), "hc"), 5, 1)

U2 <- matrix(c(rep("t2", 4), "hc"), 5, 1)

Ut <- array(U2, dim = c(dim(U1), dim(dat)[2]))

Ut[, , 1:floor(TT / 2)] <- U1

kem.tv <- MARSS(dat, model = list(U = Ut, Q = "diagonal and equal"))

Note that how the time-varying model is specified for MARSS is the same as
you would write the time-varying model on paper in matrix math form.

5.5 Including inputs (or covariates)

In MARSS models with covariates, the covariates are often treated as inputs
and appear as either the c or d in Equation 5.1, depending on the application.
However, more generally, c and d are simply inputs that are fully-known (no
missing values). ct is the p×1 vector of inputs at time t which affect the states

46 5 Examples

and dt is a q×1 vector of inputs (potentially the same as ct), which affect the
observations.

Ct is an m× p matrix of coefficients relating the effects of ct to the m×1
state vector xt , and Dt is an n×q matrix of coefficients relating the effects of dt
to the n×1 observation vector yt . The elements of C and D can be estimated,
and their form is specified much like the other matrices.

With the MARSS() function, one can fit a model with inputs by simply
passing in model$c and/or model$d in the MARSS() call as a p×T or q×T
matrix, respectively. The form for Ct and Dt is similarly specified by passing
in model$C and/or model$D. If C and D are not time-varying, they are passed
in as a 2-dimensional matrix. If they are time-varying, they must be passed
in as an 3-dimensional array with the 3rd dimension equal to the number of
time steps.

See Chapter 13 for extended examples of including covariates as inputs in
a MARSS model. Also note that it is not necessary to have your covariates
appear in c and/or d. That is a common form, however in some MARSS
models, covariates will appear in one of the parameter matrices as fixed values.

5.6 Printing and summarizing models and model fits

The package includes print functions for marssMODEL objects and marssMLE
objects (fitted models).

print(kem)

print(kem$model)

This will print the basic information on model structure and model fit that
you have seen in the previous examples. The package also includes a summary
function for models.

summary(kem$model)

Output for the summary function is not shown because it is verbose. It prints
each matrix with the fixed elements denoted with their values and the free
elements denoted by their names. This is very helpful for confirming exactly
what model structure you are fitting to the data.

The print function will also print various other types of output such as a
vector of the estimated parameters, the estimated states, the state standard
errors, etc. You use the what argument in the print call to specify the desired
output. Type ?print.MARSS to see a list of the types of output that can be
printed with a print call. If you want to use the output from print instead of
printing to the console, then assign the print call to a value:

x <- print(kem, what = "states", silent = TRUE)

The package also includes the common functions for working with the
output from fitted models: residuals(fit), coef(fit) (the estimated pa-
rameters), fitted(fit), logLik(fit) and predict(fit).

5.8 Confidence intervals on a fitted model 47

5.7 Tidy output

The tidy() and glance() functions from the {broom} package will provide
summaries as a data.frame for use in further analyses and for passing to
ggplot().

broom::tidy(kem)

term estimate std.error conf.low conf.up

1 R.diag 0.14015704 0.0247974347 0.091554965 0.188759123

2 U.1 0.04770272 0.0104435216 0.027233790 0.068171643

3 Q.diag 0.00000000 0.0005655539 -0.001108465 0.001108465

4 x0.N 6.92924815 0.1238199246 6.686565560 7.171930745

5 x0.S 5.95499350 0.1710235191 5.619793566 6.290193441

broom::glance(kem)

coef.det sigma df logLik AIC AICc

1 0.6149352 0.1420352 5 -30.98719 71.97439 72.89747

convergence errors

1 0 0

5.8 Confidence intervals on a fitted model

The function MARSSparamCIs() is used to compute confidence intervals with a
default α level of 0.05. The default is to compute approximate confidence inter-
vals using the Hessian matrix (method="hessian"). Confidence intervals can
also be computed via parametric (method="parametric") or non-parametric
(method="innovations") bootstrapping. Note, if you want confidence inter-
vals on variances, then it is unwise to use the Hessian approximation as it is
symmetric and variances are constrained to be positive.

5.8.1 Approximate confidence intervals from the Hessian matrix

The default method for MARSSparamCIs() computes approximate confidence
intervals using an analytically computed Hessian matrix (Harvey, 1989, sec-
tion 3.4.5). The call is:

kem.with.hess.CIs <- MARSSparamCIs(kem)

See ?MARSShessian for a discussion of the Hessian calculations. Use print or
just type the marssMLE object name to see the confidence intervals:

print(kem.with.hess.CIs)

48 5 Examples

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 390 iterations.

Log-likelihood: -30.98719

AIC: 71.97439 AICc: 72.89747

ML.Est Std.Err low.CI up.CI

R.diag 0.1402 0.024797 0.09155 0.18876

U.1 0.0477 0.010444 0.02723 0.06817

Q.diag 0.0000 0.000566 -0.00111 0.00111

x0.N 6.9292 0.123820 6.68657 7.17193

x0.S 5.9550 0.171024 5.61979 6.29019

Initial states (x0) defined at t=0

CIs calculated at alpha = 0.05 via method=hessian

5.8.2 Confidence intervals from a parametric bootstrap

Use method="parametric" to use a parametric bootstrap to compute confi-
dence intervals and bias using a parametric bootstrap.

kem.w.boot.CIs <- MARSSparamCIs(kem, method = "parametric", nboot = 10)

nboot should be more like 1000, but set low for example's sake

print(kem.w.boot.CIs)

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 390 iterations.

Log-likelihood: -30.98719

AIC: 71.97439 AICc: 72.89747

ML.Est Std.Err low.CI up.CI Est.Bias Unbias.Est

R.diag 0.1402 0.03487 0.0967 0.19763 0.002630 0.142787

U.1 0.0477 0.00663 0.0327 0.05171 0.003898 0.051601

Q.diag 0.0000 0.00298 0.0000 0.00734 -0.000956 -0.000956

x0.N 6.9292 0.09017 6.8586 7.08237 -0.049910 6.879338

x0.S 5.9550 0.12738 5.8781 6.24378 -0.129529 5.825465

Initial states (x0) defined at t=0

CIs calculated at alpha = 0.05 via method=parametric

Bias calculated via bootstrapping with bootstraps.

5.10 Kalman filter and smoother output 49

5.9 Vectors of just the estimated parameters

Often it is useful to have a vector of the estimated parameters. For example, if
you are writing a call to optim(), you will need a vector of just the estimated
parameters. You can use the function coef():

parvec <- coef(kem, type = "vector")

parvec

R.diag U.1 Q.diag x0.N x0.S

0.14015704 0.04770272 0.00000000 6.92924815 5.95499350

If you need the parameters as a matrix, use type = "matrix".

5.10 Kalman filter and smoother output

All the standard Kalman filter and smoother output (along with the lag-one
covariance smoother output) is available using the tsSmooth() and MARSSkf()

functions. Read the help file (?MARSSkf) for details and meanings of the names
in the output list. tsSmooth() returns a data frame in long form. You need
to pass in the type of conditioning you want (on all data, data 1 to t or data
1 to t −1).

df <- tsSmooth(kem)

head(df)

.rownames t .estimate .se

1 N 1 6.976951 0

2 N 2 7.024654 0

3 N 3 7.072356 0

4 N 4 7.120059 0

5 N 5 7.167762 0

6 N 6 7.215464 0

MARSSkf() returns a list with all the filter and smoother output (including
variance matrices) in matrix and array form.

kf <- MARSSkf(kem)

names(kf)

[1] "xtT" "VtT" "Vtt1T" "x0T"

[5] "V0T" "x01T" "V10T" "x00T"

[9] "V00T" "Vtt" "Vtt1" "J"

[13] "J0" "Kt" "xtt1" "xtt"

[17] "Innov" "Sigma" "kfas.model" "logLik"

[21] "ok" "errors"

50 5 Examples

if you only need the logLik,

MARSSkf(kem, only.logLik = TRUE)

$logLik

[1] -30.98719

or

logLik(kem)

'log Lik.' -30.98719 (df=5)

5.11 Degenerate variance estimates

If your data are short relative to the number of parameters you are estimating,
then you are liable to find that some of the variance elements are degenerate
(equal to zero). Try the following:

dat.short <- dat[1:4, 1:10]

kem.degen <- MARSS(dat.short, control = list(allow.degen = FALSE))

Warning! Abstol convergence only. Maxit (=500) reached before log-log convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

WARNING: Abstol convergence only no log-log convergence.

maxit (=500) reached before log-log convergence.

The likelihood and params might not be at the ML values.

Try setting control$maxit higher.

Log-likelihood: 11.67854

AIC: 2.642914 AICc: 63.30958

Estimate

R.diag 1.22e-02

U.X.SJF 9.79e-02

U.X.SJI 1.09e-01

U.X.EBays 9.28e-02

U.X.PSnd 1.11e-01

Q.(X.SJF,X.SJF) 1.89e-02

Q.(X.SJI,X.SJI) 1.03e-05

Q.(X.EBays,X.EBays) 8.24e-06

Q.(X.PSnd,X.PSnd) 3.05e-05

x0.X.SJF 5.96e+00

x0.X.SJI 6.73e+00

x0.X.EBays 6.60e+00

x0.X.PSnd 5.71e+00

5.11 Degenerate variance estimates 51

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Convergence warnings

Warning: the Q.(X.SJI,X.SJI) parameter value has not converged.

Warning: the Q.(X.EBays,X.EBays) parameter value has not converged.

Warning: the Q.(X.PSnd,X.PSnd) parameter value has not converged.

Type MARSSinfo("convergence") for more info on this warning.

This will print a warning that the maximum number of iterations was reached
before convergence of some of the Q parameters. It might be that if you just
ran a few more iterations the variances will converge. So first try setting
control$maxit higher.

kem.degen2 <- MARSS(dat.short, control = list(

maxit = 1000,

allow.degen = FALSE

), silent = 2)

Output not shown, but if you run the code, you will see that some of the Q
terms are still not converging. MARSS can detect if a variance is going to zero
and it will try zero to see if that has a higher likelihood. Try removing the
allow.degen=FALSE which was turning off this feature.

kem.short <- MARSS(dat.short)

Warning! Abstol convergence only. Maxit (=500) reached before log-log convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

WARNING: Abstol convergence only no log-log convergence.

maxit (=500) reached before log-log convergence.

The likelihood and params might not be at the ML values.

Try setting control$maxit higher.

Log-likelihood: 11.6907

AIC: 2.6186 AICc: 63.28527

Estimate

R.diag 1.22e-02

U.X.SJF 9.79e-02

U.X.SJI 1.09e-01

U.X.EBays 9.24e-02

U.X.PSnd 1.11e-01

Q.(X.SJF,X.SJF) 1.89e-02

52 5 Examples

Q.(X.SJI,X.SJI) 1.03e-05

Q.(X.EBays,X.EBays) 0.00e+00

Q.(X.PSnd,X.PSnd) 3.04e-05

x0.X.SJF 5.96e+00

x0.X.SJI 6.73e+00

x0.X.EBays 6.60e+00

x0.X.PSnd 5.71e+00

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Convergence warnings

Warning: the Q.(X.SJI,X.SJI) parameter value has not converged.

Warning: the Q.(X.PSnd,X.PSnd) parameter value has not converged.

Type MARSSinfo("convergence") for more info on this warning.

So three of the four Q elements are going to zero. This often happens when you
do not have enough data to estimate both observation and process variance.

Perhaps we are trying to estimate too many variances. We can try using
only one variance value in Q and one u value in u:

kem.small <- MARSS(dat.short, model = list(

Q = "diagonal and equal",

U = "equal"

))

Success! abstol and log-log tests passed at 164 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 164 iterations.

Log-likelihood: 11.19

AIC: -8.379994 AICc: 0.9533396

Estimate

R.diag 0.0191

U.1 0.1027

Q.diag 0.0000

x0.X.SJF 6.0609

x0.X.SJI 6.7698

x0.X.EBays 6.5307

x0.X.PSnd 5.7451

5.13 Data simulation 53

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

No, there are simply not enough data to estimate both process and observation
variances.

5.12 Bootstrap parameter estimates

You can easily produce bootstrap parameter estimates from a fitted model
using MARSSboot():

boot.params <- MARSSboot(kem,

nboot = 20, output = "parameters", sim = "parametric"

)$boot.params

|2% |20% |40% |60% |80% |100%

Progress: ||

Use silent=TRUE to stop the progress bar from printing. The function will also
produce parameter sets generated using the Hessian matrix (sim="hessian")
or a non-parametric bootstrap (sim="innovations").

5.13 Data simulation

5.13.1 Simulated data from a fitted MARSS model

Data can be simulated from marssMLE object using MARSSsimulate().

sim.data <- MARSSsimulate(kem, nsim = 2, tSteps = 100)$sim.data

Then you might want to estimate parameters from the simulated data. Above
we created two simulated datasets (nsim=2). We will fit to the first one. Here
the default settings for MARSS() are used.

kem.sim.1 <- MARSS(sim.data[, , 1])

Then we might like to see the likelihood of the second set of simulated data
under the model fit to the first set of data. We do that with the Kalman
filter function. This function takes a marssMLE object (as output by say the
MARSS() function), and we have to replace the data in kem.sim.1 with the
second set of simulated data.

kem.sim.2 <- kem.sim.1

kem.sim.2$model$data <- sim.data[, , 2]

MARSSkf(kem.sim.2)$logLik

[1] -221.8966

54 5 Examples

5.14 Bootstrap AIC

The function MARSSaic() computes a bootstrap AIC for model selection pur-
poses. output="AICbp" will produce a parameter bootstrap. Use output="AICbb"
to produce a non-parametric bootstrap AIC. You will need a large number of
bootstraps (nboot). We use only 10 bootstraps to show you how to compute
AICb with the {MARSS} package, but the AICbp estimate will be terrible
with this few bootstraps. nboot should be more like 1000.

kem.with.AICb <- MARSSaic(kem,

output = "AICbp",

Options = list(nboot = 10, silent = TRUE)

)

print(kem.with.AICb)

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 390 iterations.

Log-likelihood: -30.98719

AIC: 71.97439 AICc: 72.89747 AICbp(param): 70.16541

Estimate

R.diag 0.1402

U.1 0.0477

Q.diag 0.0000

x0.N 6.9292

x0.S 5.9550

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

5.15 Convergence

MARSS uses two convergence tests. The first is

logLiki+1 − logLiki < tol

This is called abstol (meaning absolute tolerance) in the output. The second
is called the conv.test.slope. This looks at the slope of the log parameter
value (or likelihood) versus log iteration number and asks whether that is close
to zero (not changing).

If you are having trouble getting the model to converge, then start by
addressing the following 1) Are you trying to fit a bad model, e.g., fitting

5.15 Convergence 55

a non-stationary model to stationary data or fitting a model that specifies
independence of errors or states to data that clearly violate that assumption
or fitting a model that implies a particular stationary distribution to data
that strongly violate that? 2) Do you have confounded parameters, e.g., two
parameters that have the same effect (e.g., effectively two intercepts)?, 3) Are
you trying to fit a model to 1 data point somewhere, e.g., in a big multivariate
dataset with lots of missing values? 4) How many parameters are you trying
to estimate per data point? 5) Check your residuals (look at the QQplots in
plot(fit)) for normality. 6) Did you do any data transformations that would
cause one of the variances to go to zero? Replacing 0s with a constant will
do that. Try replacing them with NAs (missing). Do you have long strings of
constant numbers in your data? Binned data often look like that, and that
will drive Q to 0.

6

Setting and searching initial conditions

The EM algorithm is very robust to initial starting conditions however before
final results are accepted, they should be tested using other initial conditions.
Other times you will want to pass in specific initial conditions because the
MARSS() function cannot find initial conditions on its own, which is the case
for certain models with certain Z matrices in particular or you might want to
start with initial conditions at the MLEs of another fit. This chapter shows
you how to set initial conditions.

The chapter will also cover using a Monte Carlo search over random initial
values. This is a brute force method for finding optimal initial conditions.
It simply uses random initial conditions and runs the EM algorithm for a
number of iterations and selects the initial conditions with the highest log-
likelihood after the given number of iterations. In MARSS versions 3.9 and
earlier, there was a utility function to perform a Monte Carlo search. However,
it is very hard for the function to come up with reasonable random initial
conditions for the wide variety of models that MARSS can fit. In MARSS
version 3.10, the MARSSmcinit() function was removed and replaced with
this chapter discussing how to do your own Monte Carlo initial conditions
search. The original MARSSmcinit() function is included in the R code with
this chapter (see footnote).

6.1 Fitting a model with a new set of initial conditions

Fitting a model with a new set of initial conditions is straight-forward with
the MARSS() function. Simply pass in the argument inits. This is illustrated
with an example from Chapter 13.

We will fit a model with covariates to phytoplankton data:

Type RShowDoc("Chapter_inits.R",package="MARSS") at the R command line
to open a file with all the code for this chapter and see a copy of the old MARSSm-

cinit() function.

58 6 Setting inits

fulldat <- lakeWAplanktonTrans

years <- fulldat[, "Year"] >= 1965 & fulldat[, "Year"] < 1975

dat <- t(fulldat[years, c("Greens", "Bluegreens")])

the.mean <- apply(dat, 1, mean, na.rm = TRUE)

the.sigma <- sqrt(apply(dat, 1, var, na.rm = TRUE))

dat <- (dat - the.mean) * (1 / the.sigma)

The covariates for this example are temperature and total phosphorous.

covariates <- rbind(

Temp = fulldat[years, "Temp"],

TP = fulldat[years, "TP"]

)

demean the covariates

the.mean <- apply(covariates, 1, mean, na.rm = TRUE)

covariates <- covariates - the.mean

We will fit a model where algal abundance is a random walk without
drift and where the observation errors are explained by the covariates plus
independent unexplained noise:

U <- x0 <- "zero"

Q <- "unconstrained"

d <- covariates

A <- "zero"

D <- "unconstrained"

R <- "diagonal and equal"

model.list <- list(

U = U, Q = Q, A = A, R = R,

D = D, d = d, x0 = x0

)

kem <- MARSS(dat, model = model.list)

Success! abstol and log-log tests passed at 72 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 72 iterations.

Log-likelihood: -236.5911

AIC: 489.1822 AICc: 489.8582

Estimate

R.diag 0.0720

Q.(1,1) 0.9946

6.1 Fitting a model with a new set of initial conditions 59

Q.(2,1) -0.0290

Q.(2,2) 0.0976

D.(Greens,Temp) 0.3572

D.(Bluegreens,Temp) 0.2537

D.(Greens,TP) -0.0215

D.(Bluegreens,TP) 0.0354

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

The inits argument can be set either as a list that is the same as that
from the following:

coef(kem, what = "par")

or as a marssMLE object from previous MARSS() call for a model with the
same structure. ‘same structure’ means the model list used for the model

argument is the same and the dimensions of the model (number of states and
rows of data) are the same.

6.1.1 Specifying initial conditions as a list

The output from coef(kem, what="par") is a list with a column vector of
the estimated values for each parameter matrix. Here is the value for D and
Q:

out <- coef(kem, what = "par")

out$D

[,1]

(Greens,Temp) 0.35722321

(Bluegreens,Temp) 0.25372912

(Greens,TP) -0.02151303

(Bluegreens,TP) 0.03544925

out$Q

[,1]

(1,1) 0.99456586

(2,1) -0.02895620

(2,2) 0.09757775

MARSS() gave names to the D and Q estimated values. It is important to look
at the output from coef(..., what="par") before passing in the inits list
so that you know where the parameter values fall in the parameter column
vector. For example, note that in the Q column vector, the variance for the
first row in x (Greens) is first, the (1,1) element, then the covariance, and last

60 6 Setting inits

value is the variance of the second row in x (Bluegreens) which appears in the
(2,2) element of Q.

You can pass in inits for any of the parameters in coef(..., what="par").
You can pass in either a column vector that is the same size as that output
by coef(), so for Q, the column vectors must be 3×1, or a scalar. If a scalar,
then all values in the par column vector will be set to that value—except for
Q, R and Λ which will be set to diagonal matrices with the scalar on the
diagonal.

Examples

Pass in an initial value for Q that is a diagonal matrix with 1 on the diagonal.

inits <- list(Q = 1)

kem <- MARSS(dat, model = model.list, inits = inits)

Success! abstol and log-log tests passed at 134 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 134 iterations.

Log-likelihood: -236.6064

AIC: 489.2127 AICc: 489.8888

Estimate

R.diag 0.0686

Q.(1,1) 1.0079

Q.(2,1) -0.0296

Q.(2,2) 0.1004

D.(Greens,Temp) 0.3312

D.(Bluegreens,Temp) 0.2531

D.(Greens,TP) -0.0294

D.(Bluegreens,TP) 0.0345

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

or

inits <- list(Q = matrix(c(1, 0, 1), 3, 1))

kem <- MARSS(dat, model = model.list, inits = inits)

Success! abstol and log-log tests passed at 134 iterations.

Alert: conv.test.slope.tol is 0.5.

6.1 Fitting a model with a new set of initial conditions 61

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 134 iterations.

Log-likelihood: -236.6064

AIC: 489.2127 AICc: 489.8888

Estimate

R.diag 0.0686

Q.(1,1) 1.0079

Q.(2,1) -0.0296

Q.(2,2) 0.1004

D.(Greens,Temp) 0.3312

D.(Bluegreens,Temp) 0.2531

D.(Greens,TP) -0.0294

D.(Bluegreens,TP) 0.0345

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Pass in an initial value for Q that is this non-diagonal matrix:[
1 0.5

0.5 0.7

]
inits <- list(Q = matrix(c(1, 0.5, 0.7), 3, 1))

kem <- MARSS(dat, model = model.list, inits = inits)

Pass in an initial value for Q and D:

inits <- list(Q = matrix(c(1, 0.5, 0.7), 3, 1), D = 1)

kem <- MARSS(dat, model = model.list, inits = inits)

The initial values for D will be all 1s.
Pass in an initial value for D set to the value from a previous fit but use

default inits for everything else:

inits <- list(D = coef(kem, what = "par")$D)

kem <- MARSS(dat, model = model.list, inits = inits)

6.1.2 Specifying initial conditions using output from another fit

You can also use a MARSS() fit as an initial condition. The model must be the
same structure. This is typically used when you want to use an EM fit as a
start for a BFGS fit if you are using BFGS for the final MLE search.

You can pass in the initial conditions as a list using the coef() function.

62 6 Setting inits

create the par list from the output

inits <- coef(kem, what = "par")

bfgs <- MARSS(dat, model = model.list, inits = inits, method = "BFGS")

Or you can pass in a marssMLE object output from a prior call to MARSS().
This is a shortcut for the above call.

create the par list from the output

bfgs <- MARSS(dat, model = model.list, inits = kem, method = "BFGS")

6.2 Searching across initial values using a Monte Carlo routine

The EM algorithm is a hill-climbing algorithm and like all hill-climbing al-
gorithms it can get stuck on local maxima and ridges. There are a number
approaches to doing a pre-search of the initial conditions space, but a brute
force random Monte Carlo search appears to work well (Biernacki et al., 2003).
It is slow, but normally sufficient. In our papers on the distributional proper-
ties of MARSS parameter estimates, we rarely found that an initial conditions
search changed the estimates—except in cases where Z and B are estimated
as unconstrained or when the fraction of missing data in the data set became
large. Regardless an initial conditions search should be done before reporting
final estimates for an analysis1.

The idea behind a Monte Carlo search of initial conditions is simple. One
simply randomly generates initial conditions, runs the EM algorithm a few
iterations (10-20), and saves the log-likelihood at the end of those iterations.
The starting initial conditions is selected as the initial conditions that gives
the lowest log-likelihood.

The R code included for this chapter includes a function that will do a
simple Monte Carlo search using a marssMLE object (output from a MARSS()

call) and drawing random initial conditions from a uniform distribution or a
Wishart distribution for the variance-covariance matrices. The function will
not work for all MARSS models but will give you a starting point for set-
ting up your own Monte Carlo search. The function uses a control list to
set numInits, the number of random initial value draws, numInitSteps, the
maximum number of EM iterations for each random initial value draw, and
boundsInits, the bounds for the random distributions. It outputs a list with
specifying the initial values that give the lowest log-likelihood.

Here is a simple example of using the function. numInits is set low so that
the example runs quickly.

dat <- t(harborSeal)

dat <- dat[c(2, nrow(dat)),]

fit1 <- MARSS(dat)

1 It is also a good idea to try method="BFGS" to see if this changes the estimates.

6.2 Searching across initial values using a Monte Carlo routine 63

Success! abstol and log-log tests passed at 59 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 59 iterations.

Log-likelihood: 11.68334

AIC: -9.366688 AICc: -5.366688

Estimate

R.diag 0.00653

U.X.CoastalEstuaries 0.06083

U.X.Georgia.Strait 0.08278

Q.(X.CoastalEstuaries,X.CoastalEstuaries) 0.02048

Q.(X.Georgia.Strait,X.Georgia.Strait) 0.00889

x0.X.CoastalEstuaries 7.37351

x0.X.Georgia.Strait 8.40877

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

MCinits <- MARSSmcinit(fit1, control = list(numInits = 10))

> Starting Monte Carlo Initializations

|2% |20% |40% |60% |80% |100%

Progress: ||

fit2 <- MARSS(dat, inits = MCinits)

Success! abstol and log-log tests passed at 51 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 51 iterations.

Log-likelihood: 11.68384

AIC: -9.367678 AICc: -5.367678

Estimate

R.diag 0.00651

U.X.CoastalEstuaries 0.06082

U.X.Georgia.Strait 0.08278

64 6 Setting inits

Q.(X.CoastalEstuaries,X.CoastalEstuaries) 0.02052

Q.(X.Georgia.Strait,X.Georgia.Strait) 0.00889

x0.X.CoastalEstuaries 7.37349

x0.X.Georgia.Strait 8.40872

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Part III

Applications

67

In this part, we walk you through some longer analyses using MARSS
models for a variety of different applications. Most of these are analyses of
ecological data, but the same models are used in many other fields. These
longer examples will take you through both the conceptual steps (with pencil
and paper) and a R step which translates the conceptual model into code.

Set-up

• If you haven’t already, install the {MARSS} package from CRAN.
• Type in library(MARSS) at the R command line to load the package after

you install it.

Tips

• summary(fit$model), where fit = MARSS(...), will print detailed infor-
mation on the structure of the MARSS model. This allows you to double
check the model you are fitting.

• broom::tidy(fit) will print the parameter estimates with approximate
CIs (based on the Hessian).

• ggplot2::autoplot(fit) will print a standard set of state-space plots
and diagnostic plots.

• When you run MARSS(), it will output the number of iterations used. If you
reached the maximum, re-run with control=list(maxit=...) set higher
than the default.

• If you mis-specify the model, MARSS() will post an error that should give
you an idea of the problem (make sure silent=FALSE to see full error
reports). Remember, the number of rows in your data is n, time is across
the columns, and the length of the vector of factors passed in for model$Z
must be n while the number of unique factors must be m, the number of x
hidden state trajectories in your model.

• The missing value indicator is NA.
• Running MARSS(data), with no arguments except your data, will fit a

MARSS model with m = n, a diagonal Q matrix with m variances, and
i.i.d. observation errors.

• Try MARSSinfo() at the command line if you get errors or warnings you
don’t understand. You might find insight there. Or look at the warnings
and errors notes in Appendix A.

7

Count-based population viability analysis (PVA)
using corrupted data

7.1 Background

Estimates of extinction and quasi-extinction risk are an important risk
metric used in the management and conservation of endangered and threat-
ened species. By necessity, these estimates are based on data that contain
both variability due to real year-to-year changes in the population growth
rate (process errors) and variability in the relationship between the true pop-
ulation size and the actual count (observation errors). Classic approaches to
extinction risk assume the data have only process error, i.e., no observation
error. In reality, observation error is ubiquitous both because of the sampling
variability and also because of year-to-year (and day-to-day) variability in
sightability.

In this application, we will fit a univariate state-space model to population
count data with observation error. We will compute the extinction risk metrics
given in Dennis et al. (1991), however instead of using a process-error only
model (as is done in the original paper), we use a model with both process
and observation error. The risk metrics and their interpretations are the same
as in Dennis et al. (1991). The only real difference is how we compute σ2, the
process error variance. However this difference has a large effect on our risk
estimates, as you will see.

We use here a density-independent model, a stochastic exponential growth
model in log space. This is equivalent to a MARSS model with B = 1. Density-
independence is often a reasonable assumption when doing a population vi-
ability analysis because we do such calculations for at-risk populations that
are either declining or that are well below historical levels (and presumably
carrying capacity). In an actual population viability analysis, it is necessary
to justify this assumption and if there is reason to doubt the assumption,

Type RShowDoc("Chapter_PVA.R",package="MARSS") at the R command line to
open a file with all the code for the examples in this chapter.

70 7 Count-based PVA

one tests for density-dependence (Taper and Dennis, 1994) and does sensitiv-
ity analyses using state-space models with density-dependence (Dennis et al.,
2006).

The univariate model is written:

xt = xt−1 +u+wt where wt ∼ N(0,σ2) (7.1)

yt = xt + vt where vt ∼ N(0,η2) (7.2)

where yt is the logarithm of the observed population size at time t, xt is the
unobserved state at time t, u is the growth rate, and σ2 and η2 are the process
and observation error variances, respectively. In the R code to follow, σ2 is
denoted Q and η2 is denoted R because the functions we are using are also
for multivariate state-space models and those models use Q and R for the
respective variance-covariance matrices.

7.2 Simulated data with process and observation error

We will start by using simulated data to see the difference between data and
estimates from a model with process error only versus a model that also in-
cludes observation error. For our simulated data, we used a decline of 5%
per year, process variability of 0.02 (typical for small to medium-sized verte-
brates), and a observation variability of 0.05 (which is a bit on the high end).
We’ll randomly set 10% of the values as missing. Here is the code:

First, set things up:

sim.u <- -0.05 # growth rate

sim.Q <- 0.02 # process error variance

sim.R <- 0.05 # non-process error variance

nYr <- 50 # number of years of data to generate

fracmissing <- 0.1 # fraction of years that are missing

init <- 7 # log of initial pop abundance

years <- seq(1:nYr) # sequence 1 to nYr

x <- rep(NA, nYr) # replicate NA nYr times

y <- rep(NA, nYr)

Then generate the population sizes using Equation 7.1:

x[1] <- init

for (t in 2:nYr) {

x[t] <- x[t - 1] + sim.u + rnorm(1, mean = 0, sd = sqrt(sim.Q))

}

Lastly, add observation error using Equation 7.2 and then add missing
values:

for (t in 1:nYr) {

y[t] <- x[t] + rnorm(1, mean = 0, sd = sqrt(sim.R))

7.2 Simulated data with process and observation error 71

}

missYears <- sample(years[2:(nYr - 1)], floor(fracmissing * nYr),

replace = FALSE

)

y[missYears] <- NA

Stochastic population trajectories show much variation, so it is best to
look at a few simulated data sets at once. In Figure 7.1, nine simulations from
the identical parameters are shown.

0 10 20 30 40 50

5.
5

6.
5

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 1

0 10 20 30 40 50

4
5

6
7

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 2

0 10 20 30 40 50

4.
5

5.
5

6.
5

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 3

0 10 20 30 40 50

4.
0

5.
5

7.
0

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 4

0 10 20 30 40 50

4.
5

5.
5

6.
5

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 5

0 10 20 30 40 50

5.
0

6.
0

7.
0

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 6

0 10 20 30 40 50

5.
0

6.
0

7.
0

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 7

0 10 20 30 40 50

3
5

7

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 8

0 10 20 30 40 50

4
5

6
7

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 9

Fig. 7.1. Plot of nine simulated population time series with process and observation
error. Circles are observation and the dashed line is the true population size.

Example 7.1 (The effect of parameter values on parameter estimates)

A good way to get a feel for reasonable σ2 values is to generate simulated data
and look at the time series. A biologist would have a pretty good idea of what
kind of year-to-year population changes are reasonable for their study species.
For example for many large mammalian species, the maximum population

72 7 Count-based PVA

yearly increase would be around 50% (the population could go from 1000 to
1500 in one year), but some fish species could easily double or even triple
in a really good year. Observed data may bounce around for many different
reasons having to do with sightability, sampling error, age-structure, etc., but
the underlying population trajectory is constrained by the kinds of year-to-year
changes in population size that are biologically possible. σ2 describes those true
population changes.

You should run the example code several times using different parameter val-
ues to get a feel for how different the time series can look based on identical
parameter values. You can cut and paste from the pdf into the R command
line. Typical vertebrate σ2 values are 0.002 to 0.02, and typical η2 values are
0.005 to 0.1 (Holmes et al., 2007). A u of -0.01 translates to an average 1%
per year decline and a u of -0.1 translates to a roughly 10% per year decline.

7.3 Maximum-likelihood parameter estimation 73

Example 7.1 code

par(mfrow = c(3, 3))

sim.u <- -0.05

sim.Q <- 0.02

sim.R <- 0.05

nYr <- 50

fracmiss <- 0.1

init <- 7

years <- seq(1:nYr)

for (i in 1:9) {

x <- rep(NA, nYr) # vector for ts w/o measurement error

y <- rep(NA, nYr) # vector for ts w/ measurement error

x[1] <- init

for (t in 2:nYr) {

x[t] <- x[t - 1] + sim.u + rnorm(1, mean = 0, sd = sqrt(sim.Q))

}

for (t in 1:nYr) {

y[t] <- x[t] + rnorm(1, mean = 0, sd = sqrt(sim.R))

}

missYears <-

sample(years[2:(nYr - 1)], floor(fracmiss * nYr), replace = FALSE)

y[missYears] <- NA

plot(years, y,

xlab = "", ylab = "Log abundance", lwd = 2, bty = "l"

)

lines(years, x, type = "l", lwd = 2, lty = 2)

title(paste("simulation ", i))

}

legend("topright", c("Observed", "True"),

lty = c(-1, 2), pch = c(1, -1)

)

7.3 Maximum-likelihood parameter estimation

7.3.1 Model with process and observation error

Using the simulated data, we estimate the parameters, u, σ2, and η2, and the
hidden population sizes. These are the estimates using a model with process
and observation variability. The function call is kem = MARSS(data), where

74 7 Count-based PVA

data is a vector of logged (base e) counts with missing values denoted by NA.
After this call, the maximum-likelihood parameter estimates are shown with
coef(kem). There are numerous other outputs from the MARSS() function.
To get a list of the standard model output available type in ?print.MARSS.
Here’s code to fit to the simulated time series:

kem <- MARSS(y)

Let’s look at the parameter estimates for the nine simulated time series
in Figure 7.1 to get a feel for the variation. The MARSS() function was used
on each time series to produce parameter estimate for each simulation. The
estimates are followed by the mean (over the nine simulations) and the true
values:

kem.U kem.Q kem.R

sim 1 -0.02125005 0.015419668 0.03699650

sim 2 -0.05720336 0.024521911 0.02569889

sim 3 -0.04571069 0.017339921 0.05320088

sim 4 -0.06513948 0.000000000 0.06809018

sim 5 -0.04063054 0.005315054 0.04665790

sim 6 -0.03605919 0.000000000 0.05687676

sim 7 -0.03733766 0.032278777 0.03406178

sim 8 -0.08882888 0.023636185 0.03833745

sim 9 -0.07458703 0.010155548 0.07251281

mean sim -0.05186076 0.014296340 0.04804813

true -0.05000000 0.020000000 0.05000000

As expected, the estimated parameters do not exactly match the true param-
eters, but the average should be fairly close (although nine simulations is a
small sample size). Also note that although we do not get u quite right, our
estimates are usually negative. Thus our estimates usually indicate declin-
ing dynamics. Some of the kem.Q estimates may be 0. This means that the
maximum-likelihood estimate that the data are generated by is a process with
no environment variation and only observation error.

The MARSS model fit also gives an estimate of the true population size
with observation error removed. This is in kem$states. Figure 7.2 shows the
estimated true states of the population over time as a solid line. Note that the
solid line is considerably closer to the actual true states (dashed line) than
the observations. On the other hand with certain datasets, the estimates can
be quite wrong as well!

7.3.2 Model with no observation error

We used the MARSS model to estimate the mean population rate u and pro-
cess variability σ2 under the assumption that the count data have observation
error. However, the classic approach to this problem, referred to as the “Den-
nis model” (Dennis et al., 1991), uses a model that assumes the data have no

7.3 Maximum-likelihood parameter estimation 75

0 10 20 30 40 50

5.
5

6.
5

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 1

0 10 20 30 40 50

4
5

6
7

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 2

0 10 20 30 40 50

4.
5

5.
5

6.
5

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 3

0 10 20 30 40 50

4.
0

5.
5

7.
0

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 4

0 10 20 30 40 50

4.
5

5.
5

6.
5

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 5

0 10 20 30 40 50

5.
0

6.
0

7.
0

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 6

0 10 20 30 40 50

5.
0

6.
0

7.
0

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 7

0 10 20 30 40 50

3
5

7

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 8

0 10 20 30 40 50

4
5

6
7

In
de

x
of

 lo
g

ab
un

da
nc

e

simulation 9

Fig. 7.2. The circles are the observed population sizes with error. The dashed lines
are the true population sizes. The solid thin lines are the estimates of the true
population size from the MARSS model. When the process error variance is 0, these
lines are straight.

observation error (a MAR model); all the variability in the data is assumed to
result from process error. This approach works well if the observation error in
the data is low, but not so well if the observation error is high. We will next
fit the data using the classic approach so that we can compare and contrast
parameter estimates from the different methods.

Using the estimation method in Dennis et al. (1991), our data need to be
re-specified as the observed population changes (delta.pop) between censuses
along with the time between censuses (tau). We re-specify the data as follows:

den.years <- years[!is.na(y)] # the non missing years

den.y <- y[!is.na(y)] # the non missing counts

den.n.y <- length(den.years)

delta.pop <- rep(NA, den.n.y - 1) # population transitions

tau <- rep(NA, den.n.y - 1) # step sizes

for (i in 2:den.n.y) {

delta.pop[i - 1] <- den.y[i] - den.y[i - 1]

76 7 Count-based PVA

tau[i - 1] <- den.years[i] - den.years[i - 1]

} # end i loop

Next, we regress the changes in population size between censuses (delta.pop)
on the time between censuses (tau) while setting the regression intercept to 0.
The slope of the resulting regression line is an estimate of u, while the variance
of the residuals around the line is an estimate of σ2. The regression is shown
in Figure 7.3. Here is the code to do that regression:

den91 <- lm(delta.pop ~ -1 + tau)

note: the "-1" specifies no intercept

den91.u <- den91$coefficients

den91.Q <- var(resid(den91))

type summary(den91) to see other info about our regression fit

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
1.

0
−

0.
5

0.
0

0.
5

Time step size (tau)

P
op

ul
at

io
n

tr
an

si
tio

n
si

ze

Fig. 7.3. The regression of log(Nt+τ)− log(Nt) against τ. The slope is the estimate of u
and the variance of the residuals is the estimate of σ2. The regression is constrained
to go through (0,0).

Here are the parameter values for the data in Figure 7.2 using the process-
error only model:

7.3 Maximum-likelihood parameter estimation 77

den91.U den91.Q

sim 1 -0.03037297 0.10170240

sim 2 -0.08986208 0.08530301

sim 3 -0.02890957 0.12468922

sim 4 -0.04703943 0.12831430

sim 5 -0.06436839 0.10285999

sim 6 -0.03437572 0.10654358

sim 7 -0.04430049 0.09895015

sim 8 -0.08787989 0.10584910

sim 9 -0.09473782 0.16764100

mean sim -0.05798293 0.11353919

true -0.05000000 0.02000000

Notice that the u estimates are similar to those from MARSS model, but
the σ2 estimate (Q) is much larger. That is because this approach treats all
the variance as process variance, so any observation variance in the data is
lumped into process variance. The additional variance added is two times the
observation variance.

Example 7.2 (The variability in parameter estimates)

In this example, we will look at how variable the parameter estimates are by
generating multiple simulated data sets and then estimating parameter values
for each. This example compares the MARSS estimates to the estimates using
a process error only model, i.e., ignoring the observation error.

Run the example code a few times to compare the estimates using a state-space
model (kem) versus the model with no observation error (den91). Next, change
the observation variance in the code, sim.R, in the data generation step in
order to get a feel for the estimation performance as observations are further
corrupted. What happens as observation error is increased? Next, decrease the
number of years of data, nYr, and re-run the parameter estimation. What is
the effect of fewer years of data? If you find that the example code takes too
long to run, reduce the number of simulations by reducing nsim in the code.

78 7 Count-based PVA

Example 7.2 code

sim.u <- -0.05 # growth rate

sim.Q <- 0.02 # process error variance

sim.R <- 0.05 # non-process error variance

nYr <- 50 # number of years of data to generate

fracmiss <- 0.1 # fraction of years that are missing

init <- 7 # log of initial pop abundance (~1100 individuals)

nsim <- 9

years <- seq(1:nYr) # col of years

params <- matrix(NA,

nrow = (nsim + 2), ncol = 5,

dimnames = list(

c(paste("sim", 1:nsim), "mean sim", "true"),

c("kem.U", "den91.U", "kem.Q", "kem.R", "den91.Q")

)

)

x.ts <- matrix(NA, nrow = nsim, ncol = nYr) # ts w/o measurement error

y.ts <- matrix(NA, nrow = nsim, ncol = nYr) # ts w/ measurement error

for (i in 1:nsim) {

x.ts[i, 1] <- init

for (t in 2:nYr) {

x.ts[i, t] <- x.ts[i, t - 1] + sim.u + rnorm(1, mean = 0, sd = sqrt(sim.Q))

}

for (t in 1:nYr) {

y.ts[i, t] <- x.ts[i, t] + rnorm(1, mean = 0, sd = sqrt(sim.R))

}

missYears <- sample(years[2:(nYr - 1)], floor(fracmiss * nYr),

replace = FALSE

)

y.ts[i, missYears] <- NA

MARSS estimates

kem <- MARSS(y.ts[i,], silent = TRUE)

type=vector outputs the estimates as a vector instead of a list

params[i, c(1, 3, 4)] <- coef(kem, type = "vector")[c(2, 3, 1)]

Dennis et al 1991 estimates

den.years <- years[!is.na(y.ts[i,])] # the non missing years

den.yts <- y.ts[i, !is.na(y.ts[i,])] # the non missing counts

den.n.yts <- length(den.years)

delta.pop <- rep(NA, den.n.yts - 1) # transitions

tau <- rep(NA, den.n.yts - 1) # time step lengths

for (t in 2:den.n.yts) {

delta.pop[t - 1] <- den.yts[t] - den.yts[t - 1] # transitions

tau[t - 1] <- den.years[t] - den.years[t - 1] # time step length

} # end i loop

den91 <- lm(delta.pop ~ -1 + tau) # -1 specifies no intercept

params[i, c(2, 5)] <- c(den91$coefficients, var(resid(den91)))

}

params[nsim + 1,] <- apply(params[1:nsim,], 2, mean)

params[nsim + 2,] <- c(sim.u, sim.u, sim.Q, sim.R, sim.Q)

7.4 Probability of hitting a threshold Π(xd , te) 79

Here is an example of the output from the Example 7.2 code:

print(params, digits = 3)

kem.U den91.U kem.Q kem.R den91.Q

sim 1 -0.0454 -0.0495 0.020698 0.0148 0.0558

sim 2 -0.0489 -0.0638 0.028988 0.0439 0.1229

sim 3 -0.0130 -0.0374 0.018354 0.0570 0.1378

sim 4 -0.0490 -0.0473 0.010861 0.0744 0.1587

sim 5 -0.0608 -0.0442 0.000682 0.0890 0.1495

sim 6 -0.0477 -0.0594 0.014796 0.0657 0.1439

sim 7 -0.0749 -0.0319 0.013480 0.0629 0.1391

sim 8 -0.0839 -0.0969 0.019862 0.0489 0.1153

sim 9 -0.0607 -0.0671 0.005748 0.0816 0.1783

mean sim -0.0538 -0.0553 0.014830 0.0598 0.1335

true -0.0500 -0.0500 0.020000 0.0500 0.0200

7.4 Probability of hitting a threshold Π(xd, te)

A common extinction risk metric is ‘the probability that a population will hit
a certain threshold xd within a certain time frame te – if the observed trends
continue’. In practice, the threshold used is not Ne = 1, which would be true
extinction. Often a ‘functional’ extinction threshold will be used (Ne >> 1).
Other times a threshold representing some fraction of current levels is used.
The latter is used because we often have imprecise information about the
relationship between the true population size and what we measure in the
field; that is, many population counts are index counts. In these cases, one
must use ‘fractional declines’ as the threshold. Also, extinction estimates that
use an absolute threshold (like 100 individuals) are quite sensitive to error
in the estimate of true population size. Here, we are going to use fractional
declines as the threshold, specifically pd = 0.1 which means a 90% decline.

The probability of hitting a threshold, denoted Π(xd , te), is typically pre-
sented as a curve showing the probabilities of hitting the threshold (y-axis)
over different time horizons (te) on the x-axis. Extinction probabilities can be
computed through Monte Carlo simulations or analytically using Equation 16
in Dennis et al. (1991) (note there is a typo in Equation 16; the last + is
supposed to be a −). We will use the latter method:

Π(xd , te) = π(u)×Φ

(
−xd + |u|te√

σ2te

)
+ exp(2xd |u|/σ

2)Φ

(
−xd −|u|te√

σ2te

)
(7.3)

80 7 Count-based PVA

where xe is the threshold and is defined as xe = log(N0/Ne). N0 is the current
population estimate and Ne is the threshold. If we are using fractional declines
then xe = log(N0/(pd ×N0)) =− log(pd). π(u) is the probability that the thresh-
old is eventually hit (by te = ∞). π(u) = 1 if u <= 0 and π(u) = exp(−2uxd/σ2)
if u > 0. Φ() is the cumulative probability distribution of the standard normal
(mean = 0, sd = 1).

Here is the R code for that computation:

pd <- 0.1 # means a 90 percent decline

tyrs <- 1:100

xd <- -log(pd)

p.ever <- ifelse(u <= 0, 1, exp(-2 * u * xd / Q)) # Q=sigma2

for (i in 1:100) {

Pi[i] <- p.ever * pnorm((-xd + abs(u)*tyrs[i])/sqrt(Q*tyrs[i])) +

exp(2*xd*abs(u)/Q) * pnorm((-xd - abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))

}

Figure 7.4 shows the estimated probabilities of hitting the 90% decline for
the nine 30-year times series simulated with u=−0.05, σ2 = 0.01 and η2 = 0.05.
The dashed line shows the estimates using the MARSS parameter estimates
and the solid line shows the estimates using a process-error only model (the
den91 estimates). The circles are the true probabilities. The difference between
the estimates and the true probabilities is due to errors in û. Those errors are
due largely to process error—not observation error. As we saw earlier, by
chance population trajectories with a u < 0 will increase, even over a 50-year
period. In this case, û will be positive when in fact u < 0.

Looking at the figure, it is obvious that the probability estimates are highly
variable. However, look at the first panel. This is the average estimate (over
nine simulations). Note that on average (over nine simulations), the estimates
are good. If we had averaged over 1000 simulations instead of nine, the MARSS
line would have fallen on the true line. It is an unbiased predictor. While that
may seem a small consolation if estimates for individual simulations are all
over the map, it is important for correctly specifying our uncertainty about
our estimates. Second, rather than focusing on how the estimates and true
lines match up, see if there are any types of forecasts that seem better than
others. For example, are 20-year predictions better than 50-year and are 100-
year forecasts better or worse. In Example 7.3, we will remake this figure with
different u. This demonstrates how forecasts are more certain for populations
that are declining faster.

Example 7.3 (The effect of parameter values on risk estimates)

In this example, we will recreate Figure 7.4 using different parameter values.
This will illustrate how variability in the data and population process affect

7.4 Probability of hitting a threshold Π(xd , te) 81

0 20 40 60 80

0.
0

0.
4

0.
8

Time steps into future
P

ro
ba

bi
lit

y
of

 e
xt

in
ct

io
n

average over sims

0 20 40 60 80

0.
0

0.
4

0.
8

Time steps into future

P
ro

ba
bi

lit
y

of
 e

xt
in

ct
io

n

simulation 1

0 20 40 60 80

0.
0

0.
4

0.
8

Time steps into future

P
ro

ba
bi

lit
y

of
 e

xt
in

ct
io

n

simulation 2

0 20 40 60 80

0.
0

0.
4

0.
8

Time steps into future

P
ro

ba
bi

lit
y

of
 e

xt
in

ct
io

n

simulation 3

0 20 40 60 80

0.
0

0.
4

0.
8

Time steps into future
P

ro
ba

bi
lit

y
of

 e
xt

in
ct

io
n

simulation 4

0 20 40 60 80

0.
0

0.
4

0.
8

Time steps into future

P
ro

ba
bi

lit
y

of
 e

xt
in

ct
io

n

simulation 5

0 20 40 60 80

0.
0

0.
4

0.
8

Time steps into future

P
ro

ba
bi

lit
y

of
 e

xt
in

ct
io

n

simulation 6

0 20 40 60 80

0.
0

0.
4

0.
8

Time steps into future

P
ro

ba
bi

lit
y

of
 e

xt
in

ct
io

n

simulation 7

0 20 40 60 80

0.
0

0.
4

0.
8

Time steps into future
P

ro
ba

bi
lit

y
of

 e
xt

in
ct

io
n

simulation 8

True
Dennis
KalmanEM

Fig. 7.4. Plot of the true and estimated probability of declining 90% in different time
horizons for nine simulated population time series with observation error. The plot
may look like a step-function if the σ2 estimate is very small (<1e-4 or so).

the risk estimates. The Example 7.2 code needs to be run before the Example
7.3 code.

Begin by changing sim.R and rerunning the Example 7.2 code. Now run the
Example 7.3 code and generate parameter estimates. When are the estimates
using the process-error only model (den91) worse and in what way are they
worse? You might imagine that you should always use a model that includes
observation error, since in practice observations are never perfect. However,
there is a cost to estimating that extra variance parameter and the cost is
a more variable σ2 (Q) estimate. Play with shortening the time series and
decreasing the sim.R values. Are there situations when the ‘cost’ of the extra
parameter is greater than the ‘cost’ of ignoring observation error?

Next change the rate of decline in the simulated data. To do this, rerun the
Example 7.2 code using a lower sim.u; then run the Example 7.3 code. Do
the estimates seem better or worse for rapidly declining populations? Rerun
the Example 7.2 code using fewer number of years (nYr smaller) and increase

82 7 Count-based PVA

fracmiss. Run the Example 7.3 code again. The graphs will start to look pecu-
liar. Why do you think it is doing that? Hint: look at the estimated parameters.

Last change the extinction threshold (pd in the Example 7.3 code). How does
changing the extinction threshold change the extinction probability curves? Do
not remake the data, i.e., don’t rerun the Example 7.2 code.

7.4 Probability of hitting a threshold Π(xd , te) 83

Example 7.3 code

Needs Example 2 to be run first

par(mfrow = c(3, 3))

pd <- 0.1; xd <- -log(pd) # decline threshold

te <- 100; tyrs <- 1:te # extinction time horizon

for (j in c(10, 1:8)) {

real.ex <- denn.ex <- kal.ex <- matrix(nrow = te)

MARSS parameter estimates

u <- params[j, 1]; Q <- params[j, 3]

if (Q == 0) Q <- 1e-4 # just so the extinction calc doesn't choke

p.ever <- ifelse(u <= 0, 1, exp(-2 * u * xd / Q))

for (i in 1:100) {

if (is.finite(exp(2 * xd * abs(u) / Q))) {

sec.part <- exp(2 * xd * abs(u) / Q) *

pnorm((-xd - abs(u) * tyrs[i]) / sqrt(Q * tyrs[i]))

} else { sec.part <- 0 }

kal.ex[i] <- p.ever * pnorm((-xd + abs(u) * tyrs[i]) / sqrt(Q * tyrs[i])) + sec.part

} # end i loop

Dennis et al 1991 parameter estimates

u <- params[j, 2]; Q <- params[j, 5]

p.ever <- ifelse(u <= 0, 1, exp(-2 * u * xd / Q))

for (i in 1:100) {

denn.ex[i] <- p.ever * pnorm((-xd + abs(u) * tyrs[i]) / sqrt(Q * tyrs[i])) +

exp(2 * xd * abs(u) / Q) *

pnorm((-xd - abs(u) * tyrs[i]) / sqrt(Q * tyrs[i]))

} # end i loop

True parameter values

u <- sim.u; Q <- sim.Q

p.ever <- ifelse(u <= 0, 1, exp(-2 * u * xd / Q))

for (i in 1:100) {

real.ex[i] <- p.ever * pnorm((-xd + abs(u) * tyrs[i]) / sqrt(Q * tyrs[i])) +

exp(2 * xd * abs(u) / Q) *

pnorm((-xd - abs(u) * tyrs[i]) / sqrt(Q * tyrs[i]))

} # end i loop

plot(tyrs, real.ex, xlab = "Time steps into future",

ylab = "Probability of extinction", ylim = c(0, 1), bty = "l")

if (j <= 8) title(paste("simulation ", j))

if (j == 10) title("average over sims")

lines(tyrs, denn.ex, type = "l", col = "red", lwd = 2, lty = 1)

lines(tyrs, kal.ex, type = "l", col = "green", lwd = 2, lty = 2)

}

legend("bottomright", c("True", "Dennis", "KalmanEM"), pch = c(1, -1, -1),

col = c(1, 2, 3), lty = c(-1, 1, 2), lwd = c(-1, 2, 2), bty = "n")

84 7 Count-based PVA

7.5 Certain and uncertain regions

Example 7.3 illustrates one of the problems with estimates of the probability
of hitting thresholds. Looking over the nine simulations, the risk estimates will
be on the true line sometimes and other times they are way off. The estimates
are highly variable and one should not present only the point estimates of the
probability of 90% decline. At the minimum, confidence intervals need to be
added (next section), but even with confidence intervals, the probability of
hitting declines often does not capture our certainty and uncertainty about
extinction risk estimates.

By running Example 7.3, you might have also noticed that there are some
time horizons (10, 20 years) for which the estimate are highly certain (the
threshold is never hit), while for other time horizons (30, 50 years) the esti-
mates are all over the map. Put another way, you may be able to say with high
confidence that a 90% decline will not occur between years 1 to 20 and that
by year 100 it most surely will have occurred. However, between the years 20
and 100, you are very uncertain about the risk. The point is that you can be
certain about some forecasts while at the same time being uncertain about
other forecasts.

One way to show this is to plot the uncertainty as a function of the forecast,
where the forecast is defined in terms of the forecast length (number of years)
and forecasted decline (percentage). Uncertainty is defined as how much of the
0-1 range your 95% confidence interval covers. Ellner and Holmes (2008) show
such a figure (their Figure 1). Figure 7.5 shows a version of this figure that
you can produce with the function CSEGtmufigure(u= val, N= val, s2p=

val). For the figure, the values u = −0.05 which is a 5% per year decline,
N = 25 so 25 years between the first and last census, and s2

p = 0.01 are used.
The process variability for big mammals is typically in the range of 0.002 to
0.02.

Example 7.4 (Uncertain and certain regions)

Use the Example 7.4 code to re-create Figure 7.5 and get a feel for when risk
estimates are more certain and when they are less certain. N are the number
of years of data, u is the mean population growth rate, and s2p is the process
variance.

Example 7.4 code

par(mfrow = c(1, 1))

CSEGtmufigure(N = 50, u = -0.05, s2p = 0.02)

7.6 More risk metrics and some real data 85

20 40 60 80 100

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

Projection interval T time steps

xe
 =

 lo
g1

0(
N

0/
N

e)
50%

90%

99%

time steps = 50
 mu = −0.05 s2.p = 0.02

high certainty P<0.05
high certainty P>0.95
uncertain
highly uncertain

Fig. 7.5. This figure shows the region of high uncertainty (dark gray). In this region,
the minimum 95% confidence intervals (meaning no observation error) span 80% of
the 0 to 1 probability. That is, we are uncertain if the probability of a specified decline
is close to 0 or close to 1. The white area shows where the upper 95% CIs does not
exceed P=0.05. In this region, we are quite sure the probability of a specified decline
is less than 0.05. The black area shows where the lower 95% confidence interval is
above P=0.95. Here we are quite sure the probability is greater than P=0.95. The
light gray is between these two certain/uncertain extremes.

7.6 More risk metrics and some real data

The previous sections have focused on the probability of hitting thresholds
because this is an important and common risk metric used in population
viability analysis and it appears in IUCN Red List criteria. However, there
is high uncertainty associated with such estimates. Part of the problem is
that probability is constrained to be 0 to 1, and it is easy to get estimates
with confidence intervals that span 0 to 1. Other metrics of risk, û and the
distribution of the time to hit a threshold (Dennis et al., 1991), do not have
this problem and may be more informative. Figure 7.6 shows different risk
metrics from Dennis et al. (1991) on a single plot. This figure is generated by
a call to the function CSEGriskfigure():

86 7 Count-based PVA

dat <- read.table(datafile, skip = 1)

dat <- as.matrix(dat)

CSEGriskfigure(dat)

The datafile is the name of the data file, with years in column 1 and pop-
ulation count (logged) in column 2. CSEGriskfigure() has a number of ar-
guments that can be passed in to change the default behavior. The variable
te is the forecast length (default is 100 years), threshold is the extinction
threshold either as an absolute number, if absolutethresh=TRUE, or as a
fraction of current population count, if absolutethresh=FALSE. The default
is absolutethresh=FALSE and threshold=0.1. datalogged=TRUE means the
data are already logged; this is the default.

Example 7.5 (Risk figures for different species)

Use the Example 7.5 code to re-create Figure 7.6. The {MARSS} package in-
cludes other data that you can also run: prairiechicken from the endangered
Attwater Prairie Chicken, graywhales from Gerber et al. (1999), and grouse

from the Sharptailed Grouse (a species of U.S. federal concern) in Washing-
ton State. Note for some of these other datasets, the Hessian matrix cannot be
inverted and you will need to use CI.method="parametric". The commented
lines show how to read in your own data from a tab-delimited text file with a
header line.

Example 7.5 code

If you have your data in a tab delimited file with a header

This is how you would read it in using file.choose()

to call up a directory browser.

However, the package has the datasets for the examples

dat=read.table(file.choose(), skip=1)

dat=as.matrix(dat)

dat <- wilddogs

CSEGriskfigure(dat, CI.method = "hessian", silent = TRUE)

7.7 Confidence intervals

The figures produced by CSEGriskfigure() have confidence intervals (95%
and 75%) on the probabilities in the top right panel. A standard way to

7.7 Confidence intervals 87

1970 1974 1978 1982 1986 1990

20
40

60
80

P
op

. E
st

im
at

e

u est = −0.054 (95% CIs −0.16 , 0.047)
 Q est = 0.052

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time steps into future

pr
ob

ab
ili

ty
 to

 h
it

th
re

sh
ol

d

Prob. to hit 2

95% CI
75% CI
mean

0 50 100 150 200

0.
00

0
0.

01
0

0.
02

0

time steps into future

pr
ob

ab
ili

ty
 to

 h
it

th
re

sh
ol

d

PDF of time to threshold
 given it IS reached

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Number of ind. at Ne

pr
ob

ab
ili

ty
 to

 h
it

th
re

sh
ol

d

90% threshold

Prob. of hitting threshold in 100 time steps

0 20 40 60 80 100

0
50

10
0

15
0

Sample projections

time steps into the future

N

20 40 60 80 100

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

Projection interval T time steps

xe
 =

 lo
g1

0(
N

0/
N

e)

50%

90%

99%

time steps = 22
 mu = −0.054 s2.p = 0.052

Fig. 7.6. Risk figure using data for the critically endangered African Wild Dog (data
from Ginsberg et al. 1995). This population went extinct after 1992.

produce these intervals is via parametric bootstrapping. Here are the steps in
a parametric bootstrap:

• Estimate u, σ2 and η2

• Simulate time series using those estimates and Equations 7.1 and 7.2
• Re-estimate the model parameters from the simulated data (using say

MARSS(simdata))
• Repeat for 1000s of time series simulated using your estimated parameters.

This gives a large set of bootstrapped parameter estimates
• For each bootstrapped parameter set, compute a set of extinction estimates

(Equation 7.3 and code from Example 7.3)

88 7 Count-based PVA

• The α% ranges on those bootstrapped extinction estimates gives the α

confidence intervals on the probabilities of hitting thresholds

The {MARSS} package provides the function MARSSparamCIs() to add boot-
strapped confidence intervals to fitted models (type ?MARSSparamCIs to learn
about the function).

In the function CSEGriskfigure(), you can set CI.method = c("hessian",

"parametric", "innovations", "none") to tell it how to compute the con-
fidence intervals. The methods ‘parametric’ and ‘innovations’ specify para-
metric and non-parametric bootstrapping respectively. Producing parameter
estimates by bootstrapping is quite slow. Approximate confidence intervals on
the parameters can be generated rapidly using the inverse of the estimate of
the Hessian matrix (method ‘hessian’). This uses an estimate of the variance-
covariance matrix of the parameters (the inverse of the Hessian matrix). Using
an estimated Hessian matrix to compute confidence intervals is a handy trick
that can be used for all sorts of maximum-likelihood parameter estimates.

7.8 Discussion

Data with cycles, from age-structure or predator-prey interactions, are difficult
to analyze and the EM algorithm used in the {MARSS} package will give poor
estimates for this type of data. The slope method (Holmes, 2001) is more
robust to those problems. Holmes et al. (2007) used the slope method in a
large study of data from endangered and threatened species, and Ellner and
Holmes (2008) showed that the slope estimates are close to the theoretical
minimum uncertainty. Especially, when doing a population viability analysis
using a time series with fewer than 25 years of data, the slope method is often
less biased and (much) less variable because that method is less data-hungry
(Holmes, 2004). However the slope method is not a true maximum-likelihood
method and this constrains the types of further analyses you can do (such as
model selection).

8

Combining multi-site data to estimate regional
population trends

8.1 Harbor seals in the Puget Sound, WA.

In this application, we will use multivariate state-space models to combine
surveys from multiple regions (or sites) into one estimate of the average long-
term population growth rate and the year-to-year variability in that growth
rate. Note this is not quite the same as estimating the trend; “trend” often
means “what population change happened?”, whereas the long-term popula-
tion growth rate refers to the underlying population dynamics. We will use as
our example a dataset from harbor seals in Puget Sound, Washington, USA.

We have five regions (or sites) where harbor seals were censused from 1978-
1999 while hauled out of land Jeffries et al. (2003). During the period of this
dataset, harbor seals were recovering steadily after having been reduced to
low levels by hunting prior to protection. The methodologies were consistent
throughout the 20 years of the data but we do not know what fraction of the
population that each region represents nor do we know the observation-error
variance for each region. Given differences between behaviors of animals in
different regions and the numbers of haul-outs in each region, the observation
errors may be quite different. The regions have had different levels of sampling;
the best sampled region has only 4 years missing while the worst has over half
the years missing (Figure 8.1).

We will assume that the underlying population process is a stochastic ex-
ponential growth process with rates of increase that were not changing through
1978-1999. However, we are not sure if all five regions sample a single “total
Puget Sound” population or if there are independent subpopulations. We will
estimate the long-term population growth rate using different assumptions
about the population structures (one big population versus multiple smaller

Type RShowDoc("Chapter_SealTrend.R",package="MARSS") at the R command
line to open a file with all the code for the examples in this chapter.

90 8 Combining multi-site and subpopulation data

1

1
1

1

1
1

1 1
1 1

1

1

1

1
1

1

1 1

1980 1985 1990 1995

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

lo
g(

co
un

ts
)

2

2

2
2

2 2

2 2 2
2 2

2 2 2
2

2 2
2

3

3

3
3

3 3 3 3 3 3 3 3 3
3

3
3 3

4

4
4

4

4
4

4 4 4 4

5

5
5

5

5

5
5

5

Puget Sound Harbor Seal Surveys

Fig. 8.1. Plot of the of the count data from the five harbor seal regions (Jeffries et
al. 2003). The numbers on each line denote the different regions: 1) Strait of Juan
de Fuca (SJF), 2) San Juan Islands (SJI), 2) Eastern Bays (EBays), 4) Puget Sound
(PSnd), and 5) Hood Canal (HC). Each region is an index of the total harbor seal
population, but the bias (the difference between the index and the true population
size) for each region is unknown.

ones) and observation error structures to see how different assumptions change
the trend estimates.

The harbor seal data are included in the {MARSS} package. The data
have time running down the rows and years in the first column. We need time
across the columns for the MARSS() function, so we will transpose the data:

dat <- t(harborSealWA) # Transpose

years <- dat[1,] # [1,] means row 1

n <- nrow(dat) - 1

dat <- dat[2:nrow(dat),] # no years

The years are in column 1 of dat and the logged data are in the rest of the
columns. The number of observation time series (n) is the number of rows in
dat minus 1 (for years row). Let’s look at the first few years of data:

print(harborSealWA[1:8,], digits = 3)

8.2 A single well-mixed population with i.i.d. errors 91

Year SJF SJI EBays PSnd HC

[1,] 1978 6.03 6.75 6.63 5.82 6.6

[2,] 1979 NA NA NA NA NA

[3,] 1980 NA NA NA NA NA

[4,] 1981 NA NA NA NA NA

[5,] 1982 NA NA NA NA NA

[6,] 1983 6.78 7.43 7.21 NA NA

[7,] 1984 6.93 7.74 7.45 NA NA

[8,] 1985 7.16 7.53 7.26 6.60 NA

The NA’s in the data are missing values.

8.1.1 A MARSS model for Puget Sound harbor seals

The first step is to mathematically specify the population structure and how
the regions relate to that structure. The general state-space model is

xt = Bxt−1 +u+wt , where wt ∼ MVN(0,Q)

yt = Zxt +a+vt , where vt ∼ MVN(0,R)

where all the bolded symbols are matrices. To specify the structure of the
population and observations, we will specify what those matrices look like.

8.2 A single well-mixed population with i.i.d. errors

When we are looking at data over a large geographic region, we might make the
assumption that the different census regions are measuring a single population
if we think animals are moving sufficiently such that the whole area (multiple
regions together) is “well-mixed”. We write a model of the total population
abundance for this case as:

nt = exp(u+wt)nt−1, (8.1)

where nt is the total count in year t, u is the mean population growth rate,
and wt is the deviation from that average in year t. We then take the log of
both sides and write the model in log space:

xt = xt−1 +u+wt , where wt ∼ N(0,q) (8.2)

xt = lognt . When there is one effective population, there is one x, therefore xt
is a 1× 1 matrix. There is one population growth rate (u) and there is one
process variance (q). Thus u and Q are 1×1 matrices.

92 8 Combining multi-site and subpopulation data

8.2.1 The observation process

We assume that all five regional time series are observations of this one popu-
lation trajectory but they are scaled up or down relative to that trajectory. In
effect, we think that animals are moving around and our regional samples are
some fraction of the population. There is year-to-year variation in the frac-
tion in each region, just by chance. Notice that under this analysis, we do not
think the regions represent independent subpopulations but rather indepen-
dent observations of one population. Our model for the data, yt = Zxt +a+vt ,
is written as: 

y1
y2
y3
y4
y5


t

=


1
1
1
1
1

xt +


0
a2
a3
a4
a5

+


v1
v2
v3
v4
v5


t

(8.3)

Each yi is the time series for a different region. The a’s are the bias between
the regional sample and the total population. The a’s are scaling (or intercept-
like) parameters1. We allow that each region could have a unique observation
variance and that the observation errors are independent between regions.
Lastly, we assume that the observations errors on log(counts) are normal and
thus the errors on (counts) are log-normal.2

For our first analysis, we assume that the observation variance is equal
across regions but the errors are independent. This means we estimate one
observation variance instead of five. This is a fairly standard assumption for
data that come from the uniform survey methodology.3. We specify inde-
pendent observation errors with identical variances by specifying that the v’s
come from a multivariate normal distribution with variance-covariance matrix
R (v ∼ MVN(0,R)), where

1 To get rid of the a’s, we scale multiple observation time series against each other;
thus one a will be fixed at 0. Estimating the bias between regional indices and
the total population is important for getting an estimate of the total population
size. The type of time-series analysis that we are doing here (trend analysis) is
not useful for estimating a’s. Instead to get a’s one would need some type of
mark-recapture data. However, for trend estimation, the a’s are not important.
The regional observation variance captures increased variance due to a regional
estimate being a smaller sample of the total population.

2 The assumption of normality is not unreasonable since these regional counts are
the sum of counts across multiple haul-outs.

3 By the way, this is not a good assumption for these data since the number haul-
outs in each region varies and the regional counts are the sums across all haul-outs
in a region. We will change this assumption in the next fit and see that the AIC
values decline.

8.2 A single well-mixed population with i.i.d. errors 93

R =


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r

 (8.4)

Z specifies which observation time series, yi,1:T , is associated with which
population trajectory, x j,1:T . Z is like a look up table with 1 row for each
of the n observation time series and 1 column for each of the m population
trajectories. A 1 in row i column j means that observation time series i is
measuring state process j. Otherwise the value in Zi j = 0. Since we have only
1 population trajectory, all the regions must be measuring that one population
trajectory. Thus Z is n×1:

Z =


1
1
1
1
1

 (8.5)

8.2.2 Fitting the model

We have specified the mathematical form of our state-space model. The next
step is to fit this model with MARSS(). The function call will now look like:

kem1 <- MARSS(dat, model = list(Z = Z.model, R = R.model))

The model list argument tells the MARSS() function the model structure, i.e.,
the form of Z, u, Q, etc. For our first analysis, we only need to set the model
structure for Z and R. Since there is only one population, there is only one u
and Q (they are scalars), so they have no ’structure’.

First we specify the Z matrix. We need to tell the MARSS function that Z
is a 5×1 matrix of 1s (as in Equation 8.3). We can do this two ways. We can
pass in Z.model as a matrix of ones, matrix(1,5,1), just like in Equation 8.3
or we can pass in a vector of five factors, factor(c(1,1,1,1,1)). The i-th
factor specifies which population trajectory the i-th observation time series
belongs to. Since there is only one population trajectory in this first analysis,
we will have a vector of five 1’s: every observation time series is measuring the
first, and only, population trajectory.

Z.model <- factor(c(1, 1, 1, 1, 1))

Note, the vector (the c() bit) must be wrapped in factor() so that MARSS
recognizes what it is. You can use either numeric or character vectors:
c(1,1,1,1,1) is the same as c("PS","PS","PS","PS","PS").

Next we specify that the R variance-covariance matrix only has terms
on the diagonal (the variances) with the off-diagonal terms (the covariances)
equal to zero:

94 8 Combining multi-site and subpopulation data

R.model <- "diagonal and equal"

The ‘and equal’ part specifies that the variances are the same value. We will
relax this assumption later.

1

1
1

1

1
1

1 1
1 1

1

1

1

1
1

1

1 1

1980 1985 1990 1995

5
6

7
8

9

In
de

x
of

 lo
g

ab
un

da
nc

e

2

2

2
2

2 2

2 2 2
2 2

2 2 2 2
2 2

2

3

3
3

3
3 3 3 3 3 3 3 3 3

3
3

3 3

4

4
4

4

4
4

4 4 4 4

5

5
5

5

5

5
5

5

Observations and total population estimate

Fig. 8.2. Plot of the estimate of “log total harbor seals in Puget Sound”. The esti-
mate of the total count has been scaled relative to the first time series. The 95%
confidence intervals on the population estimates are the dashed lines. These are not
the confidence intervals on the observations, and the observations (the numbers) will
not fall between the confidence interval lines.

Code 8.2 shows you how to fit the single population model (Equations 8.2
and 8.3) to the harbor seal data.

8.2 A single well-mixed population with i.i.d. errors 95

Code 8.2

Code to fit the single population model with i.i.d. errors

Read in data

dat <- t(harborSealWA) # MARSS needs time ACROSS columns

years <- dat[1,]

n <- nrow(dat) - 1

dat <- dat[2:nrow(dat),]

legendnames <- (unlist(dimnames(dat)[1]))

estimate parameters

Z.model <- factor(c(1, 1, 1, 1, 1))

R.model <- "diagonal and equal"

kem1 <- MARSS(dat, model = list(Z = Z.model, R = R.model))

make figure

graphics::matplot(years, t(dat),

xlab = "", ylab = "Index of log abundance",

pch = c("1", "2", "3", "4", "5"), ylim = c(5, 9), bty = "L"

)

lines(years, kem1$states - 1.96 * kem1$states.se,

type = "l",

lwd = 1, lty = 2, col = "red"

)

lines(years, kem1$states + 1.96 * kem1$states.se,

type = "l",

lwd = 1, lty = 2, col = "red"

)

lines(years, kem1$states, type = "l", lwd = 2)

title("Observations and total population estimate", cex.main = .9)

coef(kem1, type = "vector") # parameter estimates as a vector

show estimated elements for each parameter matrix as a list

coef(kem1)

kem1$logLik # show the log-likelihood

kem1$AIC # show the AIC

8.2.3 The MARSS() output

The output from MARSS(), here assigned the name kem1, is a list of objects:

names(kem1)

The maximum-likelihood estimates of “total harbor seal population” scaled
to the first observation data series (Figure 8.2) are in kem1$states, and
kem1$states.se are the standard errors on those estimates. To get 95% con-
fidence intervals, use kem1$states +/- 1.96*kem1$states.se. Figure 8.2

96 8 Combining multi-site and subpopulation data

shows a plot of kem1$states with its 95% confidence intervals over the data.
Because kem1$states has been scaled relative to the first time series, it is
on top of that time series. One of the a cannot be estimated and arbitrarily
our algorithm chooses a1 = 0, so the population estimate is scaled to the first
observation time series.

The estimated parameters are output with the function coef(): coef(kem1).
To get the estimate just for U, which is the estimated long-term population
growth rate, use coef(kem1)$U. Multiply by 100 to get the percent increase
per year. The estimated process variance is given by coef(kem2)$Q.

The log-likelihood of the fitted model is in kem1$logLik. We estimated
one initial x (t = 1), one process variance, one u, four a’s, and five observation
variances. So K = 12 parameters. The AIC of this model is −2× log-like+2K,
which we can show by typing kem1$AIC.

8.3 Single population with independent and non-identical errors

Here is the estimated R matrix for our first model:

coef(kem1, type = "matrix")$R

SJF SJI EBays PSnd HC

SJF 0.04523437 0.00000000 0.00000000 0.00000000 0.00000000

SJI 0.00000000 0.04523437 0.00000000 0.00000000 0.00000000

EBays 0.00000000 0.00000000 0.04523437 0.00000000 0.00000000

PSnd 0.00000000 0.00000000 0.00000000 0.04523437 0.00000000

HC 0.00000000 0.00000000 0.00000000 0.00000000 0.04523437

Notice that the variances along the diagonal are all the same—we estimated
one observation variance and it applied to all observation time series. We
might be able to improve the fit (at the cost of more parameters) by assuming
that the observation variance is different across regions while the errors are
still independent. This means we estimate five observation variances instead
of one. In this case, R has the form:

R =


r1 0 0 0 0
0 r2 0 0 0
0 0 r3 0 0
0 0 0 r4 0
0 0 0 0 r5

 (8.6)

To impose this model, we set the R model to

R.model <- "diagonal and unequal"

This tells MARSS that all the r’s along the diagonal in R are different. To fit
this model to the data, call MARSS() as:

8.4 Two subpopulations, north and south 97

Z.model <- factor(c(1, 1, 1, 1, 1))

R.model <- "diagonal and unequal"

kem2 <- MARSS(dat, model = list(Z = Z.model, R = R.model))

We estimated one initial x, one process variance, one u, four a’s, and five
observation variances. So K = 11 parameters. The AIC for this new model
compared to the old model with one observation variance is:

c(kem1$AIC, kem2$AIC)

[1] 8.813447 -9.323982

A smaller AIC means a better model. The difference between the one observa-
tion variance versus the unique observation variances is >10, suggesting that
the unique observation variances model is better.

One of the key diagnostics when you are comparing fits from multiple
models is whether the model is flexible enough to fit the data. This can be
checked by looking for temporal trends in the residuals between the fitted
data (e.g., the predicted value of the data given the states estimates) and
the actual data. These are the smoothations model residuals (as opposed to
the innovations model residuals). In Figure 8.3, the residuals for the second
analysis are shown. Ideally, these residuals should not have a temporal trend.
The fact that the residuals have a strong temporal trend is an indication that
our one population model is too restrictive for the data4. Code 8.3 shows you
how to fit the second model and make the diagnostics plot.

Code 8.3

Fit the single population model with independent and unequal errors

Z.model <- factor(c(1, 1, 1, 1, 1))

R.model <- "diagonal and unequal"

kem2 <- MARSS(dat, model = list(Z = Z.model, R = R.model))

coef(kem2) # the estimated parameter elements

kem2$logLik # log likelihood

c(kem1$AIC, kem2$AIC) # AICs

plot(kem2, plot.type="model.resids.ytT")

8.4 Two subpopulations, north and south

For the third analysis, we will change our assumption about the structure
of the population. We will assume that there are two subpopulations, north

4 When comparing models via AIC, it is important that you only compare models
that are flexible enough to fit the data. Fortunately if you neglect to do this,
the inadequate models will usually have very high AICs and fall out of the mix
anyhow.

98 8 Combining multi-site and subpopulation data

plot type = model.resids.ytT

5 10 15 20

−
0.

3
0.

0
0.

2

SJF

O
bs

er
va

tio
n

re
si

du
al

s,
 y

 −
 E

[y
]

5 10 15 20

−
0.

2
0.

0
0.

2

SJI

O
bs

er
va

tio
n

re
si

du
al

s,
 y

 −
 E

[y
]

5 10 15 20

−
0.

2
0.

0
0.

1
0.

2

EBays

O
bs

er
va

tio
n

re
si

du
al

s,
 y

 −
 E

[y
]

5 10 15 20

−
0.

2
0.

0
0.

1

PSnd

O
bs

er
va

tio
n

re
si

du
al

s,
 y

 −
 E

[y
]

5 10 15 20

−
0.

5
0.

0
0.

5

HC

O
bs

er
va

tio
n

re
si

du
al

s,
 y

 −
 E

[y
]

Fig. 8.3. Residuals for the model with a single population. The plots of the residuals
should not have trends with time, but they do. This is an indication that the single
population model is inconsistent with the data.

and south, and that regions 1 and 2 (Strait of Juan de Fuca and San Juan
Islands) fall in the north subpopulation and regions 3, 4 and 5 fall in the south
subpopulation. For this analysis, we will assume that these two subpopulations
share their growth parameter, u, and process variance, q, since they share
a similar environment and prey base. However we postulate that because of
fidelity to natal rookeries for breeding, animals do not move much year-to-year
between the north and south and the two subpopulations are independent.

We need to write down the state-space model to reflect this population
structure. There are two subpopulations, xn and xs, and they have the same
growth rate u: [

xn
xs

]
t
=

[
xn
xs

]
t−1

+

[
u
u

]
+

[
wn
ws

]
t

(8.7)

We specify that they are independent by specifying that their year-to-year
population fluctuations (their process errors) come from a multivariate normal
with no covariance:

8.4 Two subpopulations, north and south 99[
wn
ws

]
t
∼ MV N

([
0
0

]
,

[
q 0
0 q

])
(8.8)

For the observation process, we use the Z matrix to associate the regions
with their respective xn and xs values:

y1
y2
y3
y4
y5


t

=


1 0
1 0
0 1
0 1
0 1


[

xn
xs

]
t
+


0
a2
0
a4
a5

+


v1
v2
v3
v4
v5


t

(8.9)

8.4.1 Specifying the model elements

We need to change the Z specification to indicate that there are two sub-
populations (north and south), and that regions 1 and 2 are in the north
subpopulation and regions 3,4 and 5 are in the south subpopulation. There
are a few ways, we can specify this Z matrix for MARSS():

Z.model <- matrix(c(1, 1, 0, 0, 0, 0, 0, 1, 1, 1), 5, 2)

Z.model <- factor(c(1, 1, 2, 2, 2))

Z.model <- factor(c("N", "N", "S", "S", "S"))

Which you choose is a matter of preference as they all specify the same form
for Z.

We also want to specify that the u’s are the same for each subpopulation
and that Q is diagonal with equal q’s. To do this, we set

U.model <- "equal"

Q.model <- "diagonal and equal"

This says that there is one u and one q parameter and both subpopulations
share it (if we wanted the u’s to be different, we would use U.model="unequal"
or leave off the u model since the default behavior is U.model="unequal").

Code 8.4 puts all the pieces together and shows you how to fit the north
and south population model and create the residuals plot (Figure 8.4). The
residuals look better (less temporal trend) but the Hood Canal residuals are
still have a trend.

100 8 Combining multi-site and subpopulation data

Code 8.4

fit the north and south population model

Z.model <- factor(c(1, 1, 2, 2, 2))

U.model <- "equal"

Q.model <- "diagonal and equal"

R.model <- "diagonal and unequal"

kem3 <- MARSS(dat, model = list(

Z = Z.model,

R = R.model, U = U.model, Q = Q.model

))

plot smoothation residuals

plot(kem3, plot.type="model.resids.ytT")

5 10 15 20

−
0.

3
−

0.
1

0.
1

0.
3

SJF

O
bs

er
va

tio
n

re
si

du
al

s,
 y

 −
 E

[y
]

5 10 15 20

−
0.

10
0.

00
0.

10

SJI

O
bs

er
va

tio
n

re
si

du
al

s,
 y

 −
 E

[y
]

5 10 15 20

−
0.

10
0.

00
0.

10

EBays

O
bs

er
va

tio
n

re
si

du
al

s,
 y

 −
 E

[y
]

5 10 15 20

−
0.

2
0.

0
0.

2

PSnd

O
bs

er
va

tio
n

re
si

du
al

s,
 y

 −
 E

[y
]

5 10 15 20

−
0.

5
0.

0
0.

5

HC

O
bs

er
va

tio
n

re
si

du
al

s,
 y

 −
 E

[y
]

Fig. 8.4. The residuals for the analysis with a north and south subpopulation. The
plots of the residuals should not have trends with time. Compare with the residuals
for the analysis with one subpopulation.

8.5 Other population structures 101

8.5 Other population structures

Now work through a number of different structures and examine how your
estimation of the mean population growth rate varies under different assump-
tions about the structure of the population and the data. You can compare the
model fits using AIC (or AICc). For AIC, lower is better and only the relative
differences matter. A difference of 10 between two AICs means substantially
more support for the model with lower AIC. A difference of 30 or 40 between
two AICs is very large.

8.5.1 Five subpopulations

Analyze the data using a model with five subpopulations, where each of the five
census regions is sampling one of the subpopulations. Assume that the subpop-
ulations are independent (diagonal Q), however let each subpopulation share
the same population parameters, u and q. Code 8.5.1 shows how to set the
MARSS() arguments for this case. You can use R.model="diagonal and equal"

to make all the observation variances equal.

Code 8.5.1

Z.model <- factor(c(1, 2, 3, 4, 5))

U.model <- "equal"

Q.model <- "diagonal and equal"

R.model <- "diagonal and unequal"

kem <- MARSS(dat, model = list(

Z = Z.model,

U = U.model, Q = Q.model, R = R.model

))

8.5.2 Two subpopulations with different population parameters

Analyze the data using a model that assumes that the Strait of Juan de
Fuca and San Juan Islands census regions represent a northern Puget Sound
subpopulation, while the other three regions represent a southern Puget Sound
subpopulation. This time assume that each population trajectory (north and
south) has different u and q parameters: un, us and qn, qs. Also assume that
each of the five census regions has a different observation variance. Try to
write your own code. If you get stuck, you can find R code for this model
by typing RShowDoc("Chapter_SealTrend.R",package="MARSS") at the R
command line.

In math form, this model is:[
xn
xs

]
t
=

[
xn
xs

]
t−1

+

[
un
us

]
+

[
wn
ws

]
t
,

[
wn
ws

]
t
∼ MVN

(
0,
[

qn 0
0 qs

])
(8.10)

102 8 Combining multi-site and subpopulation data


y1
y2
y3
y4
y5


t

=


1 0
1 0
0 1
0 1
0 1


[

xn
xs

]
t
+


0
a2
0
a4
a5

+


v1
v2
v3
v4
v5


t

(8.11)

8.5.3 Hood Canal covaries with the other regions

Analyze the data using a model with two subpopulations with the divisions
being Hood Canal versus everywhere else. In math form, this model is:[

xp
xh

]
t
=

[
xp
xh

]
t−1

+

[
up
uh

]
+

[
wp
wh

]
t
,

[
wp
wh

]
t
∼ MVN

(
0,
[

q c
c q

])
(8.12)


y1
y2
y3
y4
y5


t

=


1 0
1 0
1 0
1 0
0 1


[

xp
xh

]
t
+


0
a2
a3
a4
0

+


v1
v2
v3
v4
v5


t

(8.13)

To specify that Q has one value on the diagonal (one variance) and one
value on the off-diagonal (covariance) you can specify Q.model two ways:

Q.model <- "equalvarcov"

Q.model <- matrix(c("q", "c", "c", "q"), 2, 2)

8.5.4 Three subpopulations with shared parameter values

Analyze the data using a model with three subpopulations as follows: north
(regions 1 and 2), south (regions 3 and 4), Hood Canal (region 5). You can
specify that some subpopulations share parameters while others do not. First,
let’s specify that each population is affected by independent environmental
variability, but that the variance of that variability is the same for the two
interior populations:

Q.model <- matrix(list(0), 3, 3)

diag(Q.model) <- c("coastal", "interior", "interior")

print(Q.model)

Notice that Q is a diagonal matrix (independent year-to-year environmental
variability) but the variance of two of the populations is the same. Notice too
that the off-diagonal terms are numeric; they do not have quotes. We specified
Q using a matrix of class list, so that we could have numeric values (fixed)
and character values (estimated parameters).

In a similar way, we specify that the observation errors are independent
but that estimates from an airplane do not have the same variance as those
from a boat:

8.6 Discussion 103

R.model <- matrix(list(0), 5, 5)

diag(R.model) <- c("boat", "boat", "plane", "plane", "plane")

MARSS also has a helper function ldiag() to make this matrix:

R.model <- ldiag(c("boat", "boat", "plane", "plane", "plane"))

For the long-term trends, we specify that x1 and x2 share a long-term trend
(“puget sound”) while x3 is allowed to have a separate trend (“hood canal”).

U.model <- matrix(c("puget sound", "puget sound", "hood canal"), 3, 1)

8.6 Discussion

There are a number of corners that we cut in order to show you code that
runs quickly:

• We ran the code starting from one initial condition. For a real analysis,
you should start from a large number of random initial conditions and
use the one that gives the highest likelihood. Since the EM algorithm is a
“hill-climbing” algorithm, this ensures that it did not get stuck on a local
maxima. See Chapter 6 for a discussion of initial conditions searchers.

• We assume independent observation and process errors. Depending on your
system, observation errors may be driven by large-scale environmental fac-
tors (temperature, tides, prey locations) that would cause your observation
errors to covary across regions. If your observation errors strongly covary
between regions and you treat them as independent, this could be bad
for your analysis. Unfortunately, separating covariance across observation
versus process errors will require much data (to have any power). In prac-
tice, the first step is to think hard about what drives sightability for your
species and what are the relative levels of process and observation vari-
ance. You may be able to subsample your data in a way that will make
the observation errors more independent.

• The MARSS() argument control specifies the options for the EM algo-
rithm. We left the default tolerance for the convergence test. You would
want to set this lower for a real analysis. You will need to up the maxit

argument correspondingly.
• We used the large-sample approximation for AIC instead of a bootstrap

AIC that is designed to correct for small sample size in state-space mod-
els. The bootstrap metric, AICb, takes a long time to run. Use the call
MARSSaic(kem, output=c("AICbp")) to compute AICb. We could have
shown AICc, which is the small-sample size corrector for non-state-space
models. Type kem$AICc to get that.

Finally, in a real (maximum-likelihood) analysis, one needs to be careful
not to dredge the data. The temptation is to look at the data and pick a
population structure that will fit that data. This can lead to including models

104 8 Combining multi-site and subpopulation data

in your analysis that have no biological basis. In practice, we spend a great
deal of time discussing the population structure with biologists working on the
species and review all the biological data that might tell us what are reasonable
structures. From that, a set of model structures to use are selected. Other
times, a particular model structure needs to be used because the population
structure is not in question rather it is a matter of using that pre-specified
structure and using all the data to get parameter estimates for forecasting.

Some more questions you might ponder

Do different assumptions about whether the observation error variances are
all identical versus different affect your estimate of the long-term population
growth rate (u)? You may want to rerun Examples 3-7 with the R.model

changed. R.model="diagonal and unequal" means measurement variances
all different versus "diagonal and equal".

Do assumptions about the underlying structure of the population affect
your estimates of u? Structure here means number of subpopulations and
which areas are in which subpopulation.

The confidence intervals for the first two analyses are very tight because
the estimated process variance, Q, was very small. Why do you think process
variance (q) was forced to be so small? Hint: We are forcing there to be one
and only one true population trajectory and all the observation time series
have to fit that one time series. Look at the AICs too.

9

Identifying spatial population structure and
covariance

9.1 Harbor seals on the U.S. west coast

In this application, we use harbor seal abundance estimates along the west
coast to examine large-scale spatial structure. Harbor seals are distributed
along the west coast of the U.S. from California to Washington. The popu-
lations have been surveyed at haul-out sites since the mid-1970s (Figure 9.1)
and have been increasing steadily since the 1972 Marine Mammal Protection
Act. See ?harborSeal for the data sources.

For management purposes, three stocks are recognized: the CA stock, the
OR/WA coastal stock which consists of four regions (Northern/Southern Ore-
gon, Coastal Estuaries, Olympic Peninsula), and the inland WA stock which
consists of the regions in the WA inland waters minus Hood Canal (Figure
9.1). Differences exist in the demographics across regions (e.g., pupping dates),
however mtDNA analyses and tagging studies support the larger stock struc-
ture. Harbor seals are known for strong site fidelity, but at the same time
travel large distances to forage.

Our goal is to address the following questions about spatial structure:
1) Does population abundance data support the existing management bound-
aries, or are there alternative groupings that receive more support?, 2) Do sub-
populations (if they exist) experience independent environmental variability
or correlated variability? and 3) Does the Hood Canal site represent a distinct
subpopulation? To address these questions, we will mathematically formulate
different hypotheses about population structure via different MARSS mod-
els. We will then compare the data support for different models using model
selection criteria, specifically AICc and AIC weights.

Type RShowDoc("Chapter_SealPopStructure.R",package="MARSS") at the R
command line to open a file with all the code for the examples in this chapter.

106 9 Spatial population structure and covariance

Figure 01. Map of spatial distribution of 9 harbor seal sites in Washington and Oregon.

Southern Coast

Northern Coast

Coastal Estuaries

Olympic
Peninsula

Juan de Fuca
San Juans

H ood Canal

Puget Sound

Eastern Bays

Fig. 9.1. Map of spatial distribution of harbor seal survey regions in Washington
and Oregon. In addition to these nine survey regions, we also have data from the
Georgia Strait just north of the San Juan Islands, the California coast and the
Channels Islands in Southern California.

9.2 Question 1, How many distinct subpopulations? 107

9.1.1 MARSS models for a population with spatial structure

The mathematical form of the model we will use is

xt = xt−1 +u+wt where wt ∼ MVN(0,Q)

yt = Zxt +a+vt where vt ∼ MVN(0,R)

x0 ∼ MVN(π,Λ)

(9.1)

B is in front of x but is left off above since it is the identity matrix1. We will use
Z, u, and Q to specify different hypotheses about the population structure.
The form of a will be “scaling” in all cases. Aerial survey methodology has
been relatively constant across time and space, and we will assume that all
the time series from each region has identical and independent observation
error variance, which means a diagonal R matrix with one variance term on
the diagonal2.

Each call to MARSS() will look like

fit <- MARSS(sealData, model=list(

Z = Z.model, Q = Q.model, ...))

where the ... are components of the model list that are the same across
all models. We will specify different Z.model and Q.model in order to model
different population spatial structures.

9.2 Question 1, How many distinct subpopulations?

We will start by evaluating the data support for the following hypotheses
about the population structure:

H1 3 subpopulations defined by stock
H2 2 subpopulations defined by coastal versus WA inland
H3 2 subpopulations defined by north and south split in the middle of Oregon
H4 4 subpopulations defined by N coastal, S coastal, SJF+Georgia Strait,

and Puget Sound
H5 All regions are part of the same panmictic population
H6 Each of the 11 regions is a subpopulation

We will analyze each of these under the assumption of independent process
errors with each subpopulation having different variances or the same variance.

1 a diagonal matrix with 1s on the diagonal
2 The sampling regions have different number of sites where animals are counted.
But we are working with log counts. We assume that the distribution of percent
errors is the same (the probability of a 10% over-count is the same) and thus that
the variances are similar on the log-scale.

108 9 Spatial population structure and covariance

9.2.1 Specify the Z matrices

The Z matrices specify the relationship between the survey regions and the
subpopulations and allow us to specify the spatial population structures in the
hypotheses. Each column of Z corresponds to a different subpopulation and
associates regions with particular subpopulations. For example for hypothesis
1, column 1 of the Z matrix is OR/WA Coastal, column 2 is inland WA (ps
for Puget Sound) and column 3 is CA. The Z matrix for hypotheses 1, 2, 4,
and 5 take the following form:

H1 H2 H4 H5
Z Z Z Z

wa.or ps ca coast ps nc is ps sc pan
Coastal Estuaries 1 0 0 1 0 1 0 0 0 1
Olympic Peninsula 1 0 0 1 0 1 0 0 0 1
Str. Juan de Fuca 0 1 0 0 1 0 1 0 0 1
San Juan Islands 0 1 0 0 1 0 1 0 0 1

Eastern Bays 0 1 0 0 1 0 0 1 0 1
Puget Sound 0 1 0 0 1 0 0 1 0 1
CA.Mainland 0 0 1 1 0 0 0 0 1 1

CA.ChannelIslands 0 0 1 1 0 0 0 0 1 1
OR North Coast 1 0 0 1 0 1 0 0 0 1
OR South Coast 1 0 0 1 0 0 0 0 1 1
Georgia Strait 0 1 0 0 1 0 1 0 0 1

To tell MARSS() the form of Z, we construct the same matrix in R. For
example, for hypotheses 1, we can write:

Z.model <- matrix(0, 11, 3)

Z.model[c(1, 2, 9, 10), 1] <- 1 # which elements in col 1 are 1

Z.model[c(3:6, 11), 2] <- 1 # which elements in col 2 are 1

Z.model[7:8, 3] <- 1 # which elements in col 3 are 1

MARSS has a shortcut for making this kind of Z matrix using factor().
The following code specifies the same Z matrix:

Z1 <- factor(c("wa.or", "wa.or", rep("ps", 4), "ca", "ca", "wa.or", "wa.or", "bc"))

Each element in the c() vector is for one of the rows of Z and indicates
which column the “1” appears in or which row of your data belongs to which
subpopulation. Notice the vector is 11 elements in length; one element for each
row of data (in this case survey region).

9.2 Question 1, How many distinct subpopulations? 109

9.2.2 Specify the u structure

We will assume that subpopulations can have a unique population growth
rate. Mathematically, this means that the u matrix in Equation 9.1 looks like
this for hypotheses 1 (3 subpopulations):u1

u2
u3


To specify this, we construct U.model as a character matrix where shared
elements have the same character name. For example,

U.model <- matrix(c("u1", "u2", "u3"), 3, 1)

for a three subpopulation model. Alternatively, we can use the shortcut
U.model="unequal".

9.2.3 Specify the Q structures

For our first analysis, we fit a model where the subpopulations experience
independent process errors. We will use two different types of independent
process errors: independent process errors with different variances and inde-
pendent process errors with identical variance. Independence is specified with
a diagonal variance-covariance matrix with 0s on the off-diagonals.

Independent process errors with different variances is a diagonal matrix
with different values on the diagonal:q1 0 0

0 q2 0
0 0 q3


This matrix has fixed numeric values, the zeros, combined with symbols q1,
q2 and q3, representing estimated values. We specified this for MARSS() using
a list matrix which combines numeric values (the fixed zeros) with character
values (names of the estimated elements). The following produces this and
printing it shows that it combines numeric values and character strings in
quotes.

Q.model <- matrix(list(0), 3, 3)

diag(Q.model) <- c("q1", "q2", "q3")

Q.model

[,1] [,2] [,3]

[1,] "q1" 0 0

[2,] 0 "q2" 0

[3,] 0 0 "q3"

110 9 Spatial population structure and covariance

We can also use the shortcut Q.model="diagonal and unequal".
Independent process errors with identical variance is a diagonal matrix

with one value on the diagonal: q 0 0
0 q 0
0 0 q


Q.model <- matrix(list(0), 3, 3)

diag(Q.model) <- "q"

Q.model

[,1] [,2] [,3]

[1,] "q" 0 0

[2,] 0 "q" 0

[3,] 0 0 "q"

The shortcut for this form is Q.model="diagonal and equal".

9.3 Fit the different models

The dataset harborSeal is a 29-year dataset of abundance indices for each of
12 regions between 1975-2004 (Figure 9.2). We start by setting up our data
matrix. We will leave off Hood Canal (column 8) for now.

years <- harborSeal[, 1] # first col is years

leave off Hood Canal data for now

sealData <- t(harborSeal[, c(2:7, 9:13)])

We will set up our models so we can fit all of them with one loop of code.
First the Z models.

H1 stock

Z1 <- factor(c("wa.or", "wa.or", rep("ps", 4), "ca", "ca", "wa.or", "wa.or", "bc"))

H2 coastal+PS

Z2 <- factor(c(rep("coast", 2), rep("ps", 4), rep("coast", 4), "ps"))

H3 N and S

Z3 <- factor(c(rep("N", 6), "S", "S", "N", "S", "N"))

H4 North Coast, Inland Strait, Puget Sound, South Coast

Z4 <- factor(c("nc", "nc", "is", "is", "ps", "ps", "sc", "sc", "nc", "sc", "is"))

H5 panmictic

Z5 <- factor(rep("pan", 11))

H6 Site

Z6 <- factor(1:11) # site

Z.models <- list(Z1, Z2, Z3, Z4, Z5, Z6)

names(Z.models) <-

c("stock", "coast+PS", "N-S", "NC+Strait+PS+SC", "panmictic", "site")

9.3 Fit the different models 111

1975 1985 1995 2005

7.
5

8.
0

8.
5

9.
0

CoastalEstuaries

1975 1985 1995 2005

7.
4

7.
8

8.
2

OlympicPeninsula

1975 1985 1995 2005

6.
0

6.
5

7.
0

7.
5

StraitJuanDeFuca

1975 1985 1995 2005

7.
0

8.
0

SanJuanIslands

1975 1985 1995 2005

6.
6

7.
0

7.
4

7.
8

EasternBays

1975 1985 1995 2005

5.
8

6.
2

6.
6

7.
0

PugetSound

1975 1985 1995 2005

6.
4

6.
8

HoodCanal

1975 1985 1995 2005

9.
3

9.
5

9.
7

9.
9

CA.Mainland

1975 1985 1995 2005

7.
6

8.
0

8.
4

CA.ChannelIslands

1975 1985 1995 2005

6.
4

6.
8

7.
2

7.
6

OR.NorthCoast

1975 1985 1995 2005

7.
5

7.
7

7.
9

OR.SouthCoast

1975 1985 1995 2005

8.
5

9.
5

10
.5

Georgia.Strait

Fig. 9.2. Plot of the of the harbor seal sites in the harborSeal dataset. Each point is
an index of the harbor seal abundance in that region.

Next we set up the Q models.

Q.models <- c("diagonal and equal", "diagonal and unequal")

The rest of the model matrices have the same form across all models.

U.model <- "unequal"

R.model <- "diagonal and equal"

A.model <- "scaling"

B.model <- "identity"

x0.model <- "unequal"

V0.model <- "zero"

model.constant <- list(

U = U.model, R = R.model, A = A.model,

x0 = x0.model, V0 = V0.model, tinitx = 0

)

We loop through the models, fit and store the results:

out.tab <- NULL

fits <- list()

112 9 Spatial population structure and covariance

for (i in 1:length(Z.models)) {

for (Q.model in Q.models) {

fit.model <- c(list(Z = Z.models[[i]], Q = Q.model), model.constant)

fit <- MARSS(sealData,

model = fit.model,

silent = TRUE, control = list(maxit = 1000)

)

out <- data.frame(

H = names(Z.models)[i], Q = Q.model, U = U.model,

logLik = fit$logLik, AICc = fit$AICc, num.param = fit$num.params,

m = length(unique(Z.models[[i]])),

num.iter = fit$numIter, converged = !fit$convergence,

stringsAsFactors = FALSE

)

out.tab <- rbind(out.tab, out)

fits <- c(fits, list(fit))

if (i == 5) next # one m for panmictic so only run 1 Q

}

}

9.4 Summarize the data support

We will use AICc and AIC weights to summarize the data support for the
different hypotheses. First we will sort the fits based on AICc:

min.AICc <- order(out.tab$AICc)

out.tab.1 <- out.tab[min.AICc,]

Next we add the ∆AICc values by subtracting the lowest AICc:

out.tab.1 <- cbind(out.tab.1,

delta.AICc = out.tab.1$AICc - out.tab.1$AICc[1]

)

Relative likelihood is defined as exp(−∆AICc/2).

out.tab.1 <- cbind(out.tab.1,

rel.like = exp(-1 * out.tab.1$delta.AICc / 2)

)

The AIC weight for a model is its relative likelihood divided by the sum of all
the relative likelihoods.

out.tab.1 <- cbind(out.tab.1,

AIC.weight = out.tab.1$rel.like / sum(out.tab.1$rel.like)

)

Let’s look at the model weights (out.tab.1):

9.5 Question 2, Are the subpopulations independent? 113

H Q delta.AICc AIC.weight

NC+Strait+PS+SC diagonal and equal 0.00 0.886

NC+Strait+PS+SC diagonal and unequal 4.15 0.112

N-S diagonal and unequal 12.67 0.002

N-S diagonal and equal 14.78 0.001

coast+PS diagonal and equal 31.23 0.000

coast+PS diagonal and unequal 33.36 0.000

stock diagonal and equal 34.01 0.000

stock diagonal and unequal 36.84 0.000

panmictic diagonal and equal 48.28 0.000

panmictic diagonal and unequal 48.28 0.000

site diagonal and equal 56.36 0.000

site diagonal and unequal 57.95 0.000

It appears that a population structure north and south coast subpopula-
tions and two inland subpopulations is more supported than any of the other
population structures—under the assumption of independent process errors.
The latter means that good and bad years are not correlated across the sub-
populations. The stock structure, supported by genetic information, does not
appear to correspond to independent subpopulations and the individual sur-
vey regions, which are characterized by differential pupping times, does not
appear to correspond to independent subpopulations either.

Figure 9.3 shows the the four subpopulation trajectories estimated by the
best fit model. The trajectories have been rescaled so that each starts at 0 in
1975 (to facilitate comparison).

9.5 Question 2, Are the subpopulations independent?

The assumption of independent process errors is unrealistic given ocean con-
ditions are correlated across large spatial scales. We will repeat the analy-
sis allowing correlated process errors using two different Q models. The first
correlated Q model is correlated process errors with the same variance and
covariance. For a model with three subpopulations, this Q would look like:q c c

c q c
c c q


We can construct this like so

#identical variances

Q.model <- matrix("c", 3, 3)

diag(Q.model) <- "q"

or use the short-cut Q.model="equalvarcov". The second type of correlated
Q we will use is allows each subpopulation to have a different process variance

114 9 Spatial population structure and covariance

1975 1980 1985 1990 1995 2000 2005

0.
0

0.
5

1.
0

1.
5

2.
0

A
bu

nd
an

ce
 in

de
x

North Coastal
Inland Straits
Puget Sound
South Coastal

Fig. 9.3. Estimated trajectories for the four subpopulations in the best-fit model.
The plots have been rescaled so that each is at 0 at 1975.

and covariances. For a model with three subpopulations, this is the following
variance-covariance matrix:  q1 c1,2 c1,3

c1,2 q2 c2,3
c1,2 c2,3 q3


Constructing this is tedious in R, but there is a short-cut: Q.model="unconstrained".

We will re-run all the Z matrices with these two extra Q types and add
them to our results table.

for (i in 1:length(Z.models)) {

if (i == 5) next # don't rerun panmictic

for (Q.model in c("equalvarcov", "unconstrained")) {

fit.model <- c(list(Z = Z.models[[i]], Q = Q.model), model.constant)

fit <- MARSS(sealData,

model = fit.model,

silent = TRUE, control = list(maxit = 1000)

)

9.5 Question 2, Are the subpopulations independent? 115

out <- data.frame(

H = names(Z.models)[i], Q = Q.model, U = U.model,

logLik = fit$logLik, AICc = fit$AICc, num.param = fit$num.params,

m = length(unique(Z.models[[i]])),

num.iter = fit$numIter, converged = !fit$convergence,

stringsAsFactors = FALSE

)

out.tab <- rbind(out.tab, out)

fits <- c(fits, list(fit))

}

}

Again we sort the models by AICc and compute model weights.

min.AICc <- order(out.tab$AICc)

out.tab.2 <- out.tab[min.AICc,]

fits <- fits[min.AICc]

out.tab.2 <- cbind(out.tab.2, delta.AICc = out.tab.2$AICc - out.tab.2$AICc[1])

out.tab.2 <- cbind(out.tab.2, rel.like = exp(-1 * out.tab.2$delta.AICc / 2))

out.tab.2 <- cbind(out.tab.2, AIC.weight = out.tab.2$rel.like / sum(out.tab.2$rel.like))

Examination of the expanded results table (out.tab.2) shows there is
strong support for correlated process errors; top 10 models shown:

H Q delta.AICc AIC.weight

NC+Strait+PS+SC equalvarcov 0.00 0.976

site equalvarcov 7.65 0.021

NC+Strait+PS+SC unconstrained 11.47 0.003

NC+Strait+PS+SC diagonal and equal 23.39 0.000

NC+Strait+PS+SC diagonal and unequal 27.53 0.000

N-S unconstrained 32.61 0.000

N-S diagonal and unequal 36.06 0.000

N-S equalvarcov 36.97 0.000

stock equalvarcov 37.82 0.000

N-S diagonal and equal 38.16 0.000

The model weight for “equalvarcov”, “unconstrained”, versus “diagonal and
equal” is

c(

sum(out.tab.2$AIC.weight[out.tab.2$Q == "equalvarcov"]),

sum(out.tab.2$AIC.weight[out.tab.2$Q == "unconstrained"]),

sum(out.tab.2$AIC.weight[out.tab.2$Q == "diagonal and equal"])

)

[1] 0.997 0.003 0.000

116 9 Spatial population structure and covariance

9.5.1 Looking at the correlation structure in the Q matrix

The 3rd model in the output table is a model with all elements of the process
error variance-covariance matrix estimated. Estimating a variance-covariance
matrix with so many extra parameters is not supported relative to a con-
strained variance-covariance matrix with two parameters (compare the AICc
for the 1st model and 3rd model) but looking at the full variance-covariance
matrix shows some interesting and not surprising patterns.

The Q matrix is recovered from the model fit using this command

Q.unc <- coef(fits[[3]], type = "matrix")$Q

The diagonal of this matrix shows that each region appears to experience
process variability of a similar magnitude:

diag(Q.unc)

nc is ps sc

0.009049512 0.007451479 0.004598690 0.005276587

We can compute the correlation matrix as follows. Row names are added to
make the matrix more readable.

h <- diag(1 / sqrt(diag(Q.unc)))

Q.corr <- h %*% Q.unc %*% h

rownames(Q.corr) <- unique(Z4)

colnames(Q.corr) <- unique(Z4)

Q.corr

nc is ps sc

nc 1.0000000 0.5970202 0.6421536 0.9163056

is 0.5970202 1.0000000 0.9970869 0.2271385

ps 0.6421536 0.9970869 1.0000000 0.2832502

sc 0.9163056 0.2271385 0.2832502 1.0000000

The correlation matrix indicates that the inland strait (‘is’ in the table)
subpopulation experiences process errors (good and bad years) that are al-
most perfectly correlated with the Puget Sound subpopulation though the
two have different population growth rates (Figure 9.3). Similarly the north
and south coastal subpopulations (‘nc’ and ‘sc’) experience highly correlated
process errors, though again population growth rates are much higher to the
north. There is much higher correlation between the process errors of the north
coastal subpopulation and the nearby inland straits and Puget Sound subpop-
ulations than between the two inland subpopulations and the much farther
south coastal subpopulation. These patterns are not ecologically surprising
but are not easy to discern looking at the raw count data.

9.6 Question 3, Is the Hood Canal independent? 117

9.6 Question 3, Is the Hood Canal independent?

In the initial analysis, the data from Hood Canal were removed. Hood Canal
has experienced a series of hypoxic events which has led to large perturbations
to the harbor seal prey. We will add the Hood Canal data back in and look at
whether treating Hood Canal as separate is supported compared to treating
it as part of the Puget Sound subpopulation in the top model.

sealData.hc <- rbind(sealData, harborSeal[, 8])

rownames(sealData.hc)[12] <- "Hood.Canal"

Here are the two Z matrices for a ‘Hood Canal in the Puget Sound’ and ‘Hood
Canal separate’ model:

ZH1 <- factor(c("nc", "nc", "is", "is", "ps",

"ps", "sc", "sc", "nc", "sc", "is", "ps"))

ZH2 <- factor(c("nc", "nc", "is", "is", "ps",

"ps", "sc", "sc", "nc", "sc", "is", "hc"))

Z.models.hc <- list(ZH1, ZH2)

names(Z.models.hc) <- c("hood.in.ps", "hood.separate")

We will test three different Q matrices: a matrix with one variance and
one covariance, an unconstrained variance-covariance matrix and a variance-
covariance matrix where the Hood Canal subpopulation has independent pro-
cess errors.

Q3 <- matrix(list("offdiag"), 5, 5)

diag(Q3) <- "q"

Q3[, 5] <- 0

Q3[5,] <- 0

Q3[5, 5] <- "q.hc"

Q.models <- list("equalvarcov", "unconstrained", Q3)

names(Q.models) <- c("equalvarcov", "unconstrained", "hood.independent")

The independent Hood Canal Q allow correlation between the other four sub-
populations but none between Hood Canal and those four:

Q.models$hood.independent

[,1] [,2] [,3] [,4] [,5]

[1,] "q" "offdiag" "offdiag" "offdiag" 0

[2,] "offdiag" "q" "offdiag" "offdiag" 0

[3,] "offdiag" "offdiag" "q" "offdiag" 0

[4,] "offdiag" "offdiag" "offdiag" "q" 0

[5,] 0 0 0 0 "q.hc"

As before, we loop through the model and create a results table:

118 9 Spatial population structure and covariance

out.tab.hc <- NULL

fits.hc <- list()

for (i in 1:length(Z.models.hc)) {

for (j in 1:length(Q.models)) {

if (i == 1 & j == 3) next # Q3 is only for Hood Separate model

Q.model <- Q.models[[j]]

fit.model <- c(list(Z = Z.models.hc[[i]], Q = Q.model), model.constant)

fit <- MARSS(sealData.hc,

model = fit.model,

silent = TRUE, control = list(maxit = 1000)

)

out <- data.frame(

H = names(Z.models.hc)[i], Q = names(Q.models)[j], U = U.model,

logLik = fit$logLik, AICc = fit$AICc, num.param = fit$num.params,

m = length(unique(Z.models.hc[[i]])),

num.iter = fit$numIter, converged = !fit$convergence,

stringsAsFactors = FALSE

)

out.tab.hc <- rbind(out.tab.hc, out)

fits.hc <- c(fits.hc, list(fit))

}

}

We sort the results by AICc and compute the ∆AICc.

min.AICc <- order(out.tab.hc$AICc)

out.tab.hc <- out.tab.hc[min.AICc,]

out.tab.hc <- cbind(out.tab.hc, delta.AICc = out.tab.hc$AICc - out.tab.hc$AICc[1])

out.tab.hc <- cbind(out.tab.hc, rel.like = exp(-1 * out.tab.hc$delta.AICc / 2))

out.tab.hc <- cbind(out.tab.hc, AIC.weight = out.tab.hc$rel.like / sum(out.tab.hc$rel.like))

The results table (out.tab.hc) indicates strong support for treating Hood
Canal as a separate subpopulation but not support for completely independent
process errors.

H Q delta.AICc AIC.weight

hood.separate equalvarcov 0.00 0.988

hood.separate hood.independent 8.74 0.012

hood.in.ps equalvarcov 23.53 0.000

hood.separate unconstrained 30.65 0.000

hood.in.ps unconstrained 36.66 0.000

9.7 Discussion

In this chapter, we used model selection and AICc model weights to explore
the temporal correlation structure in the harbor seal abundance data from

9.7 Discussion 119

the U.S. west coast. We used the term ‘subpopulation’, however it should be
kept in mind that we are actually looking at the data support for different
spatial patterns of temporal correlation in the process errors. Treating region
A and B as a ‘subpopulation’ in this context means that we are asking if the
counts from A and B can be treated as observations of the same underlying
stochastic trajectory.

Metapopulation structure refers to a case where a larger population is
composed of a collection of smaller temporally independent subpopulations.
Metapopulation structure buffers the variability seen in the larger popula-
tion and has important consequences for the viability of a population. We
tested for temporal independence using diagonal versus non-diagonal Q ma-
trices. Although the west coast harbor seal population appears to be divided
into ‘subpopulations’ that experience different population growth rates, there
is strong temporal correlation in the year-to-year variability experienced in
these subpopulations. This suggests that this harbor seal population does
not function as a true metapopulation with independent subpopulations but
rather as a collection of subpopulations that are temporally correlated.

10

Dynamic factor analysis (DFA)

10.1 Overview of DFA

In this chapter, we use {MARSS} to do dynamic factor analysis (DFA),
which allows us to look for a set of common underlying trends among a rela-
tively large set of time series (Harvey, 1989, section 8.5). See also Zuur et al.
(2003) which shows a number of examples of DFA applied to fisheries catch
data and densities of zoobenthos. We will walk through some examples to
show you the math behind DFA, and then in Section 10.4, we will show a
short-cut for doing a DFA with MARSS using form="dfa".

DFA is conceptually different than what we have been doing in the previous
applications. Here we are trying to explain temporal variation in a set of n
observed time series using linear combinations of a set of m hidden random
walks, where m << n. A DFA model is a type of MARSS model with the
following structure:

xt = xt−1 +wt where wt ∼ MVN(0,Q)

yt = Zxt +a+vt where vt ∼ MVN(0,R)

x0 ∼ MVN(π,Λ)

(10.1)

The general idea is that the observations (y) are modeled as a linear combi-
nation of hidden trends (x) and factor loadings (Z) plus some offsets (a). The
DFA model in Equation 10.1 and the standard MARSS model in Equation 1.1
are equivalent—we have simply set the matrix B equal to an m×m identity
matrix1 and the vector u = 0.

Type RShowDoc("Chapter_DFA.R",package="MARSS") at the R command line to
open a file with all the code for the examples in this chapter.

1 a diagonal matrix with 1’s on the diagonal

122 10 Dynamic factor analysis

10.1.1 Writing out a DFA model as a MARSS model

Imagine a case where we had a data set with six observed time series (n = 6)
and we want to fit a model with three hidden trends (m = 3). If we write out
our DFA model in MARSS matrix form (ignoring the error structures and
initial conditions for now), it would look like this:

x1
x2
x3


t

=

1 0 0
0 1 0
0 0 1

x1
x2
x3


t−1

+

0
0
0

+
w1

w2
w3


t


y1
y2
y3
y4
y5
y6


t

=


z11 z12 z13
z21 z22 z23
z31 z32 z33
z41 z42 z43
z51 z52 z53
z61 z62 z63


x1

x2
x3


t

+


a1
a2
a3
a4
a5
a6

+


v1
v2
v3
v4
v5
v6


t

.

(10.2)

The process errors of the hidden trends would bew1
w2
w3


t

∼ MVN

0
0
0

 ,
q11 q12 q13

q12 q22 q23
q13 q23 q33

 , (10.3)

and the observation errors would be
v1
v2
v3
v4
v5
v6


t

∼ MVN




0
0
0
0
0
0

 ,


r11 r12 r13 r14 r15 r16
r12 r22 r23 r24 r25 r26
r13 r23 r33 r34 r35 r36
r14 r24 r34 r44 r45 r46
r15 r25 r35 r45 r55 r56
r16 r26 r36 r46 r56 r66



 . (10.4)

10.1.2 Constraints to ensure identifiability

If Z, a, and Q in Equation 10.1 are not constrained, then the DFA model
above is unidentifiable (Harvey, 1989, sec 4.4). Harvey (1989, section 8.5.1)
suggests the following parameter constraints to make the model identifiable:

• in the first m−1 rows of Z, the z-value in the j-th column and i-th row is
set to zero if j > i;

• a is constrained so that the first m values are set to zero; and
• Q is set equal to the identity matrix (Im).

10.1 Overview of DFA 123

Zuur et al. (2003), however, found that with Harvey’s second constraint, the
EM algorithm is not particularly robust, and it takes a long time to converge.
Zuur et al. found that the EM estimates are much better behaved if you
instead constrain each of the time series in x to have a mean of zero across
t = 1 to T . To do so, they replaced the estimates of the hidden states, xT

t ,
coming out of the Kalman smoother2 with xT

t − x̄ for t = 1 to T , where x̄ is the
mean of xt across t. With this approach, you estimate all of the a elements,
which represent the average level of yt relative to Z(xt − x̄). We found that
demeaning the xT

t in this way can cause the EM algorithm to have errors
(decline in log-likelihood). Instead, we demean our data, and fix all elements
of a to zero.

Using these constraints, the DFA model in Equation 10.2 becomesx1
x2
x3


t

=

1 0 0
0 1 0
0 0 1

x1
x2
x3


t−1

+

0
0
0

+
w1

w2
w3


t


y1
y2
y3
y4
y5
y6


t

=


z11 0 0
z21 z22 0
z31 z32 z33
z41 z42 z43
z51 z52 z53
z61 z62 z63


x1

x2
x3


t

+


0
0
0
0
0
0

+


v1
v2
v3
v4
v5
v6


t

.

(10.5)

The process errors of the hidden trends in Equation 10.3 would then becomew1
w2
w3


t

∼ MVN

0
0
0

 ,
1 0 0

0 1 0
0 0 1

 , (10.6)

but the observation errors in Equation 10.4 would stay the same, such that
v1
v2
v3
v4
v5
v6


t

∼ MVN




0
0
0
0
0
0

 ,


r11 r12 r13 r14 r15 r16
r12 r22 r23 r24 r25 r26
r13 r23 r33 r34 r35 r36
r14 r24 r34 r44 r45 r46
r15 r25 r35 r45 r55 r56
r16 r26 r36 r46 r56 r66



 . (10.7)

To complete our model, we still need the final form for the initial conditions
of the state. Following Zuur et al. (2003), we set the initial state vector (x0)
to have zero mean and a diagonal variance-covariance matrix with large vari-
ances, such that

2 This is the estimate of the states conditioned on all the data, t = 1 to t = T .

124 10 Dynamic factor analysis

x0 ∼ MVN

0
0
0

 ,
5 0 0

0 5 0
0 0 5

 . (10.8)

10.2 The data

We will analyze some of the Lake Washington plankton data included in the
{MARSS} package. This dataset includes 33 years of monthly counts for 13
plankton species along with data on water temperature, total phosphorous
(TP), and pH. First, we load the data and then extract a subset of columns
corresponding to the phytoplankton species only. For the purpose of speeding
up model fitting times and to limit our analysis to years with no missing
covariate data, we will only examine 10 years of data (1980-1989).

data(lakeWAplankton)

we want lakeWAplanktonTrans, which has been log-transformed

and the 0s replaced with NAs

plankdat <- lakeWAplanktonTrans

years <- plankdat[, "Year"] >= 1980 & plankdat[, "Year"] < 1990

phytos <- c(

"Cryptomonas", "Diatoms", "Greens",

"Unicells", "Other.algae"

)

dat.spp.1980 <- plankdat[years, phytos]

Next, we transpose the data and calculate the number of time series and their
length.

transpose data so time goes across columns

dat.spp.1980 <- t(dat.spp.1980)

N.ts <- nrow(dat.spp.1980)

TT <- ncol(dat.spp.1980)

It is normal in this type of analysis to standardize each time series by first
subtracting its mean and then dividing by its standard deviation (i.e., create
a z -score y∗t with mean = 0 and standard deviation = 1), such that

y∗t = Σ
−1(yt − ȳ),

Σ is a diagonal matrix with the standard deviations of each time series along
the diagonal, and ȳ is a vector of the means. In R, this can be done as follows

Sigma <- sqrt(apply(dat.spp.1980, 1, var, na.rm = TRUE))

y.bar <- apply(dat.spp.1980, 1, mean, na.rm = TRUE)

dat.z <- (dat.spp.1980 - y.bar) * (1 / Sigma)

rownames(dat.z) <- rownames(dat.spp.1980)

10.3 Setting up the model for MARSS() 125

MARSS also has a helper function to z-score data:

dat.z <- zscore(dat.spp.1980)

Figure 10.1 shows time series of Lake Washington phytoplankton data follow-
ing z -score transformation.

−
2

−
1

0
1

2
3

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Cryptomonas
−

2
−

1
0

1
2

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Diatoms

−
2

−
1

0
1

2
3

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Greens

−
4

−
2

0
1

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Unicells

−
2

−
1

0
1

2

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Other.algae

Fig. 10.1. Time series of Lake Washington phytoplankton data following z -score
transformation.

10.3 Setting up the model for MARSS()

As we have seen in other cases, setting up the model structure for MARSS
requires that the parameter matrices have a one-to-one correspondence to the
model as you would write it on paper (i.e., Equations 10.5 through 10.8). If a
parameter matrix has a combination of fixed and estimated values, then you
specify that using matrix(list(), nrow, ncol). This is a matrix of class list
and allows you to combine numeric and character values in a single matrix.
MARSS recognizes the numeric values as fixed values and the character values
as estimated values.

126 10 Dynamic factor analysis

This is how we set up Z for MARSS, assuming a model with 5 observed
time series and 3 hidden trends:

Z.vals <- list(

"z11", 0, 0,

"z21", "z22", 0,

"z31", "z32", "z33",

"z41", "z42", "z43",

"z51", "z52", "z53"

)

Z <- matrix(Z.vals, nrow = N.ts, ncol = 3, byrow = TRUE)

When specifying the list values, spacing and carriage returns were added to
help show the correspondence with the Z matrix in Equation 10.3. If you print
Z (at the R command line), you will see that it is a matrix with character
values (the estimated elements) and numeric values (the fixed 0’s).

print(Z)

[,1] [,2] [,3]

[1,] "z11" 0 0

[2,] "z21" "z22" 0

[3,] "z31" "z32" "z33"

[4,] "z41" "z42" "z43"

[5,] "z51" "z52" "z53"

Notice that the 0’s do not have quotes around them. If they did, it would
mean the "0" is a character value and would be interpreted as the name of a
parameter to be estimated rather than a fixed numeric value.

The Q and B matrices are both set equal to the identity matrix using
diag().

Q <- B <- diag(1, 3)

For our first analysis, we will assume that each time series of phytoplankton
has a different observation variance, but that there is no covariance among
time series. Thus, R should be a diagonal matrix that looks like:

r11 0 0 0 0
0 r22 0 0 0
0 0 r33 0 0
0 0 0 r44 0
0 0 0 0 r55


and each of the ri,i elements is a different parameter to be estimated. We can
also specify this R structure using a list matrix as follows:

R.vals <- list(

"r11", 0, 0, 0, 0,

10.3 Setting up the model for MARSS() 127

0, "r22", 0, 0, 0,

0, 0, "r33", 0, 0,

0, 0, 0, "r44", 0,

0, 0, 0, 0, "r55"

)

R <- matrix(R.vals, nrow = N.ts, ncol = N.ts, byrow = TRUE)

You can print R at the R command line to see what it looks like:

print(R)

[,1] [,2] [,3] [,4] [,5]

[1,] "r11" 0 0 0 0

[2,] 0 "r22" 0 0 0

[3,] 0 0 "r33" 0 0

[4,] 0 0 0 "r44" 0

[5,] 0 0 0 0 "r55"

This form of variance-covariance matrix is commonly used, and therefore
{MARSS} has a built-in shorthand for this structure.

R <- "diagonal and unequal"

Type ?MARSS at the R command line to see a list of the shorthand options for
each parameter vector/matrix.

The parameter vectors π (termed x0 in MARSS), a and u are each set to
be a column vector of zeros. Any of the following can be used:

x0 <- U <- matrix(0, nrow = 3, ncol = 1)

A <- matrix(0, nrow = 6, ncol = 1)

x0 <- U <- A <- "zero"

The Λ matrix (termed V0 in MARSS) is a diagonal matrix with 5’s along
the diagonal:

V0 <- diag(5, 3)

Finally, we make a list of the model parameters to pass to the MARSS()

function and set the control list:

dfa.model <- list(

Z = Z, A = "zero", R = R, B = B, U = U,

Q = Q, x0 = x0, V0 = V0

)

cntl.list <- list(maxit = 50)

For the examples in this chapter, we have set the maximum iterations to 50
to speed up model fitting. Note, however, that the parameter estimates will
not have converged to their maximum likelihood values, which would likely
take 100s, if not 1000+, iterations.

128 10 Dynamic factor analysis

10.3.1 Fitting the model

We can now pass the DFA model list to MARSS() to estimate the Z matrix
and underlying hidden states (x). The output is not shown because it is volu-
minous, but the model fits are plotted in Figure 10.2. The warnings regarding
non-convergence are due to setting maxit to 50.

kemz.3 <- MARSS(dat.z, model = dfa.model, control = cntl.list)

Warning! Reached maxit before parameters converged. Maxit was 50.

neither abstol nor log-log convergence tests were passed.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

WARNING: maxit reached at 50 iter before convergence.

Neither abstol nor log-log convergence test were passed.

The likelihood and params are not at the ML values.

Try setting control$maxit higher.

Log-likelihood: -782.202

AIC: 1598.404 AICc: 1599.463

Estimate

Z.z11 0.4163

Z.z21 0.5364

Z.z31 0.2780

Z.z41 0.5179

Z.z51 0.1611

Z.z22 0.6757

Z.z32 -0.2381

Z.z42 -0.2381

Z.z52 -0.2230

Z.z33 0.2305

Z.z43 -0.1225

Z.z53 0.3887

R.(Cryptomonas,Cryptomonas) 0.6705

R.(Diatoms,Diatoms) 0.0882

R.(Greens,Greens) 0.7201

R.(Unicells,Unicells) 0.1865

R.(Other.algae,Other.algae) 0.5441

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Convergence warnings

10.3 Setting up the model for MARSS() 129

10 warnings. First 10 shown. Type cat(object$errors) to see the full list.

Warning: the Z.z51 parameter value has not converged.

Warning: the Z.z32 parameter value has not converged.

Warning: the Z.z52 parameter value has not converged.

Warning: the Z.z33 parameter value has not converged.

Warning: the Z.z43 parameter value has not converged.

Warning: the R.(Diatoms,Diatoms) parameter value has not converged.

Warning: the R.(Greens,Greens) parameter value has not converged.

Warning: the R.(Other.algae,Other.algae) parameter value has not converged.

Warning: the logLik parameter value has not converged.

Type MARSSinfo("convergence") for more info on this warning.

−
4

−
2

0
1

2
3

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Cryptomonas

−
4

−
2

0
1

2
3

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Diatoms

−
4

−
2

0
1

2
3

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Greens

−
4

−
2

0
1

2
3

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Unicells

−
4

−
2

0
1

2
3

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Other.algae

Fig. 10.2. Plots of Lake Washington phytoplankton data with model fits (dark lines)
from a model with 3 trends and a diagonal and unequal variance-covariance matrix
for the observation errors. This model was run to convergence so is different than
that shown in the text which uses maxit=50.

130 10 Dynamic factor analysis

10.4 Using model selection to determine the number of trends

Following Zuur et al. (2003), we use model selection criteria (specifically AICc)
to determine the number of underlying trends that have the highest data
support. Our first model had three underlying trends (m = 3). Let’s compare
this to a model with two underlying trends. The forms for parameter matrix
R and vector a will stay the same but we need to change the other parameter
vectors and matrices because m is different.

After showing you the matrix math behind a DFA model, we will now use
the form argument for a MARSS call to specify that we want to fit a DFA
model. Type ?MARSS.dfa to learn about the MARSS() call with form="dfa".
This will set up the Z matrix and the other parameters for you. Specify how
many trends you want by passing in model=list(m=x). You can also pass in
different forms for the R matrix in the usual way.

Here is how to fit two trends using form="dfa":

model.list <- list(m = 2, R = "diagonal and unequal")

kemz.2 <- MARSS(dat.spp.1980,

model = model.list,

z.score = TRUE, form = "dfa", control = cntl.list

)

if (!saved.res) {

model.list <- list(m = 2, R = "diagonal and unequal")

kemz.2 <- MARSS(dat.spp.1980,

model = model.list,

z.score = TRUE, form = "dfa", control = big.maxit.cntl.list

)

}

and compare its AICc value to that from the 3-trend model.

print(cbind(

model = c("3 trends", "2 trends"),

AICc = round(c(kemz.3$AICc, kemz.2$AICc))

),

quote = FALSE

)

model AICc

[1,] 3 trends 1589

[2,] 2 trends 1608

It looks like a model with 3 trends has much more support from the data
because its AICc value is more than 10 units less than that for the 2-trend
model.

10.4 Using model selection to determine the number of trends 131

10.4.1 Comparing many model structures

Now let’s examine a larger suite of possible models. We will test from one to
four underlying trends (m = 1 to 4) and four different structures for the R
matrix:

1. same variances & no covariance ("diagonal and equal");
2. different variances & no covariance ("diagonal and unequal");
3. same variances & same covariance ("equalvarcov"); and
4. different variances & covariances ("unconstrained").

The following code builds our model matrices; you could also write out each
matrix as we did in the first example, but this allows us to build and run all
of the models together. NOTE : the following piece of code will take a very
long time to run!

set new control params

cntl.list <- list(minit = 200, maxit = 5000, allow.degen = FALSE)

set up forms of R matrices

levels.R <- c(

"diagonal and equal",

"diagonal and unequal",

"equalvarcov",

"unconstrained"

)

model.data <- data.frame(stringsAsFactors = FALSE)

fit lots of models & store results

NOTE: this will take a long time to run!

for (R in levels.R) {

for (m in 1:(N.ts - 1)) {

dfa.model <- list(A = "zero", R = R, m = m)

kemz <- MARSS(dat.z,

model = dfa.model, control = cntl.list,

form = "dfa", z.score = TRUE

)

model.data <- rbind(

model.data,

data.frame(

R = R,

m = m,

logLik = kemz$logLik,

K = kemz$num.params,

AICc = kemz$AICc,

stringsAsFactors = FALSE

)

)

assign(paste("kemz", m, R, sep = "."), kemz)

132 10 Dynamic factor analysis

} # end m loop

} # end R loop

Model selection results are shown in Table 10.1. The models with lowest
AICc had 2 or 3 trends and an unconstrained R matrix. It also appears that,
in general, models with an unconstrained R matrix fit the data much better
than those models with less complex structures for the observation errors (i.e.,
models with unconstrained forms for R had nearly all of the AICc weight).

Table 10.1. Model selection results.

R m logLik delta.AICc Ak.wt Ak.wt.cum

unconstrained 3 -762.5 0.0 0.39 0.39
unconstrained 2 -765.9 0.1 0.37 0.76
unconstrained 4 -761.5 2.3 0.12 0.89
unconstrained 1 -772.4 4.4 0.04 0.93
diagonal and unequal 4 -774.2 5.9 0.02 0.95
equalvarcov 2 -782.7 6.1 0.02 0.97
diagonal and unequal 3 -777.1 7.5 0.01 0.98
diagonal and equal 4 -779.3 7.7 0.01 0.99
diagonal and equal 3 -781.8 8.4 0.01 0.99
equalvarcov 4 -779.0 9.1 0.00 1.00
equalvarcov 3 -781.4 9.9 0.00 1.00
diagonal and unequal 2 -786.6 20.2 0.00 1.00
equalvarcov 1 -799.9 32.3 0.00 1.00
diagonal and equal 2 -798.4 35.4 0.00 1.00
diagonal and unequal 1 -798.4 35.4 0.00 1.00
diagonal and equal 1 -813.5 57.4 0.00 1.00

10.5 Using varimax rotation to determine the loadings and
trends

As Harvey (1989, p. 450, sec. 8.5.1) discusses, there are multiple equivalent
solutions to the dynamic factor loadings. We arbitrarily constrained Z in such
a way to choose only one of these solutions, but fortunately the different
solutions are equivalent, and they can be related to each other by a rotation
matrix H. Let H be any m×m non-singular matrix. The following are then
equivalent solutions:

yt = Zxt +a+vt

xt = xt−1 +wt
(10.9)

and

10.5 Using varimax rotation to determine the loadings and trends 133

yt = ZH−1x†
t +a+vt

x†
t = x†

t−1 +w†
t

x†
t = Hxt ;w†

t = Hwt

(10.10)

x† are the rotated trends.
There are many ways of doing factor rotations, but a common approach is

the varimax rotation which seeks a rotation matrix H that creates the largest
difference between loadings. For example, let’s say there are three trends in our
model. In our estimated Z matrix, let’s say row 3 is (0.2,0.2,0.2). That would
mean that data series 3 is equally described by trends 1, 2, and 3. If instead row
3 was (0.8,0.1,0.1), this would make interpretation easier because we could
say that data time series 3 was mostly described by trend 1. The varimax
rotation finds the H matrix that makes the Z rows more like (0.8,0.1,0.1) and
less like (0.2,0.2,0.2).

The varimax rotation is easy to compute because R has the varimax()

function3 that returns H−1. We will illustrate the use of the varimax rotation
with the 2-state model with R unconstrained. We will fit this with a large
maxit.

big.maxit.cntl.list <- list(minit = 200, maxit = 5000, allow.degen = FALSE)

model.list <- list(m = 2, R = "unconstrained")

the.fit <- MARSS(dat.z, model = model.list, form = "dfa",

control = big.maxit.cntl.list)

Next, we retrieve the matrix used for varimax rotation.

get the inverse of the rotation matrix

Z.est <- coef(the.fit, type = "matrix")$Z

H.inv <- 1

if (ncol(Z.est) > 1)

H.inv <- varimax(coef(the.fit, type = "matrix")$Z)$rotmat

The rotation matrix that varimax returns H−1 rather than H. If Z has one
column, there is only one Z; there is only a rotation matrix if Z has more
than one column. We use H−1 to rotate the factor loadings and H to rotate
the trends as in Equation 10.10.

rotate factor loadings

Z.rot <- Z.est %*% H.inv

rotate trends

trends.rot <- solve(H.inv) %*% the.fit$states

The following will get the confidence intervals on the rotated loadings:

3 in the {stats} package

134 10 Dynamic factor analysis

Add CIs to marssMLE object

the.fit <- MARSSparamCIs(the.fit)

Use coef() to get the upper and lower CIs

Z.low <- coef(the.fit, type = "Z", what = "par.lowCI")

Z.up <- coef(the.fit, type = "Z", what = "par.upCI")

Z.rot.up <- Z.up %*% H.inv

Z.rot.low <- Z.low %*% H.inv

df <- data.frame(

est = as.vector(Z.rot),

conf.up = as.vector(Z.rot.up),

conf.low = as.vector(Z.rot.low)

)

Rotated factor loadings for the model are shown in Figure 10.3. Oddly,
some taxa appear to have no loadings on some trends (e.g., diatoms on trend
1). The reason is that, merely for display purposes, we chose to plot only
those loadings that are greater than 0.05, and it turns out that after varimax
rotation, several loadings are close to 0.

Recall that we set Var(wt) = Q= Im in order to make our DFA model iden-
tifiable. Does the variance in the process errors also change following varimax
rotation? Interestingly, no. Because H is a non-singular, orthogonal matrix,
Var(Hwt) = HVar(wt)H⊤ = HImH⊤ = Im.

10.6 Examining model fits

Now that we have done the appropriate factor and trends rotations, we
should examine some plots of model fits. To do so, we will create a function
getDFAfits() to extract the model fits and estimated (1−α)% confidence in-
tervals. Note, the function residuals(..., type="tT") will also return this
information.

fit.b <- getDFAfits(the.fit)

First, it looks like this model captures some of the high frequency variation
(i.e., seasonality) in the time series (see Figure 10.5). Second, some of the time
series had much better overall fits than others (e.g., compare Cryptomonas
and Unicells). Given the obvious seasonal patterns in the phytoplankton data,
it would be worthwhile to first detrend the data and then repeat the model
fitting exercise to see (1) how many trends would be favored, and (2) the
shape of those trends.

Alternatively, you can use the residuals() function to obtain a summary
of the estimates and use ggplot() to plot.

Type RShowDoc("Chapter_DFA.R",package="MARSS") at the R command line to
open a file with all the code for this chapter and search for the function name.

10.6 Examining model fits 135

plot the factor loadings

spp <- rownames(dat.z)

minZ <- 0.05

m <- dim(trends.rot)[1]

ylims <- c(-1.1 * max(abs(Z.rot)), 1.1 * max(abs(Z.rot)))

par(mfrow = c(ceiling(m / 2), 2), mar = c(3, 4, 1.5, 0.5), oma = c(0.4, 1, 1, 1))

for (i in 1:m) {

plot(c(1:N.ts)[abs(Z.rot[, i]) > minZ], as.vector(Z.rot[abs(Z.rot[, i]) > minZ, i]),

type = "h", lwd = 2, xlab = "", ylab = "", xaxt = "n", ylim = ylims, xlim = c(0, N.ts + 1)

)

for (j in 1:N.ts) {

if (Z.rot[j, i] > minZ) {

text(j, -0.05, spp[j], srt = 90, adj = 1, cex = 0.9)

}

if (Z.rot[j, i] < -minZ) {

text(j, 0.05, spp[j], srt = 90, adj = 0, cex = 0.9)

}

abline(h = 0, lwd = 1, col = "gray")

} # end j loop

mtext(paste("Factor loadings on trend", i, sep = " "), side = 3, line = .5)

} # end i loop

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

C
ry

pt
om

on
as

D
ia

to
m

s

G
re

en
s

U
ni

ce
lls

O
th

er
.a

lg
ae

Factor loadings on trend 1

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

D
ia

to
m

s

G
re

en
s

U
ni

ce
lls

O
th

er
.a

lg
ae

Factor loadings on trend 2

Fig. 10.3. Plot of the factor loadings (following varimax rotation) from the 2-state
model fit to the phytoplankton data.

136 10 Dynamic factor analysis

−
6

−
4

−
2

0
2

4
6

Trend 1

1980 1983 1986 1989

−
6

−
4

−
2

0
2

4
6

Trend 2

1980 1983 1986 1989

Fig. 10.4. Plot of the unobserved trends (following varimax rotation) from the 2-state
model fit to the phytoplankton data.

−
2

−
1

0
1

2

C
ry

pt
om

on
as

1980 1982 1984 1986 1988 1990

−
2

−
1

0
1

2

D
ia

to
m

s

1980 1982 1984 1986 1988 1990

−
3

−
1

0
1

2
3

G
re

en
s

1980 1982 1984 1986 1988 1990

−
3

−
2

−
1

0
1

2

U
ni

ce
lls

1980 1982 1984 1986 1988 1990

−
3

−
2

−
1

0
1

2

O
th

er
.a

lg
ae

1980 1982 1984 1986 1988 1990

Fig. 10.5. Plot of the 2-state model fits to the phytoplankton data.

10.6 Examining model fits 137

require(ggplot2)

alpha <- 0.05

theme_set(theme_bw())

d <- residuals(the.fit, type = "tT")

d$up <- qnorm(1 - alpha / 2) * d$.sigma + d$.fitted

d$lo <- qnorm(alpha / 2) * d$.sigma + d$.fitted

ggplot(data = subset(d, name=="model")) +

geom_point(aes(t, value)) +

geom_ribbon(aes(x = t, ymin = lo, ymax = up), linetype = 2, alpha = 0.2) +

geom_line(aes(t, .fitted), col="blue") +

facet_wrap(~.rownames) +

xlab("Time Step") +

ylab("Count")

Other.algae Unicells

Cryptomonas Diatoms Greens

0 25 50 75 100 1250 25 50 75 100 125

0 25 50 75 100 125

−4

−2

0

2

−4

−2

0

2

Time Step

C
ou

nt

Fig. 10.6. Plot of the 2-state model fits to the phytoplankton data using ggplot.

138 10 Dynamic factor analysis

10.7 Adding covariates

It is standard to add covariates to the analysis so that one removes known
important drivers. The DFA with covariates is written:

xt = xt−1 +wt where wt ∼ MVN(0,Q)

yt = Zxt +a+Ddt +vt where vt ∼ MVN(0,R)

x0 ∼ MVN(π,Λ)

(10.11)

where the q× 1 vector dt contains the covariate(s) at time t, and the n× q
matrix D contains the effect(s) of the covariate(s) on the observations. Using
form="dfa" and covariates=<covariate name(s)>, we can easily add covari-
ates to our DFA, but this means that the covariates are input, not data, and
there can be no missing values. See Chapter 13 for how to include covariates
with missing values.

The Lake Washington dataset has two environmental covariates that we
might expect to have effects on phytoplankton growth, and hence, abundance:
temperature (Temp) and total phosphorous (TP).

temp <- t(plankdat[years, "Temp", drop = FALSE])

TP <- t(plankdat[years, "TP", drop = FALSE])

We will now fit three different models that each add covariate effects (i.e.,
Temp, TP, Temp & TP) to our 2-state model with R “unconstrained”.

model.list <- list(m = 2, R = "unconstrained")

kemz.temp <- MARSS(dat.spp.1980,

model = model.list, z.score = TRUE,

form = "dfa", control = cntl.list, covariates = temp

)

kemz.TP <- MARSS(dat.spp.1980,

model = model.list, z.score = TRUE,

form = "dfa", control = cntl.list, covariates = TP

)

kemz.both <- MARSS(dat.spp.1980,

model = model.list, z.score = TRUE,

form = "dfa", control = cntl.list, covariates = rbind(temp, TP)

)

Next we can compare whether the addition of the covariates improves the
model fit (effectively less residual error while accounting for the additional
parameters). NOTE : The following results were obtained by letting the EM
algorithm run for a very long time, so your results may differ.

print(cbind(

model = c("no covars", "Temp", "TP", "Temp & TP"),

AICc = round(c(

the.fit$AICc, kemz.temp$AICc, kemz.TP$AICc,

10.7 Adding covariates 139

kemz.both$AICc

))

), quote = FALSE)

model AICc

[1,] no covars 1582

[2,] Temp 1518

[3,] TP 1568

[4,] Temp & TP 1522

This suggests that adding temperature or phosphorus to the model, either
alone or in combination with one another, improves overall model fit. If we
were interested in assessing the best model structure that includes covariates,
however, we should examine all combinations of trends and structures for R.
The model fits for the temperature-only model are shown in Fig 10.7 and they
appear much better than the model without any covariates.

−
4

−
2

0
1

2
3

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Cryptomonas

−
4

−
2

0
1

2
3

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Diatoms

−
4

−
2

0
1

2
3

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Greens

−
4

−
2

0
1

2
3

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Unicells
−

4
−

2
0

1
2

3

A
bu

nd
an

ce
 in

de
x

1980 1982 1984 1986 1988 1990

Other.algae

Fig. 10.7. Plot of the fits from the temperature-only model to the phytoplankton
data.

140 10 Dynamic factor analysis

10.8 Discussion

We analyzed the phytoplankton data alone. You can try analyzing the zoo-
plankton data (type head(plankdat) to see the zooplankton names). You can
also try analyzing the phytoplankton and zooplankton together. You can also
try different assumptions concerning the structure of R; we just tried uncon-
strained, diagonal and unequal, and diagonal and equal. Lastly, notice that
there is a seasonal cycle in the data. We did not explicitly include a seasonal
cycle and it would be wise to include that as a covariate. A random walk can
fit a seasonal cycle, but a random walk is not fundamentally cyclic and thus
is not a good way to model a cycle.

DFA models often take an unusually long time to converge. In a real DFA,
you will want to make sure to try different initial starting values (see Chap-
ter 6), and force the algorithm to run a long time by using minit=x and
maxit=(x+c), where x and c are something like 200 and 5000, respectively.
You might also try using method="BFGS" in the MARSS() call.

11

Analyzing noisy animal tracking data

11.1 A simple random walk model of animal movement

A simple random walk model of movement with drift (directional movement)
but no correlation is

x1,t = x1,t−1 +u1 +w1,t , w1,t ∼ N(0,σ2
1) (11.1)

x2,t = x2,t−1 +u2 +w2,t , w2,t ∼ N(0,σ2
2) (11.2)

where x1,t is the location at time t along one axis (here, longitude) and x2,t is
for another, generally orthogonal, axis (here, latitude). The parameter u1 is
the rate of longitudinal movement and u2 is the rate of latitudinal movement.
We add errors to our observations of location:

y1,t = x1,t + v1,t , v1,t ∼ N(0,η2
1) (11.3)

y2,t = x2,t + v2,t , v2,t ∼ N(0,η2
2), (11.4)

This model is comprised of two separate univariate state-space models.
Note that y1 depends only on x1 and y2 depends only on x2. There are no
actual interactions between these two univariate models. However, we can
write the model down in the form of a multivariate model using diagonal
variance-covariance matrices and a diagonal design (Z) matrix. Because the
variance-covariance matrices and Z are diagonal, the x1:y1 and x2:y2 processes
will be independent as intended. Here are Equations 11.2 and 11.4 written as
a MARSS model (in matrix form):

Type RShowDoc("Chapter_AnimalTracking.R",package="MARSS") at the R com-
mand line to open a file with all the code for the examples in this chapter.

142 11 Analyzing animal tracking data[
x1,t
x2,t

]
=

[
x1,t−1
x2,t−1

]
+

[
u1
u2

]
+

[
w1,t
w2,t

]
, wt ∼ MVN

(
0,
[

σ2
1 0

0 σ2
2

])
(11.5)

[
y1,t
y2,t

]
=

[
1 0
0 1

][
x1,t
x2,t

]
+

[
v1,t
v2,t

]
, vt ∼ MVN

(
0,
[

η2
1 0

0 η2
2

])
(11.6)

The variance-covariance matrix for wt is a diagonal matrix with unequal vari-
ances, σ2

1 and σ2
2. The variance-covariance matrix for vt is a diagonal matrix

with unequal variances, η2
1 and η2

2. We can write this succinctly as

xt = xt−1 +u+wt , wt ∼ MVN(0,Q) (11.7)

yt = xt +vt , vt ∼ MVN(0,R). (11.8)

11.2 Loggerhead sea turtle tracking data

Loggerhead sea turtles (Caretta caretta) are listed as threatened under the
United States Endangered Species Act of 1973. Over the last ten years, a
number of state and local agencies have been deploying ARGOS tags on log-
gerhead turtles on the east coast of the United States. We have data on eight
individuals over that period. In this chapter, we use some turtle data from
the WhaleNet Archive of STOP Data, however we have corrupted this data
severely by adding random errors in order to create a “bad tag” problem (Fig-
ure 11.1), and it would appear that our sea turtles are becoming land turtles
(at least part of the time). We will use the MARSS model to estimate true
positions and speeds from the corrupted data.

Our noisy data are in loggerheadNoisy. They consist of daily readings
of location (longitude and latitude). If data are missing for a day, then the
entries for latitude and longitude for that day should be NA. However, to
make the code in this chapter run quickly, we have interpolated all missing
values in the original, uncorrupted, dataset (loggerhead). The first six lines
of the corrupted data are

loggerheadNoisy[1:6,]

turtle month day year lon lat

1 BigMama 5 28 2001 -81.45989 31.70337

2 BigMama 5 29 2001 -80.88292 32.18865

3 BigMama 5 30 2001 -81.27393 31.67568

4 BigMama 5 31 2001 -81.59317 31.83092

5 BigMama 6 1 2001 -81.35969 32.12685

6 BigMama 6 2 2001 -81.15644 31.89568

The file has data for eight turtles:

turtles <- levels(loggerheadNoisy$turtle)

turtles

11.3 Estimate locations from the bad tag data 143

[1] "BigMama" "Bruiser" "Humpty" "Isabelle" "Johanna"

[6] "MaryLee" "TBA" "Yoto"

We will analyze the position data for “Big Mama”. We put the data for “Big
Mama” into matrix dat. dat is transposed because we need time across the
columns.

turtlename <- "BigMama"

theTurtle <- which(loggerheadNoisy$turtle == turtlename)

dat <- loggerheadNoisy[theTurtle, 5:6]

dat <- t(dat) # transpose

Figure 11.1 shows the corrupted location data for Big Mama. The figure
code uses the maps R package. You will need to install this R package in order
to run the example code.

load the map package; you have to install it first

library(maps)

Read in our noisy data (no missing values)

pdat <- loggerheadNoisy # for plotting

turtlename <- "BigMama"

theTurtle <- which(loggerheadNoisy$turtle == turtlename)

par(mai = c(0, 0, 0, 0), mfrow = c(1, 1))

map("state",

region = c(

"florida", "georgia", "south carolina",

"north carolina", "virginia", "delaware", "new jersey", "maryland"

),

xlim = c(-85, -70)

)

points(pdat$lon[theTurtle], pdat$lat[theTurtle],

col = "blue", pch = 21, cex = 0.7

)

11.3 Estimate locations from the bad tag data

We will begin by specifying the structure of the MARSS model and then use
MARSS() to fit that model to the data. There are two state processes (one for
latitude and the other for longitude), and there is one observation time series
for each state process. As we saw in Equation 11.6, Z is the an identity matrix
(a diagonal matrix with 1s on the diagonal). We could specify this structure
as Z.model="identity" or Z.model=factor(c(1,2)). Although technically,
this is unnecessary as this is the default form for Z.

We will assume that the errors are independent and that there are different
drift rates (u), process variances (σ2) and observation variances for latitude
and longitude (η2).

144 11 Analyzing animal tracking data

Fig. 11.1. Plot of the tag data from the turtle Big Mama. Errors in the location data
make it seem that Big Mama has been moving overland.

Z.model <- "identity"

U.model <- "unequal"

Q.model <- "diagonal and unequal"

R.model <- "diagonal and unequal"

Fit the model to the data:

kem <- MARSS(dat, model = list(

Z = Z.model,

Q = Q.model, R = R.model, U = U.model

))

We can create a plot comparing the estimated and actual locations (Figure
11.2). The real locations (from which loggerheadNoisy was produced by
adding noise) are in loggerhead and plotted with crosses. There are only a
few data points for the real data because in the real tag data, there are many
missing days.

Code to plot estimated turtle track against observations

The estimates

11.4 Estimate speeds for each turtle 145

pred.lon <- kem$states[1,]

pred.lat <- kem$states[2,]

par(mai = c(0, 0, 0, 0), mfrow = c(1, 1))

library(maps)

pdat <- loggerheadNoisy

turtlename <- "BigMama"

map("state",

region = c(

"florida", "georgia", "south carolina",

"north carolina", "virginia", "delaware", "new jersey", "maryland"

),

xlim = c(-85, -70)

)

points(pdat$lon[theTurtle], pdat$lat[theTurtle],

col = "blue", pch = 21, cex = 0.7

)

lines(pred.lon, pred.lat, col = "red", lwd = 2)

goodturtles <- loggerhead

gooddat <- goodturtles[which(goodturtles$turtle == turtlename), 5:6]

points(gooddat[, 1], gooddat[, 2], col = "black", lwd = 2, pch = 3, cex = 1.1)

legend("bottomright", c(

"bad locations", "estimated true location",

"good location data"

),

pch = c(1, -1, 3), lty = c(-1, 1, -1),

col = c("blue", "red", "black"), bty = FALSE

)

11.4 Estimate speeds for each turtle

For each of the eight turtles, estimate the average miles traveled per day. To
calculate the distance traveled by a turtle each day, you use the estimate (from
MARSS()) of the latitude/longitude location of turtle at day t and at day t−1.
To calculate distance traveled in miles from latitude/longitude start and finish
locations, we will use the function GCDF:

GCDF <- function(lon1, lon2, lat1, lat2, degrees = TRUE, units = "miles") {

temp <- ifelse(degrees == FALSE,

acos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1)),

acos(sin(lat1 / 57.2958) * sin(lat2 / 57.2958) +

cos(lat1 / 57.2958) * cos(lat2 / 57.2958) *

cos(lon2 / 57.2958 - lon1 / 57.2958))

)

r <- 3963.0 # (statute miles) , default

146 11 Analyzing animal tracking data

bad locations
estimated true location
good location data

Fig. 11.2. Plot of the estimated track of the turtle Big Mama versus the good location
data (before we corrupted it with noise).

if ("units" == "nm") r <- 3437.74677 # (nautical miles)

if ("units" == "km") r <- 6378.7 # (kilometers)

return(r * temp)

}

We can now compute the distance traveled each day by passing in lat/lon
estimates from day i−1 and day i:

distance[i - 1] <- GCDF(

pred.lon[i - 1], pred.lon[i],

pred.lat[i - 1], pred.lat[i]

)

pred.lon and pred.lat are the predicted longitudes and latitudes from
MARSS(): rows one and two in kem$states. To calculate the distances for
all days, we put this through a for loop:

distance <- array(NA, dim = c(dim(dat)[2] - 1, 1))

for (i in 2:dim(dat)[2]) {

distance[i - 1] <- GCDF(

11.4 Estimate speeds for each turtle 147

pred.lon[i - 1], pred.lon[i],

pred.lat[i - 1], pred.lat[i]

)

}

The command mean(distance) gives us the average distance per day. We
can also make a histogram of the distances traveled per day (Figure 11.3).

par(mfrow = c(1, 1))

hist(distance) # make a histogram of distance traveled per day

Histogram of distance

distance

F
re

qu
en

cy

0 10 20 30 40 50

0
5

10
15

Fig. 11.3. Histogram of the miles traveled per day for Big Mama with estimates that
account for measurement error in the data.

We can compare the histogram of daily distances to what we would get
if we had not accounted for measurement error (Figure 11.4). We can also
compare the mean miles per day:

accounting for observation error

mean(distance)

[1] 15.53858

148 11 Analyzing animal tracking data

Compare to the distance traveled per day if you used the raw data

distance.noerr <- array(NA, dim = c(dim(dat)[2] - 1, 1))

for (i in 2:dim(dat)[2]) {

distance.noerr[i - 1] <- GCDF(dat[1, i - 1], dat[1, i], dat[2, i - 1], dat[2, i])

}

hist(distance.noerr) # make a histogram of distance traveled per day

Histogram of distance.noerr

distance.noerr

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20

Fig. 11.4. Histogram of the miles traveled per day for Big Mama with estimates that
account for measurement error in the data.

assuming the data have no observation error

mean(distance.noerr)

[1] 34.80579

You can repeat the analysis done for “Big Mama” for each of the other
turtles and compare the turtle speeds and errors. You will need to replace
“Big Mama” in the code with the name of the other turtle:

levels(loggerheadNoisy$turtle)

[1] "BigMama" "Bruiser" "Humpty" "Isabelle" "Johanna"

[6] "MaryLee" "TBA" "Yoto"

11.5 Using specialized packages to analyze tag data 149

11.5 Using specialized packages to analyze tag data

If you have real tag data to analyze, you should use a state-space modeling
package that is customized for fitting MARSS models to tracking data. The
{MARSS} package does not have all the bells and whistles that you would
want for analyzing tracking data, particularly tracking data in the marine
environment. Examples are the {Ukfsst} and {kftrack} R packages:

UKFSST https://github.com/positioning/kalmanfilter/wiki/ArticleUkfsst
KFTRACK https://github.com/positioning/kalmanfilter/wiki/Articlekftrack

kftrack is a full-featured toolbox for analyzing tag data with extended
Kalman filtering. It incorporates a number of extensions that are important
for analyzing track data: barriers to movement such as coastlines and non-
Gaussian movement distributions. With kftrack, you can use the real tag
data which has big gaps, i.e., days with no location. MARSS() will struggle
with these data because it will estimate states for all the unseen days; kftrack
only fits to the seen days.

12

Detection of outliers and structural breaks

12.1 Background

This chapter is based on a short example shown on pages 147-148 in Koopman
et al. (1999) using a 100-year record of river flow on the Nile River. The
methods are based on Harvey et al. (1998) which is in turn based on techniques
in Harvey and Koopman (1992) and Koopman (1993). The Nile dataset is
included in R . Figure 12.1 shows the data.

12.2 Different models for the Nile flow levels

We begin by fitting different flow models to the data and compare these models
with AIC. After that, we will use the model residuals to look for outliers and
structural breaks.

12.2.1 Flat level model

We will start by modeling these data as a simple average river flow with
variability around this level.

yt = a+ vt where vt ∼ N(0,r) (12.1)

where yt is the river flow volume at year t and x is some constant average flow
level (notice it has no t subscript).

To fit this model with MARSS, we will explicitly show all the MARSS
parameters.

Type RShowDoc("Chapter_StructuralBreaks.R",package="MARSS") at the R
command line to open a file with all the code for the examples in this chapter.

152 12 Outliers and structural breaks

load the datasets package

library(datasets)

data(Nile) # load the data

plot(Nile, ylab = "Flow volume", xlab = "")

F
lo

w
 v

ol
um

e

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

Fig. 12.1. The Nile River flow volume 1871 to 1970 (included dataset in R).

xt = 1× xt−1 +0+wt where wt ∼ N(0,0)
yt = 0× xt +a+ vt where vt ∼ N(0,r)

x0 = 0
(12.2)

MARSS includes the state process xt but we are setting Z to zero so that does
not appear in our observation model. We need to fix all the state parameters
to zero so that the algorithm doesn’t “chase its tail” trying to fit xt to the
data.

An equivalent way to write this model is to use xt as the average flow level
and make it be a constant level by setting q = 0. The average flow appears as
the x0 parameter. Written as a MARSS model, the model is:

xt = 1× xt−1 +0+wt where wt ∼ N(0,0)
yt = 1× xt +0+ vt where vt ∼ N(0,r)

x0 = a
(12.3)

12.2 Different models for the Nile flow levels 153

We will use this latter format since we will be building on this form. The
model is specified as follows:

mod.nile.0 <- list(

Z = matrix(1), A = matrix(0), R = matrix("r"),

B = matrix(1), U = matrix(0), Q = matrix(0),

x0 = matrix("a")

)

We then fit the model:

The data is in a ts format, and we need a matrix

dat <- t(as.matrix(Nile))

rownames(dat) <- "Nile"

kem.0 <- MARSS(dat, model = mod.nile.0, silent = TRUE)

summary(kem.0)

m: 1 state process(es) named X.Nile

n: 1 observation time series named Nile

term estimate

1 R.r 28351.57

2 x0.a 919.35

12.2.2 Linear trend in flow model

Figure 12.2 shows the fit for the flat average river flow model. Looking at the
data, we might expect that a declining average river flow would be better. In
MARSS form, that model would be:

xt = 1× xt−1 +u+wt where wt ∼ N(0,0)
yt = 1× xt +0+ vt where vt ∼ N(0,r)

x0 = a
(12.4)

where u is now the average per-year decline in river flow volume. The model
is specified as follows:

mod.nile.1 <- list(

Z = matrix(1), A = matrix(0), R = matrix("r"),

B = matrix(1), U = matrix("u"), Q = matrix(0),

x0 = matrix("a")

)

We then fit the model:

kem.1 <- MARSS(dat, model = mod.nile.1, silent = TRUE)

summary(kem.1)

154 12 Outliers and structural breaks

m: 1 state process(es) named X.Nile

n: 1 observation time series named Nile

term estimate

1 R.r 22213.595453

2 U.u -2.692106

3 x0.a 1054.935067

Figure 12.2 shows the fits for the two models with deterministic models (flat
and declining) for mean river flow along with their AICc values (smaller AICc
is better). The AICc for the model with a declining river flow is lower by over
20 (which is a lot).

12.2.3 Stochastic level model

Looking at the flow levels, we might suspect that a model that allows the
average flow to change would model the data better and we might suspect that
there have been sudden, and anomalous, changes in the river flow level. We
will now model the average river flow at year t as a random walk, specifically
an autoregressive process which means that average river flow in year t is a
function of the average river flow in year t −1.

xt = xt−1 +wt where wt ∼ N(0,q)
yt = xt + vt where vt ∼ N(0,r)

x0 = π

(12.5)

As before, yt is the river flow volume at year t. With all the MARSS parameters
shown, the model is:

xt = 1× xt−1 +0+wt where wt ∼ N(0,q)
yt = 1× xt +0+ vt where vt ∼ N(0,r)

x0 = π

(12.6)

Thus, Z = 1, a = 0, R = r, B = 1, u = 0, Q = q, and x0 = π. The model is then
specified as:

mod.nile.2 <- list(

Z = matrix(1), A = matrix(0), R = matrix("r"),

B = matrix(1), U = matrix(0), Q = matrix("q"),

x0 = matrix("pi")

)

We could also use the text shortcuts to specify the model. Because R and
Q are 1×1 matrices, “unconstrained”, “diagonal and unequal“, “diagonal and
equal” and “equalvarcov” will all lead to a 1× 1 matrix with one estimated
element.

12.3 Observation and state residuals 155

To fit the model, we use the BFGS algorithm to polish off the estimates,
since it will get the maximum faster than the default EM algorithm as long
as we start it close to the maximum.

kem.2em <- MARSS(dat, model = mod.nile.2, silent = TRUE)

kem.2 <- MARSS(dat,

model = mod.nile.2,

inits = kem.2em$par, method = "BFGS", silent = TRUE

)

summary(kem.2)

m: 1 state process(es) named X.Nile

n: 1 observation time series named Nile

term estimate

1 R.r 15336.530

2 Q.q 1218.137

3 x0.pi 1111.591

This is the same model fit in Koopman et al. (1999, p. 148) except that we
estimate x1 as parameter rather than specifying x1 via a diffuse prior. As
a result, the log-likelihood value and R and Q are a little different than in
Koopman et al. (1999).

12.3 Observation and state residuals

Figure 12.2 shows the fits to the data. From these model fits, auxiliary resid-
uals can be computed which contain information about whether the data and
models fits at time t differ more than you would expect given the model and
the model fits at time t −1. In this section, we follow the example shown on
page 147-148 in Koopman et al. (1999) and use these residuals to look for
outliers and sudden flow level changes. Using auxiliary residuals this way fol-
lows mainly from Harvey and Koopman (1992), but see also Koopman (1993,
section 3), de Jong and Penzer (1998) and Penzer (2001) for discussions of
using auxiliary residuals for detection of outliers and structural breaks.

The MARSS() function will output the expected values of xt conditioned on
the maximum-likelihood values of q, r, and x1 and on the data (y from t = 1
to T). In time-series literature, these are called the smoothed state estimates
and they are output by the Kalman filter-smoother. We will denote these
smoothed estimates xT

t (and are xtT in the MARSS output). The time value
in the superscript indicates the last data time point on which the estimate
was conditioned (in this case, the state estimate is conditioned on data from
t = 1 to t = T). From these, we can compute the model predicted value of yt ,
denoted or ŷT

t . This is the predicted value of yt conditioned on xT
t .

156 12 Outliers and structural breaks

F
lo

w
 v

ol
um

e

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970
60

0
10

00
14

00

model 0, AICc= 1313

F
lo

w
 v

ol
um

e

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

60
0

10
00

14
00

model 1, AICc= 1291

F
lo

w
 v

ol
um

e

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

60
0

10
00

14
00

model 2, AICc= 1282

Fig. 12.2. The Nile River flow volume with the model estimated flow rates (solid
lines). The bottom model is a stochastic level model, and the 2 standard deviations
for the level are also shown. The other two models are deterministic level models so
the state is not stochastic and does not have a standard deviation.

xT
t = E[Xt |θ̂,yT

1]

ŷT
t = E[Yt |θ̂,xT

t]

= xT
t + E[wt |θ̂,yT

1] = xT
t

(12.7)

where θ̂ are the maximum-likelihood estimates of the parameters. The ŷT
t

equation comes directly from equation 12.5. This expectation is not condi-
tioned on the data yT

1 , directly. It is conditioned on xT
t , which is conditioned

on yT
1 .

12.3 Observation and state residuals 157

12.3.1 Using observation residuals to detect outliers

The standardized smoothed observation (or model) residuals1 are the differ-
ence between the data at time t and the model fit at time t conditioned on all
the data and then standardized by the observation variance:

v̂t = yt − ŷT
t

et =
1√

var(v̂t)
v̂t

(12.8)

These residuals should have (asymptotically) a t-distribution (Kohn and Ans-
ley, 1989, section 3) and by looking at the residuals, we can identify potential
outlier data points–or more accurately, we can identify data points that do not
fit the model (Equation 12.5). The call MARSSresiduals(..., type="tT")

will compute the smoothation (or auxilliary) residuals for a marssMLE ob-
ject (output by a MARSS call). MARSSresiduals() returns two types of
standardized residuals (also called auxiliary residuals): Cholesky standard-
ized residuals and marginal standardized residuals. We are using the lat-
ter here. The residuals are returned as a n + m × T matrix. The first n
rows are the estimated vt standardized observation residuals and the next
m rows are the estimated wt standardized state residuals (discussed below).
residuals(..., type="tT") will also return the smoothations but in a data
frame. Here we use MARSSresiduals() which return them in a list of matrices.

resids.0 <- MARSSresiduals(kem.0, type = "tT")$mar.residuals

resids.1 <- MARSSresiduals(kem.1, type = "tT")$mar.residuals

resids.2 <- MARSSresiduals(kem.2, type = "tT")$mar.residuals

Figure 12.3 shows the observation residuals for the three models devel-
oped above. We immediately see that model 0 (flat level) and model 1 (linear
declining level) have problems because the residuals are all positive for the
first part of the time series and then all negative. The residuals should not be
temporally correlated like that. Model 2 with a stochastic level shows well-
behaving residuals with low temporal correlation between t and t−1. Looking
at the residuals for model 2, we see that there are a number of years with flow
levels that appear to be outliers (are beyond the dashed level lines).

12.3.2 Detecting sudden level changes

The standardized smoothed state residuals (ft below) are the difference be-
tween the estimated state at time t and the estimated state at time t − 1

1 also called smoothations in the literature to distinguish them from innovations,
which are yt − E[Yt |xt−1

t]. Notice that for innovations the expectation is condi-
tioned on the data up to time t − 1 while for smoothations, we condition on all
the data.

158 12 Outliers and structural breaks

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970
−

4
−

2
0

2
4

S
td

. r
es

id
ua

ls

model 0−−flat level

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

−
4

−
2

0
2

4

S
td

. r
es

id
ua

ls

model 1−−linearly declining level

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

−
4

−
2

0
2

4

S
td

. r
es

id
ua

ls

model 2−−stochastic level

Fig. 12.3. The marginal standardized observation residuals from models 0, 1, and
2. These residuals are the standardized v̂t . The dashed lines are the 95% CIs for a
t-distribution.

conditioned on all the data and then standardized by the standard deviation:

ŵt = xT
t − xT

t−1

ft =
1√

var(ŵt)
ŵt

(12.9)

These state residuals do not show simple changes in the average level; xt is
clearly changing in Figure 12.2, bottom panel. Instead we are looking for
“breaks” or sudden changes in the level. The bottom panel of Figure 12.4
shows the standardized state residuals (ft). This shows, as we can see by eye,
the average flow level in the Nile appears to have suddenly changed around
the turn of the century when the first Aswan dam was built. The top panel
shows the standardized observation residuals for comparison.

12.3.3 Detecting changes in the drift parameter in a random walk model

The model of a random walk with a fixed u drift term is:

12.3 Observation and state residuals 159

1870 1890 1910 1930 1950 1970

−
4

−
2

0
2

4

test for outliers

1870 1890 1910 1930 1950 1970

−
4

−
2

0
2

4

test for level changes

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Fig. 12.4. Top panel, the marginal standardized observation residuals. Bottom panel,
the standardized state residuals. This replicates Figure 12 in Koopman et al. (1999).

yt = xt + vt where vt ∼ N(0,r)
xt = xt−1 +u+wt where wt ∼ N(0,q)

x0 = π

(12.10)

Same as we did for the level, we can model the drift as a random walk and
explore whether ut has changed over time or whether it has experienced sudden
breaks. The stochastic level and trend model is

yt = xt + vtwhere vt ∼ N(0,r)
xt = xt−1 +ut−1 +wt where wt ∼ N(0,q)

ut = ut−1 + zt where zt ∼ N(0, p)

x0 = πx and u0 = πu

(12.11)

Write the model in MARSS form:

yt =
[
1 0
][xt

ut

]
+ vt[

xt
ut

]
=

[
1 1
0 1

][
xt−1
ut−1

]
+

[
wt
zt

]
where

[
vt
zt

]
∼ MVN

(
0,
[

q 0
0 p

]) (12.12)

160 12 Outliers and structural breaks

The model is then:

yt = Zx+a+ vt

xt = Bxt−1 +u+wt

Z =
[
1 0
]

a =
[
0
]

R =
[
r
]

B =

[
1 1
0 1

]
u =

[
0
0

]
Q =

[
q 0
0 p

]
x0 =

[
πx
πu

] (12.13)

We then write the model list as:

mod.nile.3 <- list(

Z = matrix(c(1, 0), 1, 2), A = matrix(0), R = matrix("r"),

B = matrix(c(1, 0, 1, 1), 2, 2), U = matrix(0, 2, 1),

Q = matrix(list("q", 0, 0, "p"), 2, 2),

x0 = matrix(c("x", "u"), 2, 1)

)

This model takes a long time to fit with the EM algorithm2. We could run
the EM algorithm a long time, but there is a quicker trick in this case. We
will run the EM algorithm for a few iterations and stop before convergence.
Then we will use the fit from the EM algorithm as the initial condition for
the faster BFGS algorithm for the final approach to the maximum-likelihood:

model <- mod.nile.3

kem.3 <- MARSS(dat,

model = model, inits = list(x0 = matrix(c(1000, -4), 2, 1)),

control = list(maxit = 20), silent = TRUE

)

kem.3 <- MARSS(dat,

model = model, inits = kem.3,

method = "BFGS", silent = TRUE

)

summary(kem.3)

m: 2 state process(es) named X1 X2

n: 1 observation time series named Nile

term estimate

1 R.r 1.611549e+04

2 Q.q 8.427669e+02

3 Q.p 3.693567e-07

4 x0.x 1.118521e+03

5 x0.u -3.108127e+00

2 Normally this type of model is fit with a fixed diffuse initial condition which
makes the fitting much faster. See the chapter on Structural time series models

12.3 Observation and state residuals 161

The Nile data is not a good example since the variance for the slope is
close to zero so the residual line is just a flat 0 (see value for Q.p). Let’s run
the same model on the WWWusage dataset (Figure 12.5).

W
W

W
us

ag
e

0 20 40 60 80 100

10
0

15
0

20
0

Fig. 12.5. The WWWusage data set.

dat <- as.vector(WWWusage)

kem.3 <- MARSS(dat,

model = model, inits = list(x0 = matrix(0, 2, 1)),

control = list(maxit = 20), silent = TRUE

)

kem.3 <- MARSS(dat,

model = model, inits = kem.3,

method = "BFGS", silent = TRUE

)

summary(kem.3)

m: 2 state process(es) named X1 X2

n: 1 observation time series named Y1

term estimate

1 R.r 1.356195e-20

2 Q.q 7.585295e-24

3 Q.p 1.267742e+01

4 x0.x 9.045091e+01

5 x0.u -2.450905e+00

162 12 Outliers and structural breaks

Figure 12.6 shows the standardized residuals for the u, which is the 2nd
state in x. There appears to be unusually large changes in the trend around
year 25. The other changes in the trend are consistent with a random walk;
i.e., the trend changes but only the rapid change near year 25 is inconsistent
with the estimated trend random walk.

0 10 20 30 40 50 60 70 80 90 100

−
4

−
2

0
2

4

M
ar

. r
es

id
ua

ls

test for slope changes

Fig. 12.6. The marginal standardized residuals for slope changes for the WWWusage
model.

12.4 Discussion

This chapter shows the basic strategy for doing shock detection sensu Harvey
et al. using standardized residuals. This was illustrated with stochastic level
and trend models. Stochastic level and trend models are also called Structural
Time Series models. You can find more examples of these models in Chapter
19.

13

Incorporating covariates into MARSS models

13.1 Covariates as inputs

A MARSS model with covariate effects in both the process and observation
components is written as:

xt = Btxt−1 +ut +Ctct +wt , where wt ∼ MVN(0,Qt)

yt = Ztxt +at +Dtdt +vt , where vt ∼ MVN(0,Rt)
(13.1)

where ct is the p× 1 vector of covariates (e.g., temperature, rainfall) which
affect the states and dt is a q×1 vector of covariates (potentially the same as
ct), which affect the observations. Ct is an m× p matrix of coefficients relating
the effects of ct to the m× 1 state vector xt , and Dt is an n× q matrix of
coefficients relating the effects of dt to the n×1 observation vector yt .

With the MARSS() function, one can fit this model by passing in model$c

and/or model$d in the MARSS() call as a p×T or q×T matrix, respectively.
The form for Ct and Dt is similarly specified by passing in model$C and/or
model$D. Because C and D are matrices, they must be passed in as an 3-
dimensional array with the 3rd dimension equal to the number of time steps
if they are time-varying. If they are time-constant, then they can be specified
as 2-dimensional matrices.

13.2 Examples using plankton data

Here we show some examples using the Lake Washington plankton data set
and covariates in that dataset. We use the 10 years of data from 1965-1974

Type RShowDoc("Chapter_Covariates.R",package="MARSS") at the R command
line to open a file with all the code for the examples in this chapter.

164 13 Covariates

(Figure 13.1), a decade with particularly high green and blue-green algae
levels. We use the transformed plankton dataset which has 0s replaced with
NAs. Below, we set up the data and z-score the data. The original data were
already z-scored, but we changed the mean when we sub-sampled the years
so need to z-score again.

fulldat <- lakeWAplanktonTrans

years <- fulldat[, "Year"] >= 1965 & fulldat[, "Year"] < 1975

dat <- t(fulldat[years, c("Greens", "Bluegreens")])

the.mean <- apply(dat, 1, mean, na.rm = TRUE)

the.sigma <- sqrt(apply(dat, 1, var, na.rm = TRUE))

dat <- (dat - the.mean) * (1 / the.sigma)

Next we set up the covariate data, temperature and total phosphorous. We
z-score the covariates to standardize and remove the mean. MARSS has a
function to z-score data, so we used that from here out.

covariates <- rbind(

Temp = fulldat[years, "Temp"],

TP = fulldat[years, "TP"]

)

z.score the covariates

covariates <- zscore(covariates)

13.3 Observation-error only model

We can estimate the effect of the covariates using a process-error only model,
an observation-error only model, or a model with both types of error. An
observation-error only model is a multivariate regression, and we will start
here so you see the relationship of MARSS model to more familiar linear
regression models.

13.3.1 Multivariate linear regression

In a standard multivariate linear regression, we only have an observation
model with independent errors (i.e., the state process does not appear in
the model):

yt = a+Ddt +vt , where vt ∼ MVN(0,R) (13.2)

The elements in a are the intercepts and those in D are the slopes (effects).
We have dropped the t subscript on a and D because these will be modeled as
time-constant. Writing this out for the two plankton and the two covariates
we get: [

yg
ybg

]
t
=

[
a1
a2

]
+

[
βg,temp βg,tp
βbg,temp βbg,tp

][
temp

tp

]
t−1

+

[
v1
v2

]
t

(13.3)

13.3 Observation-error only model 165

−
3

−
1

1
2

G
re

en
s

−
2

−
1

0
1

2

B
lu

eg
re

en
s

−
1

0
1

Te
m

p

−
1

1
2

3
4

1966 1968 1970 1972 1974

T
P

Time

Fig. 13.1. Time series of green andblue-green algae abundances in Lake Washington
along with the temperature and total phosphorous covariates.

Let’s fit this model with MARSS(). The x part of the model is irrelevant
so we want to fix the parameters in that part of the model. We won’t set B = 0
or Z = 0 since that might cause numerical issues for the Kalman filter. Instead
we fix them as identity matrices and fix x0 = 0 so that xt = 0 for all t.

Q <- U <- x0 <- "zero"

B <- Z <- "identity"

d <- covariates

A <- "zero"

D <- "unconstrained"

y <- dat # to show relationship between dat & the equation

model.list <- list(

B = B, U = U, Q = Q, Z = Z, A = A,

D = D, d = d, x0 = x0

)

kem <- MARSS(y, model = model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

166 13 Covariates

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -276.4287

AIC: 562.8573 AICc: 563.1351

Estimate

R.diag 0.706

D.(Greens,Temp) 0.367

D.(Bluegreens,Temp) 0.392

D.(Greens,TP) 0.058

D.(Bluegreens,TP) 0.535

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

We set A="zero" because the data and covariates have been demeaned. Of
course, one can do multiple regression in R using, say, lm(), and that would
be much, much faster. The EM algorithm is over-kill here, but it is shown so
that you see how a standard multivariate linear regression model is written as
a MARSS model in matrix form.

13.3.2 Multivariate linear regression with autocorrelated errors

We can add a twist to the standard multivariate linear regression model, and
instead of having temporally i.i.d. errors in the observation process, we’ll as-
sume autoregressive errors. There is still no state process in our model, but we
will use the state part of a MARSS model to model our errors. Mathematically,
this can be written as

xt = Bxt−1 +wt , where wt ∼ MVN(0,Q)

yt = Dtdt +xt
(13.4)

Here, the xt are the errors for the observation model; they are modeled as an
autoregressive process via the x equation. We drop the vt (set R = 0) because
the xt in the y equation are now the observation errors. As usual, we have left
the intercepts (a and u) off since the data and covariates are all demeaned.

Here’s how we fit this model in MARSS:

Q <- "unconstrained"

B <- "diagonal and unequal"

A <- U <- x0 <- "zero"

13.3 Observation-error only model 167

R <- "diagonal and equal"

d <- covariates

D <- "unconstrained"

y <- dat

model.list <- list(

B = B, U = U, Q = Q, Z = Z, A = A,

R = R, D = D, d = d, x0 = x0

)

control.list <- list(maxit = 1500)

kem <- MARSS(y, model = model.list, control = control.list)

Success! abstol and log-log tests passed at 79 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 79 iterations.

Log-likelihood: -209.3408

AIC: 438.6816 AICc: 439.7243

Estimate

R.diag 0.0428

B.(X.Greens,X.Greens) 0.2479

B.(X.Bluegreens,X.Bluegreens) 0.9136

Q.(1,1) 0.7639

Q.(2,1) -0.0285

Q.(2,2) 0.1265

D.(Greens,Temp) 0.3777

D.(Bluegreens,Temp) 0.2621

D.(Greens,TP) 0.0459

D.(Bluegreens,TP) 0.0675

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

You can try setting B to identity and MARSS will fit a model with non-mean-
reverting autoregressive errors to the data. It is not done here since it turns
out that that is not a very good model and it takes a long time to fit. If you
try it, you’ll see that Q gets small meaning that the x part is being removed
from the model.

168 13 Covariates

13.4 Process-error only model

Now let’s model the data as an autoregressive process observed without er-
ror, and incorporate the covariates into the process model. Note that this is
much different from typical linear regression models. The x part represents
our model of the data (in this case plankton species). How is this different
from the autoregressive observation errors? Well, we are modeling our data
as autoregressive so data at t −1 affects the data at t. Population abundances
are inherently autoregressive so this model is a bit closer to the underlying
mechanism generating the data. Here is our new process model for plankton
abundance. x is the plankton abundance.

xt = xt−1 +Cct +wt , where wt ∼ MVN(0,Q) (13.5)

We can fit this as follows:

R <- A <- U <- "zero"

B <- Z <- "identity"

Q <- "equalvarcov"

C <- "unconstrained"

x <- dat # to show the relation between dat & the equations

model.list <- list(

B = B, U = U, Q = Q, Z = Z, A = A,

R = R, C = C, c = covariates

)

kem <- MARSS(x, model = model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -285.0732

AIC: 586.1465 AICc: 586.8225

Estimate

Q.diag 0.7269

Q.offdiag -0.0210

x0.X.Greens -0.5189

x0.X.Bluegreens -0.2431

C.(X.Greens,Temp) -0.0434

C.(X.Bluegreens,Temp) 0.0988

C.(X.Greens,TP) -0.0589

13.4 Process-error only model 169

C.(X.Bluegreens,TP) 0.0104

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Now, it looks like temperature has a strong negative effect on algae, which is
odd. Also our log-likelihood dropped a lot. Well, the data do not look at all
like a random walk model (i.e., where B = 1), which we can see from the plot
of the data (Figure 13.1). The data are fluctuating about some mean so let’s
switch to a better autoregressive model—a mean-reverting model. To do this,
we will allow the diagonal elements of B to be something other than 1.

model.list$B <- "diagonal and unequal"

kem <- MARSS(dat, model = model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -236.6106

AIC: 493.2211 AICc: 494.2638

Estimate

B.(X.Greens,X.Greens) 0.1981

B.(X.Bluegreens,X.Bluegreens) 0.7672

Q.diag 0.4899

Q.offdiag -0.0221

x0.X.Greens -1.2915

x0.X.Bluegreens -0.4179

C.(X.Greens,Temp) 0.2844

C.(X.Bluegreens,Temp) 0.1655

C.(X.Greens,TP) 0.0332

C.(X.Bluegreens,TP) 0.1340

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Notice that the log-likelihood goes up quite a bit, which means that the mean-
reverting model fits the data much better.

With this model, we are estimating x0
0 (the starting value for the Kalman

filter). If we set model$tinitx=1, to use x0
1 as the starting value instead,

170 13 Covariates

we will get a error message that R diagonals are equal to 0 and we need
to fix x0. This is a restriction of the (default) EM algorithm having to do
with the update equation for x0

1. We cannot use BFGS unless we set Q to be
either unconstrained or diagonal because the way Q is being estimated using
the BFGS algorithm to ensure that the matrix stays positive-definite (via a
Cholesky transformation) does not allow any constraints on Q.

13.5 Both process- & observation-error model

The {MARSS} package is really designed for state-space models where you
have errors (v and w) in both the process and observation models. For example,

xt = Bxt−1 +Ctct +wt , where wt ∼ MVN(0,Q)

yt = xt−1 +vt , where vt ∼ MVN(0,R),
(13.6)

x is the true algae abundances and y is the observation of the x’s.
Let’s say we knew that the observation variance on the algae measurements

was about 0.16 and we wanted to include that known value in the model. To
do that, we can simply add R to the model list from the process-error only
model in the last example.

model.list$R <- diag(0.16, 2)

kem <- MARSS(dat, model = model.list)

Success! abstol and log-log tests passed at 27 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 27 iterations.

Log-likelihood: -241.5301

AIC: 503.0603 AICc: 504.1029

Estimate

B.(X.Greens,X.Greens) 0.31497

B.(X.Bluegreens,X.Bluegreens) 0.76205

Q.diag 0.33374

Q.offdiag -0.00331

x0.X.Greens -0.90020

x0.X.Bluegreens -0.40473

C.(X.Greens,Temp) 0.23448

C.(X.Bluegreens,Temp) 0.16960

C.(X.Greens,TP) 0.02423

13.6 Including seasonal effects in MARSS models 171

C.(X.Bluegreens,TP) 0.14120

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Note, our estimates of the effect of temperature and total phosphorous are
not that different than what you get from a simple multiple regression (our
first example). This might be because the autoregressive component is small,
meaning the estimated diagonals on the B matrix are small.

13.6 Including seasonal effects in MARSS models

Time-series data are often collected at intervals with some implicit seasonal-
ity. For example, quarterly earnings for a business, monthly rainfall totals, or
hourly air temperatures. In those cases, it is often helpful to extract any recur-
ring seasonal patterns that might otherwise mask some of the other temporal
dynamics we are interested in examining.

Here we show a few approaches for including seasonal effects using the
Lake Washington plankton data, which were collected monthly. The following
examples will use all five phytoplankton species from Lake Washington. First,
let’s set up the data.

years <- fulldat[, "Year"] >= 1965 & fulldat[, "Year"] < 1975

phytos <- c(

"Diatoms", "Greens", "Bluegreens",

"Unicells", "Other.algae"

)

dat <- t(fulldat[years, phytos])

z.score data again because we changed the mean when we subsampled

dat <- zscore(dat)

number of time periods/samples

TT <- ncol(dat)

13.6.1 Seasonal effects as fixed factors

One common approach for estimating seasonal effects is to treat each one as a
fixed factor. This adds an estimated parameter for each season (e.g., 24 hours
per day, 4 quarters per year). The plankton data are collected monthly, so we
will treat each month as a fixed factor. To fit a model with fixed month effects,
we create a 12×T covariate matrix c with one row for each month (Jan, Feb,
...) and one column for each time point. We put a 1 in the January row for
each column corresponding to a January time point, a 1 in the February row
for each column corresponding to a February time point, and so on. All other
values of c equal 0. The following code will create such a c matrix.

172 13 Covariates

number of "seasons" (e.g., 12 months per year)

period <- 12

first "season" (e.g., Jan = 1, July = 7)

per.1st <- 1

create factors for seasons

c.in <- diag(period)

for (i in 2:(ceiling(TT / period))) {

c.in <- cbind(c.in, diag(period))

}

trim c.in to correct start & length

c.in <- c.in[, (1:TT) + (per.1st - 1)]

better row names

rownames(c.in) <- month.abb

Next we need to set up the form of the C matrix which defines any con-
straints we want to set on the month effects. C is a 5×12 matrix. Five taxon
and 12 month effects. If we wanted each taxon to have the same month effect,
a common month effect across all taxon, then we have the same value in each
C column1:

C <- matrix(month.abb, 5, 12, byrow = TRUE)

C

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[2,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[3,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[4,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[5,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[,10] [,11] [,12]

[1,] "Oct" "Nov" "Dec"

[2,] "Oct" "Nov" "Dec"

[3,] "Oct" "Nov" "Dec"

[4,] "Oct" "Nov" "Dec"

[5,] "Oct" "Nov" "Dec"

Notice, that C only has 12 values in it, the 12 common month effects. However,
for this example, we will let each taxon have a different month effect thus
allowing different seasonality for each taxon. For this model, we want each
value in C to be unique:

C <- "unconstrained"

Now C has 5 × 12 = 60 separate effects.
Then we set up the form for the rest of the model parameters. We make

the following assumptions:

1 month.abb is a R constant that gives month abbreviations in text.

13.6 Including seasonal effects in MARSS models 173

Each taxon has unique density-dependence

B <- "diagonal and unequal"

Independent process errors

Q <- "diagonal and unequal"

We have demeaned the data & are fitting a mean-reverting model

by estimating a diagonal B, thus

U <- "zero"

Each obs time series is associated with only one process

Z <- "identity"

The data are demeaned & fluctuate around a mean

A <- "zero"

Observation errors are independent, but they

have similar variance due to similar collection methods

R <- "diagonal and equal"

No covariate effects in the obs equation

D <- "zero"

d <- "zero"

Now we can set up the model list for MARSS and fit the model (results
are not shown since they are verbose with 60 different month effects).

model.list <- list(

B = B, U = U, Q = Q, Z = Z, A = A, R = R,

C = C, c = c.in, D = D, d = d

)

seas.mod.1 <- MARSS(dat, model = model.list, control = list(maxit = 1500))

Get the estimated seasonal effects

rows are taxa, cols are seasonal effects

seas.1 <- coef(seas.mod.1, type = "matrix")$C

rownames(seas.1) <- phytos

colnames(seas.1) <- month.abb

The top panel in Figure 13.2 shows the estimated seasonal effects for this
model. Note that if we had set U="unequal", we would need to set one of the
columns of C to zero because the model would be under-determined (infinite
number of solutions). If we subtracted the mean January abundance off each
time series, we could set the January column in C to 0 and get rid of 5
estimated effects.

13.6.2 Seasonal effects as a polynomial

The fixed factor approach required estimating 60 effects. Another approach is
to model the month effect as a 3rd-order (or higher) polynomial: a+b×m+
c×m2 +d×m3 where m is the month number. This approach has less flexibil-
ity but requires only 20 estimated parameters (i.e., 4 regression parameters
times 5 taxa). To do so, we create a 4 × T covariate matrix c with the rows

174 13 Covariates

corresponding to 1, m, m2, and m3, and the columns again corresponding to
the time points. Here is how to set up this matrix:

number of "seasons" (e.g., 12 months per year)

period <- 12

first "season" (e.g., Jan = 1, July = 7)

per.1st <- 1

order of polynomial

poly.order <- 3

create polynomials of months

month.cov <- matrix(1, 1, period)

for (i in 1:poly.order) {

month.cov <- rbind(month.cov, (1:12)^i)

}

our c matrix is month.cov replicated once for each year

c.m.poly <- matrix(month.cov, poly.order + 1, TT + period, byrow = FALSE)

trim c.in to correct start & length

c.m.poly <- c.m.poly[, (1:TT) + (per.1st - 1)]

Everything else remains the same as in the previous example

model.list <- list(

B = B, U = U, Q = Q, Z = Z, A = A, R = R,

C = C, c = c.m.poly, D = D, d = d

)

seas.mod.2 <- MARSS(dat, model = model.list, control = list(maxit = 1500))

The effect of month m for taxon i is ai +bi ×m+ci ×m2 +di ×m3, where ai, bi,
ci and di are in the i-th row of C. We can now calculate the matrix of seasonal
effects as follows, where each row is a taxon and each column is a month:

C.2 <- coef(seas.mod.2, type = "matrix")$C

seas.2 <- C.2 %*% month.cov

rownames(seas.2) <- phytos

colnames(seas.2) <- month.abb

The middle panel in Figure 13.2 shows the estimated seasonal effects for this
polynomial model.

13.6.3 Seasonal effects as a Fourier series

The factor approach required estimating 60 effects, and the 3rd order polyno-
mial model was an improvement at only 20 parameters. A third option is to
use a discrete Fourier series, which is combination of sine and cosine waves; it
would require only 10 parameters. Specifically, the effect of month m on taxon
i is ai × cos(2πm/p)+bi × sin(2πm/p), where p is the period (e.g., 12 months,
4 quarters), and ai and bi are contained in the i-th row of C.

We begin by defining the 2×T seasonal covariate matrix c as a combination
of 1 cosine and 1 sine wave:

13.6 Including seasonal effects in MARSS models 175

cos.t <- cos(2 * pi * seq(TT) / period)

sin.t <- sin(2 * pi * seq(TT) / period)

c.Four <- rbind(cos.t, sin.t)

Everything else remains the same and we can fit this model as follows:

model.list <- list(

B = B, U = U, Q = Q, Z = Z, A = A, R = R,

C = C, c = c.Four, D = D, d = d

)

seas.mod.3 <- MARSS(dat, model = model.list, control = list(maxit = 1500))

We make our seasonal effect matrix as follows:

C.3 <- coef(seas.mod.3, type = "matrix")$C

The time series of net seasonal effects

seas.3 <- C.3 %*% c.Four[, 1:period]

rownames(seas.3) <- phytos

colnames(seas.3) <- month.abb

The bottom panel in Figure 13.2 shows the estimated seasonal effects for this
seasonal-effects model based on a discrete Fourier series.

Rather than rely on our eyes to judge model fits, we should formally assess
which of the three approaches offers the most parsimonious fit to the data.
Here is a table of AICc values for the three models:

data.frame(

Model = c("Fixed", "Cubic", "Fourier"),

AICc = round(c(

seas.mod.1$AICc,

seas.mod.2$AICc,

seas.mod.3$AICc

), 1),

stringsAsFactors = FALSE

)

Model AICc

1 Fixed 1188.4

2 Cubic 1144.9

3 Fourier 1127.4

The model selection results indicate that the model with monthly seasonal
effects estimated via the discrete Fourier sequence is the most parsimonious
of the three models. Its AICc value is much lower than either the polynomial
or fixed-effects models.

176 13 Covariates

−
0.

5
0.

0
0.

5
1.

0

F
ix

ed
 m

on
th

ly

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Diatoms
Greens
Bluegreens
Unicells
Other.algae

−
0.

8
−

0.
4

0.
0

0.
4

C
ub

ic

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Diatoms
Greens
Bluegreens
Unicells
Other.algae

−
0.

4
0.

0
0.

4

F
ou

rie
r

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Diatoms
Greens
Bluegreens
Unicells
Other.algae

Fig. 13.2. Estimated monthly effects for the three approaches to estimating seasonal
effects. Top panel: each month modeled as a separate fixed effect for each taxon (60
parameters); Middle panel: monthly effects modeled as a 3rd order polynomial (20
parameters); Bottom panel: monthly effects modeled as a discrete Fourier series (10
parameters).

13.7 Model diagnostics

We will examine some basic model diagnostics for these three approaches by
looking at plots of the model residuals (innovations) and their autocorrelation
functions (ACFs) for all five taxa using the following code:

for (i in 1:3) {

dev.new()

modn <- paste("seas.mod", i, sep = ".")

for (j in 1:5) {

plot.ts(MARSSresiduals(modn, type = "tt1")$model.residuals[j,],

ylab = "Residual", main = phytos[j]

)

abline(h = 0, lty = "dashed")

acf(MARSSresiduals(modn, type = "tt1")$model.residuals[j,],

na.action = na.pass

13.8 Covariates with missing values or observation error 177

)

}

}

Figures 13.3 to 13.5 shows these diagnostics for the three models. The model
residuals for all taxa and models appear to show significant negative autocor-
relation at lag=1, suggesting that a model with seasonal effects is inadequate
to capture all of the systematic variation in phytoplankton abundance.

Diatoms

R
es

id
ua

l

−
1.

5
0.

0
1.

5

0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8

Lag

A
C

F

Series MARSSresiduals(seas.mod.1, type = "tt1")$model.residuals[i,]

Greens

R
es

id
ua

l

−
2

0
1

2

0 2 4 6 8 10 12

−
0.

2
0.

4
1.

0
Lag

A
C

F

Series MARSSresiduals(seas.mod.1, type = "tt1")$model.residuals[i,]

Bluegreens

R
es

id
ua

l

−
1.

5
0.

0
1.

0

0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8

Lag

A
C

F
Series MARSSresiduals(seas.mod.1, type = "tt1")$model.residuals[i,]

Unicells

R
es

id
ua

l

−
1.

0
0.

5

0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8

Lag

A
C

F

Series MARSSresiduals(seas.mod.1, type = "tt1")$model.residuals[i,]

Other.algae

R
es

id
ua

l

−
1.

5
0.

0
1.

5

1965 1967 1969 1971 1973

Time
0 2 4 6 8 10 12

−
0.

2
0.

4
1.

0

Lag

A
C

F

Series MARSSresiduals(seas.mod.1, type = "tt1")$model.residuals[i,]

0 1 2 3 4 5 6 7 8 9 11

Time lag

Fig. 13.3. Model residuals and their ACF for the model with fixed monthly effects.

13.8 Covariates with missing values or observation error

The specific formulation of Equation 13.1 creates restrictions on the assump-
tions regarding the covariate data. You have to assume that your covariate
data has no error, which is probably not true. You cannot have missing values
in your covariate data, again unlikely. You cannot combine instrument time
series; for example, if you have two temperature recorders with different error
rates and biases. Also, what if you have one noisy temperature recorder in the

178 13 Covariates

Diatoms

R
es

id
ua

l

−
2

0
1

0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8

Lag

A
C

F

Series MARSSresiduals(seas.mod.2, type = "tt1")$model.residuals[i,]

Greens

R
es

id
ua

l

−
2

0
1

2

0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8

Lag

A
C

F

Series MARSSresiduals(seas.mod.2, type = "tt1")$model.residuals[i,]

Bluegreens

R
es

id
ua

l

−
1.

5
0.

0
1.

0

0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8

Lag

A
C

F

Series MARSSresiduals(seas.mod.2, type = "tt1")$model.residuals[i,]

Unicells

R
es

id
ua

l

−
1.

5
0.

0
1.

5

0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8
Lag

A
C

F

Series MARSSresiduals(seas.mod.2, type = "tt1")$model.residuals[i,]

Other.algae

R
es

id
ua

l

−
2

0
1

2

1965 1967 1969 1971 1973

Time
0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8

Lag

A
C

F

Series MARSSresiduals(seas.mod.2, type = "tt1")$model.residuals[i,]

0 1 2 3 4 5 6 7 8 9 11

Time lag

Fig. 13.4. Model residuals and their ACF for the model with monthly effects modeled
as a 3rd-rd order polynomial.

first part of your time series and then you switch to a much better recorder
in the second half of your time series? All these problems require pre-analysis
massaging of the covariate data, leaving out noisy and gappy covariate data,
and making what can feel like arbitrary choices about which covariate time
series to include.

To circumvent these potential problems and allow more flexibility in how
we incorporate covariate data, one can instead treat the covariates as compo-
nents of an auto-regressive process by including them in both the process and
observation models. Beginning with the process equation, we can write[

x(v)

x(c)

]
t
=

[
B(v) C

0 B(c)

][
x(v)

x(c)

]
t−1

+

[
u(v)

u(c)

]
+wt ,

wt ∼ MVN

(
0,
[

Q(v) 0
0 Q(c)

]) (13.7)

The elements with superscript (v) are for the k variate states and those with
superscript (c) are for the q covariate states. The dimension of x(c) is q×1 and
q is not necessarily equal to p, the number of covariate observation time series

13.8 Covariates with missing values or observation error 179

Diatoms

R
es

id
ua

l

−
2

0
1

0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8

Lag

A
C

F

Series MARSSresiduals(seas.mod.3, type = "tt1")$model.residuals[i,]

Greens

R
es

id
ua

l

−
2

0
1

2

0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8

Lag

A
C

F

Series MARSSresiduals(seas.mod.3, type = "tt1")$model.residuals[i,]

Bluegreens

R
es

id
ua

l

−
1.

5
0.

0
1.

0

0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8

Lag

A
C

F

Series MARSSresiduals(seas.mod.3, type = "tt1")$model.residuals[i,]

Unicells

R
es

id
ua

l

−
1.

5
0.

0
1.

5

0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8
Lag

A
C

F

Series MARSSresiduals(seas.mod.3, type = "tt1")$model.residuals[i,]

Other.algae

R
es

id
ua

l

−
1.

5
0.

0
1.

5

1965 1967 1969 1971 1973

Time
0 2 4 6 8 10 12

−
0.

2
0.

4
0.

8

Lag

A
C

F

Series MARSSresiduals(seas.mod.3, type = "tt1")$model.residuals[i,]

0 1 2 3 4 5 6 7 8 9 11

Time lag

Fig. 13.5. Model residuals and their ACF for the model with monthly effects esti-
mated using a Fourier transform.

in your dataset. Imagine, for example, that you have two temperature sensors
and you are combining these data. Then you have two covariate observation
time series (p = 2) but only one underlying covariate state time series (q = 1).
The matrix C is dimension k×q, and B(c) and Q(c) are dimension q×q. The
dimension2 of x(v) is k×1, and B(v) and Q(v) are dimension k× k.

Next, we can write the observation equation in an analogous manner, such
that [

y(v)

y(c)

]
t
=

[
Z(v) D

0 Z(c)

][
x(v)

x(c)

]
t
+

[
a(v)

a(c)

]
+vt ,

vt ∼ MVN

(
0,
[

R(v) 0
0 R(c)

]) (13.8)

The dimension of y(c) is p×1, where p is the number of covariate observation
time series in your dataset. The dimension of y(v) is l×1, where l is the number

2 The dimension of x is always denoted m. If your process model includes only vari-
ates, then k = m, but now your process model includes k variates and q covariate
states so m = k+q.

180 13 Covariates

of variate observation time series in your dataset. The total dimension of y
is l + p. The matrix D is dimension l × q, Z(c) is dimension p× q, and R(c)

are dimension p× p. The dimension of Z(v) is dimension l × k, and R(v) are
dimension l × l.

The D matrix would presumably have a number of all zero rows in it,
as would the C matrix. The covariates that affect the states would often be
different than the covariates that affect the observations. For example, mean
annual temperature would affect population growth rates for many species
while having little or no effect on observability, and turbidity might strongly
affect observability in many types of aquatic surveys but have little affect on
population growth rate.

Our MARSS model with covariates now looks on the surface like a regular
MARSS model:

xt = Bxt−1 +u+wt , where wt ∼ MVN(0,Q)

yt = Zxt +a+vt , where vt ∼ MVN(0,R)
(13.9)

with the xt , yt and parameter matrices redefined as in Equations 13.7 and
13.8:

x =

[
x(v)

x(c)

]
B =

[
B(v) C

0 B(c)

]
u =

[
u(v)

u(c)

]
Q =

[
Q(v) 0

0 Q(c)

]
y =

[
y(v)

y(c)

]
Z =

[
Z(v) D

0 Z(c)

]
a =

[
a(v)

a(c)

]
R =

[
R(v) 0

0 R(c)

] (13.10)

Note Q and R are written as block diagonal matrices, but you could allow
covariances if that made sense. u and a are column vectors here. We can fit
the model (Equation 13.9) as usual using the MARSS() function.

The log-likelihood that is returned by MARSS() will include the log-
likelihood of the covariates under the covariate state model. If you want only
the the log-likelihood of the non-covariate data, you will need to subtract off
the log-likelihood of the covariate model:

x(c)t = B(c)x(c)t−1 +u(c)+wt , where wt ∼ MVN(0,Q(c))

y(c)t = Z(c)x(c)t +a(c)+vt , where vt ∼ MVN(0,R(c))
(13.11)

An easy way to get this log-likelihood for the covariate data only is use the
augmented model (Equation 13.9 with terms defined as in Equation 13.10) but
pass in missing values for the non-covariate data. The following code shows
how to do this.

y.aug <- rbind(data, covariates)

fit.aug <- MARSS(y.aug, model = model.aug)

fit.aug is the MLE object that can be passed to MARSSkf(). You need to
make a version of this MLE object with the non-covariate data filled with NAs

13.8 Covariates with missing values or observation error 181

so that you can compute the log-likelihood without the covariates. This needs
to be done in the marss element since that is what is used by MARSSkf().
Below is code to do this.

fit.cov <- fit.aug

fit.cov$marss$data[1:dim(data)[1],] <- NA

extra.LL <- MARSSkf(fit.cov)$logLik

Note that when you fit the augmented model, the estimates of C and
B(c) are affected by the non-covariate data since the model for both the non-
covariate and covariate data are estimated simultaneously and are not inde-
pendent (since the covariate states affect the non-covariates states). If you
want the covariate model to be unaffected by the non-covariate data, you can
fit the covariate model separately and use the estimates for B(c) and Q(c) as
fixed values in your augmented model.

14

Estimation of species interaction strengths

14.1 Background

Multivariate autoregressive models (commonly termed MAR models) have
been developed as a tool for analyzing community dynamics from time series
data (Ives, 1995; Ives et al., 1999, 2003; Hampton et al., 2013). These models
are based on a process model for log abundances (x) of the form

xt = Bxt−1 +u+wt where wt ∼ MVN(0,Q) (14.1)

B is the interaction matrix; self interaction strengths (density-dependence)
are on the diagonal and inter-specific interaction strengths are on the off-
diagonals such that Bi, j is the ‘effect’ of species j on species i. This model has
a stochastic equilibrium—it fluctuates around mean, (I−B)−1u.

The term u determines the mean level but once the system is at equi-
librium, it does not affect the fluctuations relative to the mean. To see this,
compare two models with b = 0.5 and u = 1 versus u = 0. The mean for the
first is 1/(1− 0.5) = 2 and for the second is 0. If we start both 1 above the
mean, the next x is the same distance from the mean: x2 = 0.5(2+1)+1 = 2.5
and x2 = 0.5(0+1)+0 = 0.5. So both end up at 0.5 above the mean. So once
the system is at equilibrium, it is ‘scale invariant’, where u is the scaling term.
The way that Ives et al. (2003) write their process model (their Equation 10)
is Xt =A+BXt−1+Et . The A in Ives’s equation is the u appearing in Equation
14.1 and the Et is our wt .

Often the models include environmental covariates, but we will leave off
covariates for the moment and address them at the end of the chapter. If we

Type RShowDoc("Chapter_SpeciesInteractions.R",package="MARSS") at the
R command line to open a file with all the code for the examples in this chapter.

184 14 B estimation

add a measurement process1, we have a MARSS model:

yt = Zxt +a+vt where vt ∼ MVN(0,R) (14.2)

Typically, we have one time series per species and thus we assume that m = n
and Z is an m×m identity matrix (when m = n, a is set to 0). However, it is
certainly possible to have multiple time series per species (for example data
taken at multiple sites).

In this chapter, we will estimate the B matrix of species interactions for a
simple wolf-moose system and for a four-species freshwater plankton system.

14.2 Two-species example using wolves and moose

Population dynamics of wolves and moose on Isle Royale, Michigan make an
interesting case study of a two-species predator-prey interactions. These pop-
ulations have been studied intensively since 19582. Unlike other populations
of gray wolves, the Isle Royale population has a diet dominated by one prey
item, moose. The only predator of moose on Isle Royale is the gray wolf, as
this population is not hunted.

We will use the wolf and moose winter census data from Isle Royale to
learn how to fit community dynamics models to time-series data. The long-
term January (wolf) and February (moose) population estimates are provided
at http://www.isleroyalewolf.org.

The mathematical form of the process model for the wolf-moose population
dynamics is [

xw
xm

]
t
=

[
bw→w bm→w
bw→m bm→m

][
xw
xm

]
t−1

+

[
uw
um

]
+

[
ww
wm

]
t[

ww
wm

]
t
∼ MVN

(
0,
[

qw 0
0 qm

]) (14.3)

where w denotes wolf and m denotes moose. w → w is the effect of wolf on wolf
(density-dependence) and w → m is the effect of wolf on moose (predation
effect on moose).

14.2.1 Load in and plot the data

We will use 1960 to 2011. We will hold out 1959 as we will need that year
when we look at the effect of covariates.

1 You can fit a MAR model with no observation error by setting R = 0, but a
conditional least-squares algorithm is vastly faster than EM or BFGS for the
R = 0 case (assuming no missing data).

2 There are many publications from this long-term study site; see http://www.

isleroyalewolf.org/wolfhome/tech_pubs.html and the review here http://

www.isleroyalewolf.org/data/data/home.html.

http://www.isleroyalewolf.org
http://www.isleroyalewolf.org/wolfhome/tech_pubs.html
http://www.isleroyalewolf.org/wolfhome/tech_pubs.html
http://www.isleroyalewolf.org/data/data/home.html
http://www.isleroyalewolf.org/data/data/home.html

14.2 Two-species example using wolves and moose 185

yr1960to2011 <- isleRoyal[, "Year"] >= 1960 & isleRoyal[, "Year"] <= 2011

royale.dat <- log(t(isleRoyal[yr1960to2011, c("Wolf", "Moose")]))

x <- isleRoyal[, "Year"]

y <- log(isleRoyal[, c("Wolf", "Moose")])

graphics::matplot(x, y,

ylab = "Log count", xlab = "Year", type = "l",

lwd = 3, bty = "L", col = "black"

)

legend("topright", c("Wolf", "Moose"), lty = c(1, 2), bty = "n")

1960 1970 1980 1990 2000 2010

3
4

5
6

7

Year

Lo
g

co
un

t

Wolf
Moose

Fig. 14.1. Plot of the Isle Royale wolf and moose data.

14.2.2 Fit the model to the wolf-moose data

The naive way to fit the model is to use Equations 14.2 and 14.1 “as is”:

royale.model.0 <- list(

B = "unconstrained", Q = "diagonal and unequal",

R = "diagonal and unequal", U = "unequal"

186 14 B estimation

)

kem.0 <- MARSS(royale.dat, model = royale.model.0)

If you try this, you will notice that it does not converge but stops when it
reaches maxit and prints a number of warnings about non-convergence. The
problem is that when you try to estimate B and u, they are often confounded.
This a well-known problem, and you will need to find a way to fix u at some
value. If you are willing to assume that the process is at equilibrium (i.e.,
not recovering to equilibrium from a big perturbation), then you can simply
demean the data and set u to 0. It is also common to standardize the variance
by dividing by the square root of the variance of the data. This is called
z-scoring the data.

if missing values are in the data, they should be NAs

z.royale.dat <- zscore(royale.dat)

We can fit the model to the z-scored data, but we still have convergence
issues.

royale.model.1 <- list(

Z = "identity", B = "unconstrained",

Q = "diagonal and unequal", R = "diagonal and unequal",

U = "zero", tinitx = 1

)

cntl.list <- list(allow.degen = FALSE, maxit = 200)

kem.1 <- MARSS(z.royale.dat, model = royale.model.1, control = cntl.list)

Warning! Reached maxit before parameters converged. Maxit was 200.

neither abstol nor log-log convergence tests were passed.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

WARNING: maxit reached at 200 iter before convergence.

Neither abstol nor log-log convergence test were passed.

The likelihood and params are not at the ML values.

Try setting control$maxit higher.

Log-likelihood: -75.56383

AIC: 171.1277 AICc: 173.4933

Estimate

R.(Wolf,Wolf) 0.001433

R.(Moose,Moose) 0.000362

B.(1,1) 0.768031

B.(2,1) -0.178990

B.(1,2) 0.078335

B.(2,2) 0.827922

14.2 Two-species example using wolves and moose 187

Q.(X.Wolf,X.Wolf) 0.455214

Q.(X.Moose,X.Moose) 0.178661

x0.X.Wolf 0.002926

x0.X.Moose -1.192645

Initial states (x0) defined at t=1

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Convergence warnings

Warning: the R.(Wolf,Wolf) parameter value has not converged.

Warning: the R.(Moose,Moose) parameter value has not converged.

Warning: the x0.X.Wolf parameter value has not converged.

Warning: the logLik parameter value has not converged.

Type MARSSinfo("convergence") for more info on this warning.

It looks like R is going to zero, meaning that the maximum-likelihood model
is a process error only model. That is not too surprising given that the data
look more like a random walk than white noise. We will set R manually to
zero and assume that the census is complete (they count all individuals):

royale.model.2 <- list(

Z = "identity", B = "unconstrained",

Q = "diagonal and unequal", R = "zero", U = "zero"

)

kem.2 <- MARSS(z.royale.dat, model = royale.model.2)

Success! abstol and log-log tests passed at 16 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 16 iterations.

Log-likelihood: -81.53121

AIC: 179.0624 AICc: 180.5782

Estimate

B.(1,1) 0.7670

B.(2,1) -0.1788

B.(1,2) 0.0783

B.(2,2) 0.8277

Q.(X.Wolf,X.Wolf) 0.4485

Q.(X.Moose,X.Moose) 0.1758

x0.X.Wolf 0.1471

188 14 B estimation

x0.X.Moose -1.4089

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

14.2.3 Look at the estimated interactions

The estimated B elements are coef(kem.2)$B.

wolf.B <- coef(kem.2, type = "matrix")$B

rownames(wolf.B) <- colnames(wolf.B) <- rownames(royale.dat)

print(wolf.B, digits = 2)

Wolf Moose

Wolf 0.77 0.078

Moose -0.18 0.828

The coef() function returns the estimated parameters, but in this case we
want to see the estimates in matrix form. Thus we use type="matrix". El-
ement row=i, col= j in B is the effect of species j on species i, so B2,1 is the
effect of wolves on moose and B1,2 is the effect of moose on wolves. The B
matrix suggests that wolves have a negative effect on moose and that moose
have a positive effect on wolves—as one would expect. The diagonals are in-
terpreted differently than the off-diagonals since the diagonals are (bi,i −1) so
subtract off 1 from the diagonals to get the effect of species i on itself. If the
species are density-independent, then Bi,i would equal 1. Smaller Bi,i means
more density dependence.

14.2.4 Adding covariates

It is well-known that moose numbers are strongly affected by winter and sum-
mer climate. The Isle Royale data set provided with MARSS has climate
data from climate stations in Northeastern Minnesota, near Isle Royale3. The
covariate data include January-February, July-September and April-May av-
erage temperature and precipitation. Also included are three-year running
means of these data, where the number for year t is the average of years t −1,
t and t + 1. We will include these covariates in the analysis to see how they
change our interaction estimates. We have to adjust our covariates because
the census numbers are from winter in year t and we want the climate data
from the previous year to affect this winter’s moose count. As usual, we will
need to demean our covariate data so that we can set u equal to zero. We will
standardize the variance also so that we can more easily compare the effects
across different covariates.

3 From the Western Regional Climate Center. See the help file for this dataset for
references (?isleRoyal).

14.2 Two-species example using wolves and moose 189

The mathematical form of our new process model for the wolf-moose pop-
ulation dynamics is

[
xw
xm

]
t
= B

[
xw
xm

]
t−1

+

[
0 0 0

C21 C22 C23

] win temp
win precip
sum temp


t−1

+

[
ww
wm

]
t

(14.4)

The C21, C22, etc. terms are the effect of winter temperature, winter precipi-
tation, previous summer temperature and previous summer precipitation on
winter moose numbers. Since climate is known to mainly affect the moose, we
set the climate effects to 0 for wolves (top row of C).

First we prepare the covariate data and select the winter temperature and
precipitation data and the summer temperature data. We need to use the
previous year’s climate data with this winter’s abundance data, so 1959 to
2010.

clim.variables <- c(

"jan.feb.ave.temp", "jan.feb.ave.precip",

"july.sept.ave.temp"

)

yr1959to2010 <- isleRoyal[, "Year"] >= 1959 & isleRoyal[, "Year"] <= 2010

clim.dat <- t(isleRoyal[yr1959to2010, clim.variables])

z.score.clim.dat <- zscore(clim.dat)

A plot of the covariate data against each other indicates that there is not
much correlation between winter temperature and precipitation (Figure 14.2,
which is good for analysis purposes, but warm winters are somewhat correlated
with warm summers. The latter will make it harder to interpret the effect of
winter versus summer temperature although the correlation is not too strong
fortunately.

Next we prepare the list with the structure of all the model matrices. We
give descriptive names to the C elements so we can remember what each C
element means.

royale.model.3 <- list(

Z = "identity", B = "unconstrained",

Q = "diagonal and unequal", R = "zero", U = "zero",

C = matrix(list(

0, "Moose win temp", 0, "Moose win precip",

0, "Moose sum temp"

), 2, 3),

c = z.score.clim.dat

)

Then we fit the model with covariates.

kem.3 <- MARSS(z.royale.dat, model = royale.model.3)

190 14 B estimation

Success! abstol and log-log tests passed at 16 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 16 iterations.

Log-likelihood: -80.65261

AIC: 183.3052 AICc: 186.1748

Estimate

B.(1,1) 0.7670

B.(2,1) -0.1638

B.(1,2) 0.0783

B.(2,2) 0.8339

Q.(X.Wolf,X.Wolf) 0.4485

Q.(X.Moose,X.Moose) 0.1700

x0.X.Wolf 0.1504

x0.X.Moose -1.4412

C.Moose win temp 0.0242

C.Moose win precip -0.0718

C.Moose sum temp -0.0307

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

The results suggest what is already known about this system: cold winters
and heavy snow are bad for moose as are hot summers.

14.2.5 Change the model and data

You can explore the sensitivity of the B estimates when the measurement error
is increased by adding white noise to the data:

bad.data <- z.royale.dat + matrix(rnorm(100, 0, sqrt(.2)), 2, 50)

kem.bad <- MARSS(bad.data, model = model)

You can change the model by changing the constraints on R and Q.

14.3 Some settings to improve performance when estimating B

In the default MARSS model, the value of E[X0|y0] (what x0 denotes when
tinitx=0 in the model list) is estimated. If we are estimating the B matrix,

14.3 Some settings to improve performance when estimating B 191

jan.feb.ave.temp

−
1

0
1

2
3

−0.039

−1 0 1 2

0.33

−1 0 1 2 3

jan.feb.ave.precip

−0.036

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

july.sept.ave.temp

Fig. 14.2. Pairs plot of the covariate data for Isle Royale with corre-
lations in the lower panel. The R code that produced this plot was
cor.fun=function(x, y)text(0.5,0.5,format(cor(x,y),digits=2),cex=2)

pairs(t(z.score.clim.dat),lower.panel=cor.fun).

it is better to set tinitx=1 so that we are estimating E[X1|y0] instead
4. The

model will fit either way, but setting tinitx=1 in the model list will speed
up and stabilize the fitting. It does not make much of a difference for the
wolf-moose dataset but can have a large effect for larger models. The reason
is that the likelihood surface for E[X1|y0] is better behaved when B is small.
For example, if B equal to 0, there is little information about E[X0|y0] so the
algorithm goes in circles trying to estimate it while there is good information
E[X1|y0] from y1. We could use a prior on the initial x but this requires its
variance-covariance structure, which depends on the unknown B and specify-
ing a variance-covariance structure that conflicts with B will change your B
estimates.

4 If there are many missing values at t = 1, we might still have problems and have
to adjust accordingly.

192 14 B estimation

For the wolf-moose model, we set R = 0. The EM algorithm (default)
cannot estimate x0 when tinitx=1 therefore to fit the model with tinitx=1

we need to use method="BFGS". This is only for the case when R = 05

royale.model.4 <- list(

B = "unconstrained", U = "zero", Q = "diagonal and unequal",

Z = "identity", R = "zero", tinitx = 1

)

kem.4 <- MARSS(z.royale.dat, model = royale.model.4)

The other setting we may want to change is allow.degen in the control
list. This sets the diagonals of Q or R to zero if they are heading towards
zero. When the initial x is at t = 1, this can have non-intuitive (not wrong but
puzzling; see Appendix A) consequences if R is going to zero. So, we will set
control$allow.degen=FALSE and manually set R to 0 if needed.

14.4 Analysis a four-species plankton community

Ives et al. (2003) presented weekly data on the biomass of two species of
phytoplankton and two species of zooplankton in two lakes, one with low
planktivory and one with high planktivory. They used these data to estimate
the interaction terms for the four species. Here we will reanalyze data and
compare our results.

Ives et al. (2003) explain the data as: “The data consist of weekly samples
of zooplankton and phytoplankton, which for the analyses were divided into
two zooplankton groups (Daphnia and non-Daphnia) and two phytoplankton
groups (large and small phytoplankton). Daphnia are large, effective herbi-
vores, and small phytoplankton are particularly vulnerable to herbivory, so
we anticipate strong interactions between Daphnia and small phytoplankton
groups.” Figure 14.3 shows the data. What you can see from the figure is that
the data are only collected in the summer.

14.4.1 Load in the plankton data

only use the plankton, daphnia, & non-daphnia

plank.spp <- c("Large Phyto", "Small Phyto", "Daphnia", "Non-daphnia")

plank.dat <- ivesDataByWeek[, plank.spp]

The data are not logged

plank.dat <- log(plank.dat)

Transpose to get time going across the columns

plank.dat <- t(plank.dat)

make a demeaned version

d.plank.dat <- (plank.dat - apply(plank.dat, 1, mean, na.rm = TRUE))

5 because the update for (x0
1) j+1 is xT

1 but when R = 0 and V0
1 = 0, xT

1 will equal
(x0

1) j, i.e., whatever value you started with. Thus the estimate of x0
1 never changes.

14.4 Analysis a four-species plankton community 193

We will demean the data so we can set u to 0. We do not standardize by the
variance, however because we are going to fix the R variance later as Ives et
al. did.

−
4

−
2

0
2

week of study

lo
g

bi
om

as
s

1 15 31 47 63 79 95 113 133 153 173 193 213 233 253 273 293

Fig. 14.3. Plot of the demeaned plankton data. Zooplankton are the thicker lines.
Phytoplankton are the thinner lines.

14.4.2 Specify a MARSS model for the plankton data

We will start by fitting a model with the following assumptions:

• All phytoplankton share the same process variance.
• All zooplankton share the same process variance.
• Phytoplankton and zooplankton have different measurement variances
• Measurement errors are independent.
• Process errors are independent.

Q <- matrix(list(0), 4, 4)

diag(Q) <- c("Phyto", "Phyto", "Zoo", "Zoo")

R <- matrix(list(0), 4, 4)

diag(R) <- c("Phyto", "Phyto", "Zoo", "Zoo")

plank.model.0 <- list(

B = "unconstrained", U = "zero", Q = Q,

Z = "identity", A = "zero", R = R,

x0 = "unequal", tinitx = 1

)

Why did we set U="zero"? Equation 14.1 is a stationary model; it fluctuates
about a mean. The u in Equation 14.1 is a scaling term that just affects the

194 14 B estimation

mean level—once the system is at equilibrium. If we assume that the mean of
y (the mean of our data) is a good estimate of the mean of the system (the
x), then we can set u equal to zero (and a). The initial states (x) are set at
t = 1 instead of t = 0, which improves estimation for large systems.

14.4.3 Fit the plankton model and look at the estimated B matrix

The call to fit the model is:

kem.plank.0 <- MARSS(d.plank.dat, model = plank.model.0)

Now we can print the B matrix, with a little clean up.

Cleaning up the B matrix for printing

B.0 <- coef(kem.plank.0, type = "matrix")$B[1:4, 1:4]

rownames(B.0) <- colnames(B.0) <- c("LP", "SP", "D", "ND")

print(B.0, digits = 2)

LP SP D ND

LP 0.77 0.29 -0.0182 0.131

SP 0.19 0.51 0.0052 -0.045

D -0.43 2.29 0.4916 0.389

ND -0.33 1.35 -0.2180 0.831

LP stands for large phytoplankton, SP for small phytoplankton, D for Daphnia
and ND for non-Daphnia.

We can compare this to the Ives et al. estimates (in their Table 2, bottom
right) and see quite a few differences:

LP SP D ND

LP 0.48 -0.39 -- --

SP -- 0.25 -0.17 -0.11

D -- -- 0.74 0.00

ND -- 0.10 0.00 0.60

First, you will notice is that the Ives et al. matrix is missing values. The matrix
they show is after a model selection step to determine which interactions
had little data support and thus could be set to zero. Also, they fixed the
interactions between Daphnia and non-Daphnia at zero because they do not
prey on each other. The second thing you will notice is that the estimates are
not particularly similar. Next we will try some other ways of fitting the data
that are closer to the way that Ives et al. fitted the data.

By the way, if you are curious what would happen if we removed all those
NAs, you can run the following code.

test.dat <- d.plank.dat[, !is.na(d.plank.dat[1,])]

test <- MARSS(test.dat, model = plank.model.0)

14.4 Analysis a four-species plankton community 195

Removing all the NAs would mean that the end of summer 1 is connected to
the beginning of summer 2. This adds some steep steps in the Daphnia time
series where Daphnia ended the summer high and started the next summer
low.

14.4.4 Look at different ways to fit the model

We will try a series of changes to get closer to the way Ives et al. fit the data,
and you will see how different assumptions change (or do not change) our
species interaction estimates.

First, we change Q to be unconstrained. Making Q diagonal in model 0
meant that we were assuming that whatever environmental factor is driving
variation in phytoplankton numbers is uncorrelated with the environmental
factor driving zooplankton variation. That is probably not true since they are
all in the same lake. This case takes awhile to run.

plank.model.1 <- plank.model.0

plank.model.1$Q <- "unconstrained"

kem.plank.1 <- MARSS(d.plank.dat, model = plank.model.1)

Notice that the Q specification changed to “unconstrained”. Everything else
stays the same as in model 0. The code now runs longer, and the B estimates
are not particularly closer to Ives et al.

LP SP D ND

LP 0.4961 0.061 0.079 0.123

SP -0.1833 0.896 0.067 0.011

D 0.1180 0.350 0.638 0.370

ND 0.0023 0.370 -0.122 0.810

Next, we will set some of the interactions to zero as in Table 2 in Ives et
al. (2003). In their table, certain interactions were fixed at 0 (denoted with
0s), and some were made 0 after fitting (the blanks). We will fix all to zero.
To do this, we need to write out the B matrix as a list matrix so that we can
have estimated and fixed values (the 0s) in the B specification.

B.2 <- matrix(list(0), 4, 4) # set up the list matrix

diag(B.2) <- c("B11", "B22", "B33", "B44") # give names to diagonals

and names to the estimated non-diagonals

B.2[1, 2] <- "B12"

B.2[2, 3] <- "B23"

B.2[2, 4] <- "B24"

B.2[4, 2] <- "B42"

print(B.2)

[,1] [,2] [,3] [,4]

[1,] "B11" "B12" 0 0

[2,] 0 "B22" "B23" "B24"

196 14 B estimation

[3,] 0 0 "B33" 0

[4,] 0 "B42" 0 "B44"

As you can see, the B matrix now has elements that will be estimated
(the names in quotes) and fixed values (the numbers with no quotes). When
preparing your list matrix, make sure your fixed values do not have quotes
around them. If they do, they are strings (class character) not numbers (class
numeric), and MARSS() will interpret a string as the name of something to be
estimated. If you use the same name for an element, then MARSS() will force
those elements to be shared (have the same value).

model 2

plank.model.2 <- plank.model.1

plank.model.2$B <- B.2

kem.plank.2 <- MARSS(d.plank.dat, model = plank.model.2)

Now we are getting closer to the Ives et al. estimates:

LP SP D ND

LP 0.65 -0.33 -- --

SP -- 0.54 0.0016 -0.026

D -- -- 0.8349 --

ND -- 0.13 -- 0.596

Ives et al. did not estimate R. Instead they used a fixed observation vari-
ance of 0.04 for phytoplankton and 0.16 for zooplankton6. We fit the model
with their fixed R as follows:

model 3

plank.model.3 <- plank.model.2

plank.model.3$R <- diag(c(.04, .04, .16, .16))

kem.plank.3 <- MARSS(d.plank.dat, model = plank.model.3)

As you can see from Table 14.1, we are getting closer to the Ives et al.
estimates, but we are still a bit off. Now we need to add the environmental
covariates: phosphorous and fish biomass.

14.4.5 Adding covariates

A standard way that you will see covariate data added to a MARSS model is
the following:

xt = Bxt−1 +u+Cct +wt , where wt ∼ MVN(0,Q)

yt = Zxt +a+Ddt +vt , where vt ∼ MVN(0,R)
(14.5)

6 You can compare this to the estimated observation variances by looking at
coef(kem.plank.2)$R

14.4 Analysis a four-species plankton community 197

ct and dt are covariate data, like temperature. At time t and C is a matrix
with the (linear) effects of ct on xt , and D is a matrix with the (linear) effects
of dt on yt .

Ives et al. (2003) only include covariates in their process model, and their
process model (their Equation 27) is written Xt = A+BXt−1 +CUt +Et . In
our Equation 14.5, Ut = ct , and C is a m× p matrix, where p is the number of
covariates in ct . We will set their A (our u) to zero by demeaning the y and
implicitly assuming that the mean of the y is a good estimate of the mean of
the x’s. Thus the model where covariates only affect the underlying process is

xt = Bxt−1 +Cct +wt , where wt ∼ MVN(0,Q)

yt = xt +vt , where vt ∼ MVN(0,R)
(14.6)

To fit this model, we first need to prepare the covariate data. We will just
use the phosphorous data.

transpose to make time go across columns

drop=FALSE so that R doesn't change our matrix to a vector

phos <- t(log(ivesDataByWeek[, "Phosph", drop = FALSE]))

d.phos <- (phos - apply(phos, 1, mean, na.rm = TRUE))

Why log the covariate data? It is what Ives et al. did, so we follow their
method. However, in general, you want to think about what relationship you
want to assume between the covariates and their effects. For example, log (or
square-root) transformations mean that extremes have less impact relative to
their untransformed value and that a small absolute change, say from 0.01 to
0.0001 in the untransformed value, can mean a large difference in the effect
since log(0.0001) < log(0.01).

Phosphorous is assumed to only affect phytoplankton so the other terms
in C, corresponding to the zooplankton, are set to 0. The C matrix is defined
as follows:

C =


CLP,phos
CSP,phos

0
0

 (14.7)

To add C and c to our latest model, we add C and c to the model list used
in the MARSS() call:

plank.model.4 <- plank.model.3

plank.model.4$C <- matrix(list("C11", "C21", 0, 0), 4, 1)

plank.model.4$c <- d.phos

Then we fit the model as usual:

kem.plank.4 <- MARSS(d.plank.dat, model = plank.model.4)

Here is the C matrix. The C terms for the zooplankton are shown as -- since
they are not applicable (have been set to 0). Temperature and phosphorous
have an estimated positive effect on phytoplankton:

198 14 B estimation

[,1]

LP 0.14

SP 0.16

D --

ND --

14.4.6 Including a covariate observation model

The difficulty with the standard approach to including covariates (Equation
14.5) is that it limits what kind of covariate data you can use and how you
model that covariate data. You have to assume that your covariate data has no
error, which is probably not true. Assuming that your covariate has no error
reduces the reported uncertainty in your covariate effect because you did not
include uncertainty in those values. The standard approach also does not allow
missing values in your covariate data, which is why we did not include the fish
covariate data in the last model. Also you cannot combine multiple instrument
time series; for example, if you have two temperature recorders with different
error rates and biases. Perhaps you have one noisy temperature recorder in
the first part of your time series and then you switch to a much better recorder
in the second half of your time series. All these problems require pre-analysis
massaging of the covariate data, leaving out noisy and gappy covariate data,
and making what can feel like arbitrary choices about which covariate time
series to include. This is especially worrisome when the covariates are then
incorporated into the model as if they are known without error.

Instead one can include an observation and process model for the covariates
just like for the non-covariate data. Now the covariates are included in yt and
are modeled with their own state process(es) in xt . A MARSS model with a
covariate observation and process model is shown below. The elements with
superscript (v) are for the variates and those with superscript (c) are for
the covariates. The superscripts just help us keep straight which of the state
processes and parameters correspond to abundances and which correspond to
the environmental covariates.[

x(v)

x(c)

]
t
=

[
B(v) C

0 B(c)

][
x(v)

x(c)

]
t−1

+

[
u(v)

u(c)

]
+wt , wt ∼ MVN

(
0,
[

Q(v) 0
0 Q(c)

])

[
y(v)

y(c)

]
t
=

[
Z(v) 0

0 Z(c)

][
x(v)

x(c)

]
t
+

[
a(v)

a(c)

]
+vt , vt ∼ MVN

(
0,
[

R(v) 0
0 R(c)

])
(14.8)

Note that when you fit your covariate and non-covariate data jointly as in
Equation 14.8, your non-covariate data affect the estimates of the covariate
models. When you maximize the likelihood, you do so conditioned on all the
data. The likelihood that is output is the likelihood of the non-covariate and
covariate data. Depending on your system, you might not want the covariate

14.4 Analysis a four-species plankton community 199

model affected by the non-covariate data. In this case, you can fit the covariate
model separately:

x(c)t = B(c)x(c)t−1 +u(c)+wt , wt ∼ MVN(0,Q(c))

y(c)t = Z(c)x(c)t +a(c), vt ∼ MVN(0,R(c))
(14.9)

At this point, you have another choice. Do you want the estimated covari-
ates states, the x(c), to be affected by the non-covariate data? For example, you
have temperature data. You can estimates true temperature for the tempera-
ture only from the temperature data or you can decide that the non-covariate
data has information about the true temperature, because the non-covariate
states are affected by the true temperature. If you want the covariate states
to only be affected by the covariate data, then use Equation 14.5 with ct set
to your estimates of x(c) from Equation 14.9. Or if you want the non-covariate
data to affect the estimates of the covariate states, use Equation 14.8 with the
parameters estimated from Equation 14.9.

14.4.7 The MARSS model with covariates following Ives et al.

Ives et al. used Equation 14.5 for phosphorous and Equation 14.8 for fish
biomass. Phosphorous was treated as observed with no error since it was
experimentally manipulated and there were no missing values. Fish biomass
was treated as having observation error and was modeled as a autoregressive
process with unknown parameters as in Equation 14.8.

Their MARSS model takes the form:

xt = Bxt−1 +Cct +wt , where wt ∼ MVN(0,Q)

yt = xt +vt , where vt ∼ MVN(0,R)
(14.10)

where x and y are redefined as
large phyto
small phyto
Daphnia

non-Daphnia zooplank
fish biomass

 (14.11)

The covariate fish biomass appears in x because it will be modeled, and its
interaction terms (Ives et al.’s C terms) appear in B. Phosphorous appears in
the ct terms because it is treated as a known additive term and its interaction
terms appear in C. Recall that we set u to 0 by demeaning the plankton data,
so it does not appear above. The Z matrix does not appear in front of the xt
since there is a one-to-one correspondence the x’s and y’s, and thus Z is the
identity matrix.

The B matrix is

200 14 B estimation

B =

[
B(v) C

0 B(c)

]
=


bLP bLP,SP 0 0 0
0 bSP bSP,D bSP,ND 0
0 0 bD 0 CD, f ish
0 bND,SP 0 bND,ND CND, f ish
0 0 0 0 b f ish

 (14.12)

The B elements have some interactions fixed at 0 as in our last model fit. The
c’s are the interactions between the fish and the species. We will estimate a
B term for fish since Ives et al. did, but this is an odd thing to do for the fish
data since these data were interpolated from two samples per season.

The Q matrix is the same as that in our last model fit, with the addition
of an element for the variance for the fish biomass:

Q =

[
Q(v) 0

0 Q(c)

]
=


qLP qLP,SP qLP,D qLP,ND 0

qLP,SP qSP qSP,D qSP,ND 0
qLP,D qSP,D qD qD,ND 0

qLP,ND qSP,ND qD,ND qND 0
0 0 0 0 q f ish

 (14.13)

Again it is odd to estimate a variance term for data interpolated from two
points, but we follow Ives et al. here.

Ives et al. set the observation variance for the logged fish biomass data
to 0.36 (page 320 in Ives et al. (2003)). The observation variances for the
plankton data was set as in our previous model.

R =


0.04 0 0 0 0

0 0.04 0 0 0
0 0 0.16 0 0
0 0 0 0.16 0
0 0 0 0 0.36

 (14.14)

14.4.8 Setting the model structure for the model with fish covariate data

First we need to add the logged fish biomass to our data matrix.

transpose to make time go across columns

drop=FALSE so that R doesn't change our matrix to a vector

fish <- t(log(ivesDataByWeek[, "Fish biomass", drop = FALSE]))

d.fish <- (fish - apply(fish, 1, mean, na.rm = TRUE))

plank.dat.w.fish = rbind(plank.dat,fish)

d.plank.dat.w.fish <- rbind(d.plank.dat, d.fish)

Next make the B matrix. Some elements are estimated and others are fixed
at 0.

B <- matrix(list(0), 5, 5)

diag(B) <- list("B11", "B22", "B33", "B44", "Bfish")

B[1, 2] <- "B12"

14.4 Analysis a four-species plankton community 201

B[2, 3] <- "B23"

B[2, 4] <- "B24"

B[4, 2] <- "B42"

B[1:4, 5] <- list(0, 0, "C32", "C42")

print(B)

[,1] [,2] [,3] [,4] [,5]

[1,] "B11" "B12" 0 0 0

[2,] 0 "B22" "B23" "B24" 0

[3,] 0 0 "B33" 0 "C32"

[4,] 0 "B42" 0 "B44" "C42"

[5,] 0 0 0 0 "Bfish"

Now we have a B matrix that looks like that in Equation 14.12.
We need to add an extra row to C for the fish biomass row in x:

C <- matrix(list("C11", "C21", 0, 0, 0), 5, 1)

Then we set up the R matrix.

R <- matrix(list(0), 5, 5)

diag(R) <- list(0.04, 0.04, 0.16, 0.16, 0.36)

Last, we need to set up the Q matrix:

Q <- matrix(list(0), 5, 5)

Q[1:4, 1:4] <- paste(rep(1:4, times = 4), rep(1:4, each = 4), sep = "")

Q[5, 5] <- "fish"

Q[lower.tri(Q)] <- t(Q)[lower.tri(Q)]

print(Q)

[,1] [,2] [,3] [,4] [,5]

[1,] "11" "12" "13" "14" 0

[2,] "12" "22" "23" "24" 0

[3,] "13" "23" "33" "34" 0

[4,] "14" "24" "34" "44" 0

[5,] 0 0 0 0 "fish"

14.4.9 Fit the model with covariates

The model is the same as the previous model with updated process parameters
and updated R. We will pass in the updated data matrix with the fish biomass
added:

plank.model.5 <- plank.model.4

plank.model.5$B <- B

plank.model.5$C <- C

plank.model.5$Q <- Q

plank.model.5$R <- R

kem.plank.5 <- MARSS(d.plank.dat.w.fish, model = plank.model.5)

202 14 B estimation

This is the new B matrix using covariates.

LP SP D ND

LP 0.61 -0.465 -- --

SP -- 0.333 -0.019 -0.048

D -- -- 0.896 --

ND -- 0.044 -- 0.675

Now we are getting are getting close to Ives et al.’s estimates. Compare model
5 in Table 14.1 to the first column.

Table 14.1. The parameter estimates under the different plankton models. Models
0 to 3 do not include covariates, so the C elements are blank. Bij is the effect of
species i on species j. 1=large phytoplankton, 2=small phytoplankton, 3=Daphnia,
4=non-Daphnia zooplankton. The Ives et al. (2003) estimates are from their table
2 for the low planktivory lake with the observation model.

Ives et al. Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

B11 0.48 0.77 0.50 0.65 0.62 0.61 0.61
B22 0.25 0.51 0.90 0.54 0.51 0.33 0.33
B33 0.74 0.49 0.64 0.83 0.89 0.89 0.90
B44 0.60 0.83 0.81 0.60 0.67 0.66 0.67
B12 -0.39 0.29 0.06 -0.33 -0.32 -0.46 -0.46
B23 -0.17 0.01 0.07 0.00 -0.02 -0.02 -0.02
B24 -0.11 -0.04 0.01 -0.03 0.02 -0.05 -0.05
B42 0.10 1.35 0.37 0.13 0.09 0.05 0.04
C11 0.25 0.14 0.14
C21 0.25 0.16 0.16
C32 -0.14 -0.04
C42 -0.04 -0.01

NOTE! When you include your covariates in your state model (the x part),
the reported log-likelihood is for the variate plus the covariate data. If you
want just the log-likelihood for the variates, then you should replace the covari-
ate data with NAs and re-run the Kalman filter with your estimated model:

tmp <- kem.plank.5

tmp$marss$data[5,] <- NA

LL.variates <- MARSSkf(tmp)$logLik

MARSSkf() is the Kalman filter function and it needs a fitted model as output
by a MARSS() call. We set up a temporary fitted model, tmp, equal to our
fitted model and then set the covariate data in that to NAs. Note we need
to do this for the marssMODEL object used by MARSSkf(), which will be in
MLEobj$marss. We then pass that temporary fitted model to MARSSkf() to
get the log-likelihood of just the variates.

14.5 Stability metrics from estimated interaction matrices 203

14.4.10 Discussion

The estimates for our last model are fairly close to the Ives et al. estimates,
but still a bit different. There are two big differences between our last model
and the Ives et al. analysis. Ives et al. had data from three lakes and the
estimate of Q used the data from all lakes.

Combining data, whether it be from different areas or years, can be done
in a MARSS model as follows. Let y1 be the first data set (say from site 1)
and y2 be the second data set (say from site 2). Then a MARSS model with
shared parameters values across datasets would be

x+t = B+x+t−1 +u+wt , where wt ∼ MVN(0,Q+)

y+t = Z+x+t +a++vt , where vt ∼ MVN(0,R+)
(14.15)

where the + matrices are stacked matrices from the different sites (1 and 2):[
x1,t
x2,t

]
=

[
B 0
0 B

][
x1,t−1
x2,t−1

]
+

[
u
u

]
+wt , wt ∼ MVN

(
0,
[

Q q
q Q

])
[

y1,t
y2,t

]
=

[
Z 0
0 Z

][
x1,t
x2,t

]
+

[
a
a

]
+vt , vt ∼ MVN

(
0,
[

R 0
0 R

]) (14.16)

The q in the process variance allows that the environmental variability might
be correlated between datasets, e.g., if they are replicate plots that are nearby.
If you did not want all the parameters shared, then you replace the B in B+

with B1 and B2, say.
The second big difference is that Ives et al. did not demean their data, but

estimated u. We could have done that too, but with all the NAs in the data
(during winter), estimating u is not robust and takes a long time. You can try
the analysis on the data that has not been demeaned and set U="unequal".
The results are not particularly different, but it takes a long, long,...long time
to converge.

You can also try using the actual fish data instead of the interpolated
data. Fish biomass was estimated at the end and start of the season, so only
the values at the start and finish of strings of fish numbers are the real data.
The others are interpolated. You can fill in those interpolated values with
NAs (missing values) and rerun. The results are not appreciably different,
but the effect of fish drops a bit as you might expect when you have less fish
information. You don’t see it here, but your estimated confidence in the fish
effects would also drop since this estimate is based on less fish data.

14.5 Stability metrics from estimated interaction matrices

The previous sections focused on estimation of the B and C matrices. The
estimated B matrix gives a picture of the species interactions, but it also can

204 14 B estimation

be used to compute metrics of the intrinsic community stability (Ives et al.,
2003). Here we illustrate how to compute these metrics; the reader should see
Ives et al. (2003) for details on the meaning of each.

For the examples here, we will use the estimated B and Q matrices from
our model 5:

B <- coef(kem.plank.5, type = "matrix")$B[1:4, 1:4]

Q <- coef(kem.plank.5, type = "matrix")$Q[1:4, 1:4]

14.5.1 Return rate metrics

Return rate metrics measure how rapidly the system returns to the stationary
distribution of species abundances after it is perturbed away from the station-
ary distribution. With a deterministic (Q = 0) MARSS community model, the
equilibrium is a point or stable limit cycle. In a stochastic model (Q ̸= 0), the
equilibrium is stochastic and is a stationary distribution. Rate of return to
the stochastic equilibrium is the rate at which the distribution converges to
the stationary distribution after a perturbation away from this stationary dis-
tribution. The more rapid the convergence, the more stable the system.

The rate of return of the mean of the stationary distribution is governed
by the dominant eigenvalue of B. We can compute this as:

max(eigen(B)$values)

[1] 0.8964988

The rate of return of the variance of the stationary distribution is governed
by the dominant eigenvalue of B⊗B:

max(eigen(kronecker(B, B))$values)

[1] 0.8037101

14.5.2 Variance metrics

These metrics measure the variance of the stationary distribution of species
abundances (with variance due to environmental drivers removed) relative to
the process error variance. The system is considered more stable when the
stationary distribution variance is low relative to the process error variance.

To compute variance metrics, we need to first compute the variance-
covariance matrix for the stationary distribution, V∞:

m <- nrow(B)

vecV <- solve(diag(m * m) - kronecker(B, B)) %*% as.vector(Q)

V_inf <- matrix(vecV, nrow = m, ncol = m)

A measure of the proportion of the “volume” of the stationary distribution
due to species interactions is given by the square of the determinant of the B
matrix (Eqn. 24 in Ives et al. (2003)):

14.6 Further information 205

abs(det(B))^2

[1] 0.01559078

To compare stability across systems of different sizes, you scale by the number
of species:

abs(det(B))^(2 / nrow(B))

[1] 0.3533596

14.5.3 Reactivity metrics

Reactivity measure how the system responds to a perturbation. A highly re-
active system tends to move farther away from a stable equilibrium imme-
diately after a perturbation, even though the system will eventually return
to the equilibrium. High reactivity occurs when species interactions greatly
amplify the environmental variance to produce a stationary distribution with
high variances in the abundance of individual species.

Both metrics of reactivity of estimates of the average expected change in
distance from the mean of the stationary distribution. The first uses estimates
of Q and V∞.

-sum(diag(Q)) / sum(diag(V_inf))

[1] -0.346845

Estimation of Q is prone to high uncertainty. Another metric that uses only
B is the worst-case reactivity. This is given by

max(eigen(t(B) %*% B)$values) - 1

[1] -0.1957795

14.6 Further information

MAR modeling and models have been used estimate species interaction
strengths, stability metrics, and environmental drivers for a variety of freshwa-
ter plankton systems (Ives, 1995; Ives et al., 1999, 2003; Hampton et al., 2008,
2006; Hampton and Schindler, 2006; Klug and Cottingham, 2001). They have
been used to gain much insight into the dynamics of ecological communities
and how environmental drivers affect the system. See Hampton et al. (2013)
for a review of the literature using MAR models to understand plankton dy-
namics.

15

Combining data from multiple time series

15.1 Overview

In this section, we consider the case where multiple time series exist and we
want to use all the datasets to estimate a common underlying state process
or common underlying parameters. An example where this arises in ecological
applications is when 1) there are time series of observations from the same
population or location (e.g., aerial and land based surveys of the same site) or
2) there are time series collected in the same survey, but represent observations
of multiple underlying state processes (e.g., multiple species or populations
or age groups). An example of the latter is data from trawl surveys where
multiple species of fish are collected in one trawl.

Why should we consider using other time series? In the first scenario, where
methodology differs between time series, observation error may be survey-
specific. We would like to use both time series but need to account for the
different observation error variance. In the second scenario, we are observing
multiple different state processes, but because the survey methodology is the
same, it might be reasonable to assume a shared observation error variance.
If whatever we are surveying has similar responses to environmental stochas-
ticity, it might be possible to also assume a shared process variance across the
state processes.

In both of the above examples, MARSS models offer a way to link multiple
time series. If parameters are allowed to be shared among the state processes
(trend parameters, process variances) or observation processes (observation
variances), parameter estimates will be more precise than if we treated each
time series as independent. By improving estimates of variance parameters,

Type RShowDoc("Chapter_CombiningTrendData.R",package="MARSS") at the R
command line to open a file with all the code for the examples in this chapter.

208 15 Combining data from multiple time series

we will also be better able to discriminate between process and observation
error variances.

In this chapter, we will show examples of using MARSS models to analyze
data on poplations of multiple species but where there are multiple observation
time series that come from different survey methods. The state process is
written as:

xt = Bxt−1 +u+wt where wt ∼ MVN(0,Q) (15.1)

The true population sizes at time t are represented by the state xt , whose
dimensions are equal to the number of state processes (m). The m×m matrix
B allows interaction between processes (density dependence and competition,
for instance), u is a vector describing the mean trend, and the correlation of
the process deviations is determined by the structure of the matrix Q.

The multivariate observation error model is expressed as,

yt = Zxt +a+vt where vt ∼ MVN(0,R) (15.2)

where yt is a vector of observations at time t, Z is a design matrix of 0s and 1s,
a is a vector of bias adjustments, and the correlation structure of observation
matrices is specified with the matrix R. Including Z and a is required when
some of the states processes are observed with multiple observation time series.

15.2 Salmon spawner surveys

In our first application, we will analyze a dataset on Chinook salmon (On-
corhynchus tshawytscha). This dataset comes from the Okanogan River in
Washington state, a major tributary of the Columbia River (with headwaters
in British Columbia). As an index of the abundance of spawning adults, biolo-
gists have conducted redd surveys during summer months (redds are nests or
collection of rocks on stream bottoms where females deposit eggs). Our data
are aerial surveys of redds on the Okanogan River conducted 1956-2008 and
ground surveys of redds from 1990-2008.

15.2.1 Read in and plot the raw data

We will be using the aerial and ground surveys and logging the counts.

head(okanaganRedds)

Year aerial ground

[1,] 1956 37 NA

[2,] 1957 53 NA

[3,] 1958 94 NA

[4,] 1959 50 NA

[5,] 1960 29 NA

[6,] 1961 NA NA

15.2 Salmon spawner surveys 209

logRedds <- log(t(okanaganRedds)[c("aerial", "ground"),])

Notice that the ground surveys did not start until 1990.

1960 1970 1980 1990 2000 2010

0
50

0
10

00
15

00
20

00

R
ed

d
co

un
ts

Aerial survey
Ground survey

Fig. 15.1. The two time series look to be pretty close to one another in the years
where there is overlap.

15.2.2 Test hypotheses about whether the data can be combined

Do these surveys represent observations of the same underlying process? We
can evaluate data support for this question by testing a few relatively sim-
ple models. Using the logged data, we will start with a simple model that
assumes the underlying population process is univariate (there is one under-
lying population trajectory) and each survey is an independent observation of
this population process. Mathematically, the model is:

xt = xt−1 +u+wt , where wt ∼ N(0,q)[
yaer
ygnd

]
t
=

[
1
1

]
xt +

[
0
a2

]
+

[
vaer
vgnd

]
t
, where vt ∼ MVN

(
(0,
[

r 0
0 r

])
(15.3)

210 15 Combining data from multiple time series

The a structure means that the a for one of the y’s is fixed at 0 and the other a
is estimated relative to that fixed a. In MARSS, this is the “scaling” structure
for a. We specify this model as follows. Since x is univariate, Q and u are just
scalars (single numbers), and we can leave them off in our specification.

Fit the single state model, where the two surveys are assumed to be ob-
serving the same population.

model1 <- list()

model1$R <- "diagonal and equal"

model1$Z <- matrix(1, 2, 1)

model1$A <- "scaling"

kem1 <- MARSS(logRedds, model = model1)

The AIC and AICc values for this model are
We can modify the above model to let the observation error variances to

be unique:

model2 <- model1 # model2 is based on model1

model2$R <- "diagonal and unequal"

kem2 <- MARSS(logRedds, model = model2)

It is possible that these surveys are measuring different population pro-
cesses. They are not done at exactly the same days or locations. For our third
model, we will fit a model with two different population process with the
same process parameters. For simplicity, we will keep the trend and variance
parameters the same. Mathematically, the model we are fitting is:[

x1
x2

]
t
=

[
x1
x2

]
t−1

+

[
u
u

]
+wt , where wt ∼ MVN

(
0,
[

q 0
0 q

])
[

yaer
ygnd

]
t
=

[
1 0
0 1

][
x1
x2

]
t
+

[
0
0

]
+

[
vaer
vgnd

]
t
, where vt ∼ MVN

(
0,
[

r 0
0 r

]) (15.4)

We specify this in MARSS as

model3 <- list()

model3$Q <- "diagonal and equal"

model3$R <- "diagonal and equal"

model3$U <- "equal"

model3$Z <- "identity"

model3$A <- "zero"

kem3 <- MARSS(logRedds, model = model3)

Based on AICc, it appears that the best model is also the simplest one,
with one state vector (model1).

c(mod1 = kem1$AICc, mod2 = kem2$AICc, mod3 = kem3$AICc)

mod1 mod2 mod3

133.9804 136.2164 174.1392

15.3 American kestrel abundance indices 211

This suggests that the two different surveys are not only measuring the same
underlying process, but have the same observation error variance. On the
surface, similar observation error variances might seem impossible but it may
be that stream turbidity is what drives observation error variance for both
types of surveys. Finally, we will make a plot of the model-predicted states
(with +/- 2 s.e.s) and the log-transformed data (Figure 15.2).

1960 1970 1980 1990 2000 2010

0
2

4
6

8

R
ed

d
co

un
ts

Fig. 15.2. The data support the hypothesis that the two redd-count time series are
observations of the same population. The points are the data and the thick black
line is the estimated underlying state.

15.3 American kestrel abundance indices

In this example, we evaluate uncertainty in the structure of process vari-
ability (environmental stochasticity) using breeding bird surveys data. In this
analysis, we use three time series of American kestrel (Falco sparverius) abun-
dance from adjacent Canadian provinces along a longitudinal gradient (British
Columbia, Alberta, Saskatchewan). The data were collected annually and cor-
rected for changes in observer coverage and detectability.

212 15 Combining data from multiple time series

15.3.1 The data

Figure 15.3 shows the data. The data are already log transformed.

birddat <- t(kestrel[, c("British.Columbia", "Alberta", "Saskatchewan")])

head(kestrel)

Year British.Columbia Alberta Saskatchewan

[1,] 1969 0.754 0.460 0.000

[2,] 1970 0.673 0.899 0.192

[3,] 1971 0.734 1.133 0.280

[4,] 1972 0.589 0.528 0.386

[5,] 1973 1.405 0.789 0.451

[6,] 1974 0.624 0.528 0.234

1970 1980 1990 2000

0.
0

0.
5

1.
0

1.
5

2.
0

In
de

x
of

 k
es

tr
el

 a
bu

nd
an

ce

British Columbia
Alberta
Saskatchewan

Fig. 15.3. The kestrel data.

We know that the surveys use the same design, so we will force observa-
tion error to be shared. Our uncertainty lies in whether these time series are
sampling the same population, and how environmental stochasticity varies by

15.3 American kestrel abundance indices 213

subpopulation (if there are subpopulations). Our first model has one popula-
tion trajectory (meaning there is one panmictic BC/AB/SK population), and
each of these three surveys is an observation of this single population with
equal observation variances. Mathematically, the model is:

xt = xt−1 +u+wt , where wt ∼ N(0,q)yBC
yAB
ySK


t

=

1
1
1

xt +

 0
a2
a3

+
vBC

vAB
vSK


t

, where vt ∼ MVN

0,

r 0 0
0 r 0
0 0 r

 (15.5)

In MARSS, we denote the model:

model.b1=list()

model.b1$R="diagonal and equal"

model.b1$Z=matrix(1,3,1)

kem.b1 = MARSS(birddat, model=model.b1, control=list(minit=100))

We do not need to specify the structure of Q and u since they are scalar and
have no structure.

We will compare this to a model where we assume that there is a separate
population for British Columbia, Alberta, and Saskatchewan but they have
the same process parameters (trend and process variance). Mathematically,
this model is:xBC

xAB
xSK


t

=

xBC
xAB
xSK


t−1

+

u
u
u

+wt , where wt ∼ MVN

0,

q 0 0
0 q 0
0 0 q


yBC

yAB
ySK


t

=

1 0 0
0 1 0
0 0 1

xBC
xAB
xSK


t

+

0
0
0

+
vBC

vAB
vSK


t

, where vt ∼ MVN

0,

r 0 0
0 r 0
0 0 r


(15.6)

This is specified as:

model.b2 <- list()

model.b2$Q <- "diagonal and equal"

model.b2$R <- "diagonal and equal"

model.b2$Z <- "identity"

model.b2$A <- "zero"

model.b2$U <- "equal"

kem.b2 <- MARSS(birddat, model = model.b2)

Because these populations are surveyed over a relatively large geographic
area, it is reasonable to expect that environmental variation may differ be-
tween provinces. For our third model, we will fit a model with separate pro-
cesses that are allowed to have unequal process parameters.

model.b3 <- model.b2 # is is based on model.b2

all we change is the structure of Q

214 15 Combining data from multiple time series

model.b3$Q <- "diagonal and unequal"

model.b3$U <- "unequal"

kem.b3 <- MARSS(birddat, model = model.b3)

For our last model, we will consider a model where the Alberta and
Saskatchewan surveys are observing the same population. Mathematically,
this model is:[

xBC
xAB−SK

]
t
=

[
xBC

xAB−SK

]
t−1

+

[
u
u

]
+wt , where wt ∼ MVN

(
0,
[

q 0
0 q

])
yBC

yAB
ySK


t

=

1 0
0 1
0 1

[xBC
xAB−SK

]
t
+

 0
0
a3

+
vBC

vAB
vSK


t

, where vt ∼ MVN

0,

r 0 0
0 r 0
0 0 r


(15.7)

This model is specified as

model.b4 <- list()

model.b4$Q <- "diagonal and unequal"

model.b4$R <- "diagonal and equal"

model.b4$Z <- factor(c("BC", "AB-SK", "AB-SK"))

model.b4$A <- "scaling"

model.b4$U <- "unequal"

kem.b4 <- MARSS(birddat, model = model.b4)

The AICc values for the four models are

c(mod1 = kem.b1$AICc, mod2 = kem.b2$AICc, mod3 = kem.b3$AICc, mod4 = kem.b4$AICc)

mod1 mod2 mod3 mod4

20.90670 22.96714 23.75125 14.76889

The last model is superior to the others based on AICc. Figure 15.4 shows the
fits for this model.

15.3 American kestrel abundance indices 215

1970 1980 1990 2000

0.
0

0.
5

1.
0

1.
5

2.
0

In
de

x
of

 k
es

tr
el

 a
bu

nd
an

ce

British Columbia
Alberta
Saskatchewan

Fig. 15.4. Plot model 4 fits to the kestrel data.

16

Univariate dynamic linear models (DLMs)

16.1 Overview of dynamic linear models

In this chapter, we will use MARSS to analyze dynamic linear models (DLMs),
wherein the parameters in a regression model are treated as time-varying.
DLMs are used commonly in econometrics, but have received less attention in
the ecological literature (c.f. Lamon III et al., 1998; Scheuerell and Williams,
2005). Our treatment of DLMs is rather cursory—we direct the reader to
excellent textbooks by Pole et al. (1994) and Petris et al. (2009) for more
in-depth treatments of DLMs. The former focuses on Bayesian estimation
whereas the latter addresses both likelihood-based and Bayesian estimation
methods.

We begin our description of DLMs with a static regression model, wherein
the i-th observation is a linear function of an intercept, predictor variable(s),
and a random error term. For example, if we had one predictor variable (F),
we could write the model as

yi = α+βFi + vi, (16.1)

where the α is the intercept, β is the regression slope, Fi is the predictor
variable matched to the ith observation (yi), and vi ∼ N(0,r). It is important
to note here that there is no implicit ordering of the index i. That is, we could
shuffle any/all of the (yi,Fi) pairs in our dataset with no effect on our ability
to estimate the model parameters. We can write the model in Equation 16.1
using vector notation, such that

Type RShowDoc("Chapter_UnivariateDLM.R",package="MARSS") at the R com-
mand line to open a file with all the code for the examples in this chapter.

218 16 Univariate dynamic linear models

yi =
[
1 Fi
][α

β

]
+ vi

= F⊤
i θ+ vi, (16.2)

and F⊤
i =

[
α

β

]
and θ =

[
α β
]⊤

.

In a DLM, however, the regression parameters are dynamic in that they
evolve over time. For a single observation at time t, we can write

yt = F⊤
t θt + vt , (16.3)

where Ft is a column vector of regression variables at time t, θt is a col-
umn vector of regression parameters at time t and vt ∼ N(0,r). While seem-
ingly identical, this formulation presents two features that distinguish it from
Equation 16.2. First, the observed data are explicitly time ordered (i.e.,
y = {y1,y2,y3, ...,yT}), which means we expect them to contain implicit in-
formation. Second, the relationship between the observed datum and the pre-
dictor variables are unique at every time t (i.e., θ = {θ1,θ2,θ3, ...,θT}).

However, closer examination of Equation 16.3 reveals an apparent compli-
cation for parameter estimation. With only one datum at each time step t, we
could, at best, estimate only one regression parameter, and even then, the 1:1
correspondence between data and parameters would preclude any estimation
of parameter uncertainty. To address this shortcoming, we return to the time
ordering of model parameters. Rather than assume the regression parameters
are independent from one time step to another, we instead model them as an
autoregressive process where

θt = Gtθt−1 +wt , (16.4)

Gt is the parameter “evolution” matrix, and wt is a vector of process errors,
such that wt ∼ MVN(0,Q). The elements of Gt may be known and fixed a
priori, or unknown and estimated from the data. Although we allow for Gt to
be time-varying, we will typically assume that it is time invariant.

The idea is that the evolution matrix Gt deterministically maps the pa-
rameter space from one time step to the next, so the parameters at time t are
temporally related to those before and after. However, the process is stochas-
tic and the mapping includes stochastic error, which leads to a degradation of
information over time. If the diagonal elements of Q are relatively large, then
the parameters can vary widely from t to t + 1. If Q = 0, then θ1 = θ2 = θT
and we are back to the static model in Equation 16.1.

16.2 Example of a univariate DLM

Let’s consider an example from the literature. Scheuerell and Williams (2005)
used a DLM to examine the relationship between marine survival of Chinook

16.2 Example of a univariate DLM 219

salmon and an index of ocean upwelling strength along the west coast of
the USA. Upwelling brings cool, nutrient-rich waters from the deep ocean to
shallower coastal areas. Scheuerell and Williams hypothesized that stronger
upwelling in April should create better growing conditions for phytoplankton,
which would then translate into more zooplankton. In turn, juvenile salmon
(“smolts”) entering the ocean in May and June should find better foraging
opportunities. Thus, for smolts entering the ocean in year t,

survivalt = αt +βtFt + vt with vt ∼ N(0,r), (16.5)

and Ft is the coastal upwelling index1 for the month of April in year t.
Both the intercept and slope are time varying, so

αt = αt−1 +w(1)
t with w(1)

t ∼ N(0,q1); and (16.6)

βt = βt−1 +w(2)
t with w(2)

t ∼ N(0,q2). (16.7)

If we define θt =
[
αt βt

]⊤
, Gt = I for all t, wt =

[
w(1)

t w(2)
t

]⊤
, and Q =

[
q1 0
0 q2

]
,

we get Equation 16.4. If we define yt = survivalt and Ft =
[
1 Ft

]⊤
, we can write

out the full univariate DLM as a state-space model with the following form:

θt = Gtθt−1 +wt with wt ∼ MVN(0,Q);

yt = F⊤
t θt + vt with vt ∼ N(0,r);
θ0 ∼ MVN(π0,Λ0).

(16.8)

Equation 16.8 is equivalent to our standard MARSS model:

xt = Btxt−1 +ut +Ctct +wt with wt ∼ MVN(0,Qt);
yt = Ztxt +at +Dtdt +vt with vt ∼ MVN(0,Rt);

x0 ∼ MVN(π,Λ);
(16.9)

where xt = θt , Bt = Gt , ut = Ct = ct = 0, yt = yt (i.e., yt is 1 x 1), Zt = F⊤
t ,

at = Dt = dt = 0, and Rt = r (i.e., Rt is 1 x 1).

16.2.1 Fitting a univariate DLM with the {MARSS} package

Now let’s go ahead and analyze the DLM specified in Equations 16.5–16.8.
We begin by getting the data set, which has three columns for 1) the year the
salmon smolts migrated to the ocean (year), 2) logit-transformed survival2

(logit.s), and 3) the coastal upwelling index for April (CUI.apr). There are 42
years of data (1964–2005).

1 cubic meters of seawater per second per 100 m of coastline
2 Survival in the original context was defined as the proportion of juveniles that
survive to adulthood. Thus, we use the logit function, defined as logit(p) =
loge(p/[1− p]), to map survival from the open interval (0,1) onto the interval
(−∞,∞), which allows us to meet our assumption of normally distributed obser-
vation errors.

220 16 Univariate dynamic linear models

data(SalmonSurvCUI)

years <- SalmonSurvCUI[, 1]

TT <- length(years)

response data: logit(survival)

dat <- matrix(SalmonSurvCUI[, 2], nrow = 1)

As we have seen in other chapters, standardizing our covariate(s) to have
zero-mean and unit-variance can be helpful in model fitting and interpretation.
In this case, it is a good idea because the variance of CUI.apr is orders of
magnitude greater than survival.

CUI <- SalmonSurvCUI[, "CUI.apr"]

CUI.z <- zscore(CUI)

number of state = # of regression params (slope(s) + intercept)

m <- 1 + 1

Plots of logit-transformed survival and the z-scored April upwelling index are
shown in Figure 16.1.

−
6.

0
−

4.
0

Lo
gi

t(
s)

−
3

−
1

1

C
U

I

1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of ocean entry

Fig. 16.1. Time series of logit-transformed marine survival estimates for Snake River
spring/summer Chinook salmon (top) and z-scores of the coastal upwelling index at
45N 125W (bottom). The x-axis indicates the year that the salmon smolts entered
the ocean.

Next, we need to set up the appropriate matrices and vectors for the
MARSS() function. Let’s begin with those for the process equation because
they are straightforward.

for process eqn

B <- diag(m) # 2x2; Identity

16.2 Example of a univariate DLM 221

U <- matrix(0, nrow = m, ncol = 1) # 2x1; both elements = 0

Q <- matrix(list(0), m, m) # 2x2; all 0 for now

diag(Q) <- c("q1", "q2") # 2x2; diag = (q1,q2)

Defining the correct form for the observation model is a little more tricky,
however, because of how we model the effect(s) of explanatory variables. In
a DLM, we need to use Zt (instead of dt) as the matrix of known regressors
(covariates or drivers) that affect yt , and xt (instead of Dt) as the regression
parameters. Therefore, we need to set Zt equal to an n x m x T array, where
n is the number of response variables (= 1; yt is univariate), m is the number
of regression parameters (= intercept + slope = 2), and T is the length of the
time series (= 42).

for observation eqn

Z <- array(NA, c(1, m, TT)) # NxMxT; empty for now

Z[1, 1,] <- rep(1, TT) # Nx1; 1's for intercept

Z[1, 2,] <- CUI.z # Nx1; regr variable

A <- matrix(0) # 1x1; scalar = 0

R <- matrix("r") # 1x1; scalar = r

Lastly, we need to define our lists of initial starting values and model
matrices/vectors.

only need starting values for regr parameters

inits.list <- list(x0 = matrix(c(0, 0), nrow = m))

list of model matrices & vectors

mod.list <- list(B = B, U = U, Q = Q, Z = Z, A = A, R = R)

And now we can fit our DLM with the MARSS() function.

dlm1 <- MARSS(dat, inits = inits.list, model = mod.list)

Success! abstol and log-log tests passed at 115 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 115 iterations.

Log-likelihood: -40.03813

AIC: 90.07627 AICc: 91.74293

Estimate

R.r 0.15708

Q.q1 0.11264

Q.q2 0.00564

x0.X1 -3.34023

222 16 Univariate dynamic linear models

x0.X2 -0.05388

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Notice that the MARSS() output does not list any estimates of the regres-
sion parameters themselves. Why not? Remember that in a DLM the states
(x) are the estimates of the regression parameters (θ). Therefore, we need
to look in dlm1$states for the MLEs of the regression parameters, and in
dlm1$states.se for their standard errors.

Time series of the estimated intercept and slope are shown in Figure 16.2.
It appears as though the intercept is much more dynamic than the slope, as
indicated by a much larger estimate of process variance for the former (Q.q1).
In fact, although the effect of April upwelling appears to be increasing over
time, it doesn’t really become important as an explanatory variable until
about 1990 when the approximate 95% confidence interval for the slope no
longer overlaps zero.

−
6.

0
−

4.
0

α t

−
0.

2
0.

4
1.

0

β t

1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of ocean entry

Fig. 16.2. Time series of estimated mean states (thick lines) for the intercept (top)
and slope (bottom) parameters from the univariate DLM specified by Equations
16.5–16.8. Thin lines denote the mean ± 2 standard deviations.

16.3 Forecasting with a univariate DLM

Scheuerell and Williams (2005) were interested in how well upwelling could
be used to forecast expected survival of salmon. Let’s look at how well our

16.3 Forecasting with a univariate DLM 223

model does in that context. To do so, we need the predictive distributions for
the regression parameters and observation.

Beginning with our definition for the distribution of the parameters at
time t = 0, θ0 ∼ MVN(π0,Λ0) in Equation 16.8, we write

θt−1|y1:t−1 ∼ MVN(πt−1,Λt−1) (16.10)

to indicate the distribution of θ at time t − 1 conditioned on the observed
data through time t − 1 (i.e., y1:t−1). Then, we can write the one-step ahead
predictive distribution for θt given y1:t−1 as

θt |y1:t−1 ∼ MVN(ηt ,Φt), where

ηt = Gtπt−1, and (16.11)

Φt = GtΛt−1G⊤
t +Q.

Consequently, the one-step ahead predictive distribution for the observation
at time t given y1:t−1 is

yt |y1:t−1 ∼ N(ζt ,Ψt), where

ζt = Ftηt , and (16.12)

Ψt = FtΦtF⊤
t +R.

16.3.1 Forecasting a univariate DLM with the {MARSS} package

Working from Equation 16.12, we can now use the {MARSS} package to
compute the expected value of the forecast at time t (E[yt |y1:t−1] = ζt), and its
variance (var[yt |y1:t−1] = Ψt). For the expectation, we need Ftηt . Recall that
Ft is our 1×m matrix of explanatory variables at time t (Ft is called Zt in
{MARSS} notation). The one-step ahead forecasts of the parameters at time
t (ηt) are calculated as part of the Kalman filter algorithm—they are termed
xt−1

t in {MARSS} notation and stored as xtt1 in the list produced by the
MARSSkf() function.

get list of Kalman filter output

kf.out <- MARSSkfss(dlm1)

forecasts of regr parameters; 2xT matrix

eta <- kf.out$xtt1

ts of E(forecasts)

fore.mean <- vector()

for (t in 1:TT) {

fore.mean[t] <- Z[, , t] %*% eta[, t, drop = F]

}

For the variance of the forecasts, we need FtΦtF⊤
t +R. As with the mean,

Ft ≡ Zt . The variances of the one-step ahead forecasts of the parameters at
time t (Φt) are also calculated as part of the Kalman filter algorithm—they

224 16 Univariate dynamic linear models

are stored as Vtt1 in the list produced by the MARSSkf() function. Lastly, the
observation variance R is part of the standard MARSS output.

variance of regr parameters; 1x2xT array

Phi <- kf.out$Vtt1

obs variance; 1x1 matrix

R.est <- coef(dlm1, type = "matrix")$R

ts of Var(forecasts)

fore.var <- vector()

for (t in 1:TT) {

tZ <- matrix(Z[, , t], m, 1) # transpose of Z

fore.var[t] <- Z[, , t] %*% Phi[, , t] %*% tZ + R.est

}

Plots of the model mean forecasts with their estimated uncertainty are
shown in Figure 16.3. Nearly all of the observed values fell within the approx-
imate prediction interval. Notice that we have a forecasted value for the first
year of the time series (1964), which may seem at odds with our notion of
forecasting at time t based on data available only through time t −1. In this
case, however, MARSS() is estimated the states at t = 0 (θ0), which allows us
to compute a forecast for the first time point.

−
8

−
6

−
4

−
2

Lo
gi

t(
s)

1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of ocean entry

Fig. 16.3. Time series of logit-transformed survival data (blue dots) and model mean
one-step ahead forecasts (thick line). Thin lines denote the approximate 95% pre-
diction intervals.

Although our model forecasts look reasonable in logit-space, it is worth-
while to examine how well they look when the survival data and forecasts
are back-transformed onto the interval [0,1] (Figure 16.4). In that case, the
accuracy does not seem to be affected, but the precision appears much worse,
especially during the early and late portions of the time series when survival
is changing rapidly.

16.3 Forecasting with a univariate DLM 225

0.
00

0.
06

0.
12

S
ur

vi
va

l

1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of ocean entry

Fig. 16.4. Time series of survival data (blue dots) and model mean forecasts (thick
line). Thin lines denote the approximate 95% prediction intervals.

16.3.2 DLM forecast diagnostics

As with other time series models, evaluation of a DLM should include model
diagnostics. In a forecasting context, we are often interested in the forecast
errors, which are simply the observed data minus the forecasts (et = yt −ζt).
In particular, the following assumptions should hold true for et :

1. et ∼ N(0,σ2);
2. cov(et ,et−k) = 0.

In the literature on state-space models, the set of et are commonly referred
to as “innovations”. The innovations as part of the Kalman filter algorithm—
they are stored as Innov in the list produced by the MARSSkfss() function3.

forecast errors

innov <- kf.out$Innov

Let’s see if our innovations meet the model assumptions. Beginning with
(1), we can use a Q-Q plot to see whether the innovations are normally dis-
tributed with a mean of zero. We will use the qqnorm() function to plot the
quantiles of the innovations on the y-axis versus the theoretical quantiles from
a Normal distribution on the x-axis. If the two distributions are similar, the
points should fall on the line defined by y = x.

Q-Q plot of innovations

qqnorm(t(innov), main = "", pch = 16, col = "blue")

add y=x line for easier interpretation

qqline(t(innov))

3 We need to use the Shumway and Stoffer Kalman filter instead of the {KFAS}
Kalman filter.

226 16 Univariate dynamic linear models

−2 −1 0 1 2

−
1.

5
−

0.
5

0.
5

1.
5

Theoretical Quantiles
S

am
pl

e
Q

ua
nt

ile
s

Fig. 16.5. Q-Q plot of the forecast errors (innovations) for the DLM specified in
Equations 16.5 to 16.8.

The Q-Q plot (Figure 16.5) indicates that the innovations appear to be
more-or-less normally distributed (i.e., most points fall on the line). Further-
more, it looks like the mean of the innovations is about 0, but we should
use a more reliable test than simple visual inspection. We can formally test
whether the mean of the innovations is significantly different from 0 by using
a one-sample t-test. based on a null hypothesis of E[et] = 0. To do so, we will
use the function t.test() and base our inference on a significance value of
α = 0.05.

p-value for t-test of H0: E(innov) = 0

t.test(t(innov), mu = 0)$p.value

[1] 0.4840901

The p-value >> 0.05 so we cannot reject the null hypothesis that E[et] = 0.
Moving on to assumption (2), we can use the sample autocorrelation func-

tion (ACF) to examine whether the innovations are autocorrelated (they
should not be). Using the acf() function, we can compute and plot the cor-
relations of et and et−k for various values of k. Assumption (2) will be met if
none of the correlation coefficients exceed the 95% confidence intervals defined
by ±z0.975/

√
n.

plot ACF of innovations

acf(t(innov), lag.max = 10)

The ACF plot (Figure 16.6) shows no significant autocorrelation in the inno-
vations at lags 1–10, so it appears that both of our model assumptions have
been met.

16.3 Forecasting with a univariate DLM 227

0 2 4 6 8 10

−
0.

2
0.

2
0.

6
1.

0

Lag
A

C
F

Y1

Fig. 16.6. Autocorrelation plot of the forecast errors (innovations) for the DLM
specified in Equations 16.5 to 16.8. Horizontal blue lines define the upper and lower
95% confidence intervals.

17

Multivariate linear regression

This chapter shows how to write regression models with multivariate re-
sponses and multivariate explanatory variables in MARSS form. R has many
excellent functions and packages for multiple linear regression. We will be
showing how to use the MARSS() function to fit these models, but note that
R ’s standard linear regression functions would be much better choices in
most cases. The purpose of this chapter is to show the relationship between
multivariate linear regression and the MARSS equation.

In a classic linear regression, the response variable (y) is univariate and
there may be one to multiple explanatory variables (d1, d2, . . .) plus an op-
tional intercept (α):

yt = α+∑
k

βkdk + et , where et ∼ N(0,σ2) (17.1)

Here the subscript, t is used since we are working with time-series data. Ex-
planatory variables are normally denoted x in linear regression however x is
not used here since x is already used in MARSS models to denote the hidden
process trajectory. Instead d is used when the explanatory variables appear
in the y part of the equation (and c if they appear in the x part).

This chapter will start with classical linear regression where the explana-
tory variables are treated as inputs that are known without error and where
we are trying to explain the variation in y with our explanatory variables. We
will extend this to the case of autocorrelated errors.

17.1 Univariate linear regression

A vanilla linear regression where our data are time ordered but we treat them
as independent can be written as

Type RShowDoc("Chapter_MLR.R",package="MARSS") at the R command line to
open a file with all the code for the examples in this chapter.

230 17 Multivariate linear regression

yt = α+β1d1,t +β2d2,t + et , (17.2)

where the d are our explanatory variables. This model can be written in many
different ways in as a MARSS equation. Here we use a specific form where
the i.i.d. component of the errors is vt in the y part of the MARSS equation
and autocorrelated errors will appear as xt in the y equation. Specifying the
MARSS model this way allows us to use the EM-algorithm to fit the model
which will prove to be important.

yt = α+
[
β1 β2 . . .

]d1,t
d2,t
...

+ vt + xt ,vt ∼ N(0,r)

xt = bxt−1 +wt ,wt N(0,q)
x0 = 0

(17.3)

The vt are the i.i.d. errors and the xt are the AR(1) errors.

17.1.1 Univariate response using the Longley dataset: example 1

We will start by using an example from Chapter 6 in Linear Models in R
(Faraway, 2004). This example uses the built-in R dataset “longley”which has
the number of people employed from 1947 to 1962 and a number of predictors.
For this example we will regress the number of people employed against gross
National product and population size (following Faraway).

Mathematically, the model we are fitting is

Employedt = α+
[
βGNP βPop

][GNPt
Popt

]
+ vt ,vt ∼ N(0,r) (17.4)

x does not appear in the vanilla linear regression since we do not have au-
tocorrelated errors (yet). We are trying to estimate α (intercept), βGNP and
βPop.

A full multivariate MARSS model looks like

yt = Zxt +a+Ddt +vt , where vt ∼ MVN(0,R)

xt = Bxt−1 +u+Cct +wt , where wt ∼ MVN(0,Q)
(17.5)

We need to specify the parameters in Equation 17.5 such that we get Equation
17.4.

First, we load the data and set up y, the response variable number of
people employed, as a matrix with time going across the columns.

data(longley)

Employed <- matrix(longley$Employed, nrow = 1)

Second create a list to hold our model specification.

17.1 Univariate linear regression 231

1950 1955 1960

60
62

64
66

68
70

E
m

pl
oy

ed

Fig. 17.1. Employment time series from the Longley dataset.

longley.model <- list()

Set the u, Q and x0 parameters to 0. We will also set a and C to 0 and B and
Z to identity although this is not necessary since these are the defaults.

longley.model$U <- longley.model$Q <- "zero"

longley.model$C <- "zero"

longley.model$B <- longley.model$Z <- "identity"

longley.model$x0 <- "zero"

longley.model$tinitx <- 0

We will estimate R, the variance of the i.i.d. errors (residuals).

longley.model$R <- matrix("r")

The D matrix has the two β (slope) parameters for GNP and Population and
a has the intercept.1

1 A better way to fit the model is to put the intercept into D by adding a row of 1s
to d and putting the intercept parameter on the first row of D. This reduces by
one the number of matrices being estimated by the EM algorithm. It’s not done
here just so the equations look more like standard linear regression equations.

232 17 Multivariate linear regression

longley.model$A <- matrix("intercept")

longley.model$D <- matrix(c("GNP", "Pop"), nrow = 1)

Last we set up our explanatory variables. This is the d matrix and we need
each explanatory variable in a row with time across the columns.

longley.model$d <- rbind(longley$GNP, longley$Population)

Now we can fit the model:

mod1 <- MARSS(Employed, model = longley.model)

and look at the estimates.

coef(mod1, type = "vector")

method="BFGS" can also be used and gives similar results.
We can compare the fit to that from lm() and see that we get the same

estimates:

mod1.lm <- lm(Employed ~ GNP + Population, data = longley)

coef(mod1.lm)

(Intercept) GNP Population

88.93879831 0.06317244 -0.40974292

17.1.2 Univariate response using auto-correlated errors: example 1

As Faraway (2004) discusses, the errors in this dataset are temporally corre-
lated. We can model the errors as an AR(1) process to account for this. This
changes our model to

Employedt = α+
[
βGNP βPop

][GNPt
Popt

]
+ vt + xt ,vt ∼ N(0,r)

xt = bxt−1 +wt ,wt ∼ N(0,q)
x0 = 0

(17.6)

We assume the AR(1) errors have mean 0 so u = 0 in the xt equation. Setting
u to anything else would make the mean of our errors equal to u/(1− b) for
−1 < b < 1. This would lead to two mean levels in our model, α and u/(1−b),
and we would not be able to estimate both. Notice that the model is somewhat
confounded since if b = 0 then xt is i.i.d. errors same as vt . In this case, either
q or r would be redundant. It is thus possible that either r or q will go to zero.

To fit the model with autoregressive errors, we add the x parameters to
our the model list. We estimate b and q.

longley.ar1 <- longley.model

longley.ar1$B <- matrix("b")

longley.ar1$Q <- matrix("q")

17.1 Univariate linear regression 233

Now we can fit the model as before

mod2 <- MARSS(Employed, model = longley.ar1)

however, this is a difficult model to fit and takes a long, long time to converge.
The default maxit used in the call above is not nearly enough iterations. Using
method="BFGS" helps a little but not much. We can improve behavior by using
the fit of the model with i.i.d. errors as initial conditions for D and a.

inits <- list(A = coef(mod1)$A, D = coef(mod1)$D)

mod2 <- MARSS(Employed,

model = longley.ar1, inits = inits,

control = list(maxit = 1000)

)

ests.marss <- c(

b = coef(mod2)$B, alpha = coef(mod2)$A,

GNP = coef(mod2)$D[1], Population = coef(mod2)$D[2],

logLik = logLik(mod2)

)

We can the fit the same model using gls() (in the {nlme} package). The
b term is called Phi in the gls() call and is somewhat difficult to recover
although it is printed by summary().

library(nlme)

mod2.gls <- gls(Employed ~ GNP + Population,

correlation = corAR1(), data = longley, method = "ML"

)

mod2.gls.phi <- coef(mod2.gls$modelStruct[[1]], unconstrained = FALSE)

ests.gls <- c(

b = mod2.gls.phi, alpha = coef(mod2.gls)[1],

GNP = coef(mod2.gls)[2], Population = coef(mod2.gls)[3],

logLik = logLik(mod2.gls)

)

Note we need to set method="ML" to maximize the likelihood because the
default is to maximize the restricted maximum-likelihood (method="REML")
and that gives a different answer from the MARSS() function since MARSS() is
maximizing the likelihood.

Both functions return similar values though gls() is much faster and the
EM algorithm has not quite converged even with 1000 iterations.

rbind(MARSS = ests.marss, GLS = ests.gls)

b alpha GNP Population logLik

MARSS 0.3509377 95.36017 0.06748567 -0.4784003 -10.53742

GLS 0.3651196 96.09369 0.06822305 -0.4871554 -10.47396

234 17 Multivariate linear regression

17.1.3 Univariate response using the Longley dataset: example 2

The full Longley dataset is often used to test the performance of numerical
methods for fitting linear regression models because it has severe collinearity
problems (Figure 17.2). We can compare the EM and BFGS algorithms for
the full dataset and see how fitting a MARSS model with the BFGS algorithm
leads to estimates far from the maximum-likelihood values for this problem.

GNP.deflator

25
0

45
0

15
0

30
0

19
50

19
60

85 105

250 450

GNP

Unemployed

200 400

150 300

Armed.Forces

Population

110 125

1950 1960

Year

85
10

5
20

0
40

0
11

0
12

5

60 66

60
66Employed

Fig. 17.2. Pairs plot showing collinearity in the Longley explanatory variables.

We can fit a regression of Employed to all the Longley explanatory vari-
ables using the following code. The mathematical model is the same as in
Equation 17.4 except that instead of two explanatory variables with have all
seven shown in Figure 17.2.

eVar.names <- colnames(longley)[-7]

eVar <- t(longley[, eVar.names])

longley.model <- list()

longley.model$U <- longley.model$Q <- "zero"

longley.model$C <- "zero"

longley.model$B <- longley.model$Z <- "identity"

17.1 Univariate linear regression 235

longley.model$A <- matrix("intercept")

longley.model$R <- matrix("r")

longley.model$D <- matrix(eVar.names, nrow = 1)

longley.model$d <- eVar

longley.model$x0 <- "zero"

longley.model$tinitx <- 0

Then we fit as usual. We will fit with the EM-algorithm (the default) and
compare to BFGS.

mod3.em <- MARSS(Employed, model = longley.model)

mod3.bfgs <- MARSS(Employed, model = longley.model, method = "BFGS")

Here are the EM estimates with the log-likelihood.

par.names <- c("A.intercept", paste("D", eVar.names, sep = "."))

c(coef(mod3.em, type = "vector")[par.names], logLik = mod3.em$logLik)

A.intercept D.GNP.deflator D.GNP D.Unemployed

-3.482259e+03 1.506187e-02 -3.581918e-02 -2.020230e-02

D.Armed.Forces D.Population D.Year logLik

-1.033227e-02 -5.110410e-02 1.829152e+00 9.066497e-01

Compared to the BFGS estimates:

c(coef(mod3.bfgs, type = "vector")[par.names], logLik = mod3.bfgs$logLik)

A.intercept D.GNP.deflator D.GNP D.Unemployed

-14.062105281 -0.052705201 0.070642032 -0.004298481

D.Armed.Forces D.Population D.Year logLik

-0.005744197 -0.412771919 0.055610015 -6.996818702

And compared to the estimates from the lm() function:

mod3.lm <- lm(Employed ~ 1 + GNP.deflator + GNP + Unemployed

+ Armed.Forces + Population + Year, data = longley)

c(coef(mod3.lm), logLik = logLik(mod3.lm))

(Intercept) GNP.deflator GNP Unemployed

-3.482259e+03 1.506187e-02 -3.581918e-02 -2.020230e-02

Armed.Forces Population Year logLik

-1.033227e-02 -5.110411e-02 1.829151e+00 9.066497e-01

As you can see the BFGS algorithm struggles with the ridge-like likelihood
caused by the collinearity in the explanatory variables.

We can also compare the performance of the model with AR(1) errors.
This is Equation 17.6 but with all seven explanatory variables. We set up the

236 17 Multivariate linear regression

MARSS model2 for a linear regression with correlated errors as before with
the addition of b (called Phi in gls()) and q.

longley.correrr.model <- longley.model

longley.correrr.model$B <- matrix("b")

longley.correrr.model$Q <- matrix("q")

We fit as usual and compare the EM-algorithm (the default) to fits using
BFGS. We will use the estimate from the model with i.i.d. errors as initial
conditions.

inits <- list(A = coef(mod3.em)$A, D = coef(mod3.em)$D)

mod4.em <- MARSS(Employed, model = longley.correrr.model, inits = inits)

mod4.bfgs <- MARSS(Employed,

model = longley.correrr.model,

inits = inits, method = "BFGS"

)

Here are the EM estimates with the log-likelihood. We only show φ (the b
term in the AR(1) error equation) and the log-likelihood.

c(coef(mod4.em, type = "vector")["B.b"], logLik = mod4.em$logLik)

B.b logLik

-0.7737457 4.5374547

Compared to the BFGS estimates:

c(coef(mod4.bfgs, type = "vector")["B.b"], logLik = mod4.bfgs$logLik)

B.b logLik

0.8368905 0.9066497

And compared to the estimates from the gls() function:

mod4.gls <- gls(Employed ~ 1 + GNP.deflator + GNP + Unemployed

+ Armed.Forces + Population + Year,

correlation = corAR1(), data = longley, method = "ML"

)

mod4.gls.phi <- coef(mod4.gls$modelStruct[[1]], unconstrained = FALSE)

c(mod4.gls.phi, logLik = logLik(mod4.gls))

Phi logLik

-0.7288687 4.3865475

Again we see that the BFGS algorithm struggles with the ridge-like likelihood
caused by the collinearity in the explanatory variables.

2 Notice that x0 is set at 0. The model is having a hard time fitting x0 because the
time series is short. Estimating x0 or using a diffuse prior by setting V0 big, leads
to poor estimates. Since this is just the error term, we set x0 = 0 since the mean
of the errors is assumed to be 0.

17.2 Multivariate response example using longitudinal data 237

17.2 Multivariate response example using longitudinal data

We will illustrate linear regression with a multivariate response using longi-
tudinal data from a sleep study on 18 subjects from the {lme4} R package.
These are data on reaction time of subjects after 0 to 9 days of being restricted
to 3 hours of sleep.

We load the data from the {lme4} package:

data(sleepstudy, package = "lme4")

Days of sleep deprivation

A
ve

ra
ge

 r
ea

ct
io

n
tim

e
(m

s)

200

250

300

350

400

450

0 2 4 6 8

310 309

0 2 4 6 8

370 349

0 2 4 6 8

350 334

308 371 369 351 335

200

250

300

350

400

450

332
200

250

300

350

400

450

372

0 2 4 6 8

333 352

0 2 4 6 8

331 330

0 2 4 6 8

337

Fig. 17.3. Plot of the sleep study data (package lme4).

We set up the data into a matrix for the MARSS() function with each
subject as a row with day across the columns. The explanatory variable is the
the day number 0 to 9 and we make this into a matrix with one row and day
across the columns.

number of subjects

nsub <- length(unique(sleepstudy$Subject))

ndays <- length(sleepstudy$Days) / nsub

dat <- matrix(sleepstudy$Reaction, nsub, ndays, byrow = TRUE)

238 17 Multivariate linear regression

rownames(dat) <- paste("sub", unique(sleepstudy$Subject), sep = ".")

exp.var <- matrix(sleepstudy$Days, 1, ndays, byrow = TRUE)

Let’s start with a simple regression where each subject has a separate
intercept (reaction time at day 0) but the slope (increase in reaction time
with each successive day) is the same across the 18 subjects. Mathematically
the model is 

resp1
resp2
. . .

resp18


t

=


α1
α2
. . .
α18

+


β

β

. . .
β

dayt +


v1
v2
. . .
v18


t

v1
v2
. . .
v18


t

∼ N

0,


r 0 . . . 0
0 r . . . 0
.
0 0 0 r




(17.7)

The response time of subject i is a subject specific intercept (αi) plus an effect
of day at time t that doesn’t vary by subject and error that is i.i.d. across
subject and day.

We specify and fit this model as follows

sleep.model <- list(

A = "unequal", B = "zero", x0 = "zero", U = "zero",

D = matrix("b1", nsub, 1), d = exp.var, tinitx = 0, Q = "zero"

)

sleep.mod1 <- MARSS(dat, model = sleep.model)

This is the same as the following with lm():

sleep.lm1 <- lm(Reaction ~ -1 + Subject + Days, data = sleepstudy)

Now let’s allow each subject to have different slopes (increase in reaction
time with each successive day) across subjects. This model is

resp1
resp2
. . .

resp18


t

=


α1
α2
. . .
α18

+


β1
β2
. . .
β18

dayt +


v1
v2
. . .
v18


t

v1
v2
. . .
v18


t

∼ N

0,


r 0 . . . 0
0 r . . . 0
.
0 0 0 r




(17.8)

We specify and fit this model as

sleep.model <- list(

A = "unequal", B = "zero", x0 = "zero", U = "zero",

D = "unequal", d = exp.var, tinitx = 0, Q = "zero"

)

sleep.mod2 <- MARSS(dat, model = sleep.model, silent = TRUE)

17.2 Multivariate response example using longitudinal data 239

This is the same as the following with lm():

sleep.lm2 <- lm(Reaction ~ 0 + Subject + Days:Subject, data = sleepstudy)

We can repeat the above but allow the residual variance to differ across
subjects by setting R="diagonal and unequal". This model is

resp1
resp2
. . .

resp18


t

=


α1
α2
. . .
α18

+


β1
β2
. . .
β18

dayt +


v1
v2
. . .
v18


t

v1
v2
. . .
v18


t

∼ N

0,


r1 0 . . . 0
0 r2 . . . 0
.
0 0 0 r18




(17.9)

sleep.model <- list(

A = "unequal", B = "zero", x0 = "zero", U = "zero",

D = "unequal", d = exp.var, tinitx = 0, Q = "zero",

R = "diagonal and unequal"

)

sleep.mod3 <- MARSS(dat, model = sleep.model, silent = TRUE)

Or we can allow AR(1) errors across subjects and allow each subject to
have its own AR(1) parameters for this error. This model is

resp1
resp2
. . .

resp18


t

=


α1
α2
. . .
α18

+


β1
β2
. . .
β18

dayt +


v1
v2
. . .
v18


t

+


x1
x2
. . .
x18


t

v1
v2
. . .
v18


t

∼ N

0,


r1 0 . . . 0
0 r2 . . . 0
.
0 0 0 r18





x1
x2
. . .
x18


t

=


b1 0 . . . 0
0 b2 . . . 0
.
0 0 0 b18




x1
x2
. . .
x18


t−1

+


w1
w2
. . .
w18


t

w1
w2
. . .
w18


t

∼ N

0,


q1 0 . . . 0
0 q2 . . . 0
.
0 0 0 q18




(17.10)

We fit this model as

inits <- list(A = coef(sleep.mod3)$A, D = coef(sleep.mod3)$D)

estimate a separate intercept for each but slope is the same

240 17 Multivariate linear regression

sleep.model <- list(

A = "unequal", B = "diagonal and unequal", x0 = "zero", U = "zero",

D = "unequal", d = exp.var, tinitx = 0, Q = "diagonal and unequal",

R = "diagonal and unequal"

)

sleep.mod4 <- MARSS(dat, model = sleep.model, inits = inits, silent = TRUE)

It is not obvious how to specify these last two models using gls() or if it is
possible.

We can also allow each subject to have his/her own error process but
specify that the parameters of these (b, q and r) are the same across subjects.
We do this by using "diagonal and equal". Mathematically this model is

resp1
resp2
. . .

resp18


t

=


α1
α2
. . .
α18

+


β1
β2
. . .
β18

dayt +


v1
v2
. . .
v18


t

+


x1
x2
. . .
x18


t

v1
v2
. . .
v18


t

∼ N

0,


r 0 . . . 0
0 r . . . 0
.
0 0 0 r





x1
x2
. . .
x18


t

=


b 0 . . . 0
0 b . . . 0
.
0 0 0 b




x1
x2
. . .
x18


t−1

+


w1
w2
. . .
w18


t

w1
w2
. . .
w18


t

∼ N

0,


q 0 . . . 0
0 q . . . 0
.
0 0 0 q




(17.11)

We specify and fit this model as

inits <- list(A = coef(sleep.mod3)$A, D = coef(sleep.mod3)$D)

estimate a separate intercept for each but slope is the same

sleep.model <- list(

A = "unequal", B = "diagonal and equal", x0 = "zero", U = "zero",

D = "unequal", d = exp.var, tinitx = 0, Q = "diagonal and equal",

R = "diagonal and equal"

)

sleep.mod5 <- MARSS(dat, model = sleep.model, inits = inits, silent = TRUE)

This is fairly close to this model fit with gls().

sleep.mod5.gls <- gls(Reaction ~ 0 + Subject + Days:Subject,

data = sleepstudy,

correlation = corAR1(form = ~ 1 | Subject), method = "ML"

)

17.2 Multivariate response example using longitudinal data 241

The way the variance-covariance structure is modeled is a little different but
it is the same idea.

Table 17.1. Parameter estimates of different versions of the model where each subject
has a separate intercept (response time on normal sleep) and different slope by day
(increase in response time with each day of sleep deprivation). The model types are
discussed in the text.

lm mod2 em mod3 em mod4 em mod5 em mod5 gls

logLik -818.94 -818.94 -770.19 -754.97 -818.76 -818.55
slope 308 21.76 21.76 21.76 21.77 21.83 21.87
slope 309 2.26 2.26 2.26 1.43 2.24 2.23
slope 310 6.11 6.11 6.11 6.12 6.10 6.08
slope 330 3.01 3.01 3.01 2.93 3.01 3.04
slope 331 5.27 5.27 5.27 3.59 5.36 5.46
slope 332 9.57 9.57 9.57 8.55 9.39 9.21
slope 333 9.14 9.14 9.14 8.85 9.12 9.12
slope 334 12.25 12.25 12.25 11.73 12.24 12.26
slope 335 -2.88 -2.88 -2.88 -3.19 -2.82 -2.77
slope 337 19.03 19.03 19.03 19.09 18.95 18.90
slope 349 13.49 13.49 13.49 12.14 13.47 13.46
slope 350 19.50 19.50 19.50 18.21 19.38 19.28
slope 351 6.43 6.43 6.43 6.15 6.54 6.64
slope 352 13.57 13.57 13.57 19.20 13.71 13.80
slope 369 11.35 11.35 11.35 11.41 11.32 11.31
slope 370 18.06 18.06 18.06 18.31 18.01 17.97
slope 371 9.19 9.19 9.19 9.56 9.23 9.28
slope 372 11.30 11.30 11.30 11.45 11.28 11.26
phi 308 0.02 0.12 0.08
phi 309 0.63 0.12 0.08
phi 310 -0.01 0.12 0.08
phi 330 0.32 0.12 0.08
phi 331 -1.66 0.12 0.08
phi 332 0.26 0.12 0.08
phi 333 -1.04 0.12 0.08
phi 334 0.51 0.12 0.08
phi 335 -0.40 0.12 0.08
phi 337 -0.08 0.12 0.08
phi 349 0.80 0.12 0.08
phi 350 0.32 0.12 0.08
phi 351 -0.15 0.12 0.08
phi 352 0.80 0.12 0.08
phi 369 -0.25 0.12 0.08
phi 370 -0.44 0.12 0.08
phi 371 0.63 0.12 0.08
phi 372 -0.47 0.12 0.08

242 17 Multivariate linear regression

17.3 Discussion

The purpose of this chapter is to illustrate how linear regression models with
multivariate explanatory variables can be written in MARSS form and fit
with the MARSS() function3. This is to help one understand the relationship
between the MARSS model form and the more familiar multivariate linear
model forms. Obviously R has many, many excellent packages for linear re-
gression and generalized linear regression (non-Gaussian errors). While the
{MARSS} package can fit a variety of linear regression models with Gaussian
errors, that is not what the package is designed to do. The {MARSS} package
is designed for fitting models that cannot be fit with typical linear regres-
sion: multivariate autoregressive state-space models with inputs (explanatory
variables) and linear constraints.

3 with caveat that one must always be careful when the likelihood surface has
prominent ridges which will occur with collinear explanatory variables.

18

Lag-p MARSS models

18.1 Background

Most of the chapters in the User Guide are ‘lag-1’ in the autoregressive part
of the model. This means that xt in the process model only depends on xt−1
and not xt−2 (lag-2) or more generally xt−p (lag-p). A lag-p model can be
written in state-space form as a MARSS lag-1 model, aka a MARSS(1) model
(see section 11.3.2 in Tsay (2010)). Writing lag-p models in this form allows
one to take advantage of the fitting algorithms for MARSS(1) models. There
are a number of ways to do the conversion to a MARSS(1) form. We use
Hamilton’s form (section 1 in Hamilton (1994)) because it can be fit with an
EM algorithm while the other forms (Harvey’s and Akaike’s) cannot.

This chapter shows how to convert and fit the following using the MARSS(1)
form:

AR(p) A univariate autoregressive model where xt is a function of xt−p (and
the prior lags usually too). No observation error.

MAR(p) The same as AR(p) but the x term is multivariate not univariate.
ARSS(p) The same as AR(p) but with a observation model and observation

error. The observations (y) may be multivariate but the x term is univari-
ate.

MARSS(p) The same as ARSS(p) but the x term is multivariate not univari-
ate.

Note that only ARSS(p) and MARSS(p) assume observation error in the data.
AR(p) and MAR(p) will be rewritten in the state-space form with a y com-
ponent to facilitate statistical analysis but the data themselves are considered
error free.

Type RShowDoc("Chapter_MARp.R",package="MARSS") at the R command line to
open a file with all the code for the examples in this chapter.

244 18 Models with lag-p

Note there are many R packages for fitting AR(p) (and ARMA(p,q) for
that matter) models. If you are only interested in univariate data with no
observation error in the data then you probably want to look into the arima()
function included in base R and into R packages that specialize in fitting
ARMA models to univariate data. The {forecast} package in R is a good
place to start but others can be found on the CRAN task view: Time Series
Analysis.

18.2 MAR(2) models

A MAR(2) model is a lag-2 MAR model, aka a multivariate autoregressive
process with no observation process (no SS part). A MAR(2) model is written

x′t = B1x′t−1 +B2x′t−2 +u+wt , where wt ∼ MVN(0,Q) (18.1)

We rewrite this as MARSS(1) by defining xt =

[
x′t

x′t−1

]
:

[
x′t

x′t−1

]
=

[
B1 B2
Im 0

][
x′t−1
x′t−2

]
+

[
u
0

]
+

[
wt
0

]
,

[
wt
0

]
∼ MVN

(
0,
[

Q 0
0 0

])
[

x′0
x′−1

]
∼ MVN(µ,Λ)

(18.2)

Our observations are of xt only, so our observation model is

yt =
[
I 0
][x′t

x′t−1

]
(18.3)

18.2.1 Example of AR(2): univariate data

Here is an example of fitting a univariate AR(2) model written in MARSS(1)
form. First, let’s generate some simulated AR(2) data from this AR(2) process:

xt =−1.5xt−1 +−0.75xt−2 +wt , where wt ∼ N(0,1) (18.4)

TT <- 50

true.2 <- c(r = 0, b1 = -1.5, b2 = -0.75, q = 1)

temp <- arima.sim(n = TT, list(ar = true.2[2:3]), sd = sqrt(true.2[4]))

sim.ar2 <- matrix(temp, nrow = 1)

Next, we set up the model list for an AR(2) model written in MARSS(1)
form (refer to Equation 18.2 and 18.3):

Z <- matrix(c(1, 0), 1, 2)

B <- matrix(list("b1", 1, "b2", 0), 2, 2)

U <- matrix(0, 2, 1)

http://cran.r-project.org/web/views/TimeSeries.html
http://cran.r-project.org/web/views/TimeSeries.html

18.2 MAR(2) models 245

Q <- matrix(list("q", 0, 0, 0), 2, 2)

A <- matrix(0, 1, 1)

R <- matrix(0, 1, 1)

mu <- matrix(sim.ar2[2:1], 2, 1)

V <- matrix(0, 2, 2)

model.list.2 <- list(

Z = Z, B = B, U = U, Q = Q, A = A,

R = R, x0 = mu, V0 = V, tinitx = 0

)

Notice that we do not estimate µ. We will fit our model to the data (y)

starting at t = 3. Because R = 0, this means E[Xt |yt] = xt
t = yt and x0

0 ≡
[

y2
y1

]
.

Note E[Xt |yt−1] = xt−1
t ̸= yt so we do not use x0

1 as our initial x.
Then we can then estimate the b1 and b2 parameters for the AR(2) process.

ar2 <- MARSS(sim.ar2[3:TT], model = model.list.2)

Success! abstol and log-log tests passed at 16 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 16 iterations.

Log-likelihood: -63.02523

AIC: 132.0505 AICc: 132.5959

Estimate

B.b1 -1.582

B.b2 -0.777

Q.q 0.809

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Comparison to the true values shows the estimates are close:

print(cbind(true = true.2[2:4], estimates = coef(ar2, type = "vector")))

true estimates

b1 -1.50 -1.5816137

b2 -0.75 -0.7767462

q 1.00 0.8091055

246 18 Models with lag-p

Missing values in the data are fine. Let’s make half the data missing being care-
ful that the first data point does not get categorized as missing. MARSSkfss()
is used as the Kalman filter/smoother function as this is a model where
MARSSkfas() can return negative values on the states variance-covariance ma-
trix.

gappy.data <- sim.ar2[3:TT]

gappy.data[floor(runif(TT / 2, 2, TT))] <- NA

ar2.gappy <- MARSS(gappy.data, model = model.list.2, fun.kf="MARSSkfss")

And the estimates are still close:

print(cbind(

true = true.2[2:4],

estimates.no.miss = coef(ar2, type = "vector"),

estimates.w.miss = coef(ar2.gappy, type = "vector")

))

true estimates.no.miss estimates.w.miss

b1 -1.50 -1.5816137 -1.5549387

b2 -0.75 -0.7767462 -0.7463820

q 1.00 0.8091055 0.8868251

By the way, there are much better and faster functions in R for fitting
univariate AR models (no observation error). The {MARSS} package is re-
ally for fitting to multivariate data with observation error not AR(p) models.
For example, here is how you would fit the AR(2) model using the arima()

function:

arima(gappy.data, order = c(2, 0, 0), include.mean = FALSE)

Call:

arima(x = gappy.data, order = c(2, 0, 0), include.mean = FALSE)

Coefficients:

ar1 ar2

-1.5674 -0.7494

s.e. 0.1033 0.1015

sigma^2 estimated as 0.9428: log likelihood = -51.81, aic = 109.62

The estimates will be different because arima() sets x0
1 as coming from the

stationary distribution. That is a non-linear constraint that MARSS() cannot
handle.

The assumption that x0
1 comes from the stationary distribution is fine if

the initial x indeed comes from the stationary distribution, but if the initial x
is well outside the stationary distribution the estimates will be incorrect.

18.2 MAR(2) models 247

TT <- 50

true.2 <- c(r = 0, b1 = -1.5, b2 = -0.75, q = 1)

sim.ar2.ns <- rep(NA, TT)

sim.ar2.ns[1] <- -30

sim.ar2.ns[2] <- -10

for (i in 3:TT) {

sim.ar2.ns[i] <- true.2[2] * sim.ar2.ns[i - 1] +

true.2[3] * sim.ar2.ns[i - 2] + rnorm(1, 0, sqrt(true.2[4]))

}

model.list.3 <- model.list.2

model.list.3$x0 <- matrix(sim.ar2.ns[2:1], 2, 1)

ar3.marss <- MARSS(sim.ar2.ns[3:TT], model = model.list.3, silent = TRUE)

ar3.arima <- arima(sim.ar2.ns[3:TT], order = c(2, 0, 0), include.mean = FALSE)

print(cbind(

true = true.2[2:4],

estimates.marss = coef(ar3.marss, type = "vector"),

estimates.arima = c(coef(ar3.arima, type = "vector"), ar3.arima$sigma2)

))

true estimates.marss estimates.arima

b1 -1.50 -1.5037048 -1.7490942

b2 -0.75 -0.7464002 -0.9856986

q 1.00 1.3551075 3.0661061

18.2.2 Example of MAR(2): multivariate data

Here we show an example of fitting a MAR(2) model. Let’s make some simu-
lated data of two realizations of the same AR(2) process:

TT <- 50

true.2 <- c(r = 0, b1 = -1.5, b2 = -0.75, q = 1)

temp1 <- arima.sim(n = TT, list(ar = true.2[c("b1", "b2")]), sd = sqrt(true.2["q"]))

temp2 <- arima.sim(n = TT, list(ar = true.2[c("b1", "b2")]), sd = sqrt(true.2["q"]))

sim.mar2 <- rbind(temp1, temp2)

Although these are independent time series, we want to fit with a MAR(2)
model to allow us to use both datasets together to estimate the AR(2) param-
eters. We need to set up the model list for the multivariate model (Equation
18.2 and 18.3):

Z <- matrix(c(1, 0, 0, 1, 0, 0, 0, 0), 2, 4)

B1 <- matrix(list(0), 2, 2)

diag(B1) <- "b1"

B2 <- matrix(list(0), 2, 2)

diag(B2) <- "b2"

B <- matrix(list(0), 4, 4)

248 18 Models with lag-p

B[1:2, 1:2] <- B1

B[1:2, 3:4] <- B2

B[3:4, 1:2] <- diag(1, 2)

U <- matrix(0, 4, 1)

Q <- matrix(list(0), 4, 4)

Q[1, 1] <- "q"

Q[2, 2] <- "q"

A <- matrix(0, 2, 1)

R <- matrix(0, 2, 2)

pi <- matrix(c(sim.mar2[, 2], sim.mar2[, 1]), 4, 1)

V <- matrix(0, 4, 4)

model.list.2m <- list(

Z = Z, B = B, U = U, Q = Q, A = A,

R = R, x0 = pi, V0 = V, tinitx = 1

)

Notice the form of the Z matrix:

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

It is a 2×2 identity matrix followed by a 2×2 all-zero matrix. The B matrix is
composed of B1 and B2 which are diagonal matrices with b1 and b2 respectively
on the diagonal.

[,1] [,2] [,3] [,4]

[1,] "b1" 0 "b2" 0

[2,] 0 "b1" 0 "b2"

[3,] 1 0 0 0

[4,] 0 1 0 0

We fit the model as usual:

mar2 <- MARSS(sim.mar2[, 2:TT], model = model.list.2m)

Then we can compare how using two time series improves the fit versus using
only one alone:

model.list.2$x0 <- matrix(sim.mar2[1, 2:1], 2, 1)

mar2a <- MARSS(sim.mar2[1, 2:TT], model = model.list.2)

model.list.2$x0 <- matrix(sim.mar2[2, 2:1], 2, 1)

mar2b <- MARSS(sim.mar2[2, 2:TT], model = model.list.2)

true est.mar2 est.mar2a est.mar2b

b1 -1.50 -1.4206301 -0.7209367 -1.3506409

b2 -0.75 -0.7642604 -0.3954671 -0.6953739

q 1.00 0.8986820 3.2098084 1.5552943

18.3 MAR(p) models 249

18.3 MAR(p) models

A MAR(p) model is similar to a MAR(2) except it has lags up to time p:

x′t = B1x′t−1 +B2x′t−2 + · · ·+Bpx′t−p +u′+w′
t , where w′

t ∼ MVN(0,Q′)

where

xt =


x′t

x′t−1
...

x′t−p

 ,B =


B1 B2 . . . Bp
Im 0 . . . 0
0 Im . . . 0

0 0
. . .

...
0 0 . . . 0

 ,u =


u′

0
...
0

 ,Q =


Q′ 0 . . . 0
0 0 . . . 0

0 0
. . .

...
0 0 . . . 0

 (18.5)

Here’s an example of fitting a univariate AR(3) in MARSS(1) form. We
need more data to estimate an AR(3), so use 100 time steps.

TT <- 100

true.3 <- c(r = 0, b1 = -1.5, b2 = -0.75, b3 = .05, q = 1)

temp3 <- arima.sim(

n = TT, list(ar = true.3[c("b1", "b2", "b3")]),

sd = sqrt(true.3["q"])

)

sim.ar3 <- matrix(temp3, nrow = 1)

We set up the model list for the AR(3) in MARSS(1) form as follows:

Z <- matrix(c(1, 0, 0), 1, 3)

B <- matrix(list("b1", 1, 0, "b2", 0, 1, "b3", 0, 0), 3, 3)

U <- matrix(0, 3, 1)

Q <- matrix(list(0), 3, 3)

Q[1, 1] <- "q"

A <- matrix(0, 1, 1)

R <- matrix(0, 1, 1)

pi <- matrix(sim.ar3[3:1], 3, 1)

V <- matrix(0, 3, 3)

model.list.3 <- list(

Z = Z, B = B, U = U, Q = Q, A = A,

R = R, x0 = pi, V0 = V, tinitx = 1

)

and fit as normal:

ar3 <- MARSS(sim.ar3[3:TT], model = model.list.3)

The estimates are:

print(cbind(

true = true.3[c("b1", "b2", "b3", "q")],

estimates.no.miss = coef(ar3, type = "vector")

))

250 18 Models with lag-p

true estimates.no.miss

b1 -1.50 -1.5130316

b2 -0.75 -0.6755283

b3 0.05 0.1368458

q 1.00 1.1267684

18.4 MARSS(p): models with observation error

We can easily fit MAR(p) processes observed with error using MARSS(p)
models, but the difficulty is specifying the initial state condition. π ≡ x1 and
thus involves x1, x0, However, we do not know the variance-covariance
structure for these consecutive x. Specifying Λ = 0 and estimating π often
causes the EM algorithm to run into numerical problems. But if we have an
abundance of data, fixing π might not overly affect the B and Q estimates.

Here is an example where we set π to the mean of the data and set Λ to
zero. Why not set Λ equal to a diagonal matrix with large values on the diag-
onal to approximate a vague prior? The temporally consecutive initial states
are definitely not independent. A diagonal matrix would imply independence
which will conflict with the process model and means our model would be fun-
damentally inconsistent with the data (and that usually has bad consequences
for estimation).

Create some simulated data:

TT <- 1000 # set long

true.2ss <- c(r = .5, b1 = -1.5, b2 = -0.75, q = .1)

temp <- arima.sim(

n = TT, list(ar = true.2ss[c("b1", "b2")]),

sd = sqrt(true.2ss["q"])

)

sim.ar <- matrix(temp, nrow = 1)

noise <- rnorm(TT - 1, 0, sqrt(true.2ss["r"]))

noisy.data <- sim.ar[2:TT] + noise

Set up the model list for the model in MARSS(1) form:

Z <- matrix(c(1, 0), 1, 2)

B <- matrix(list("b1", 1, "b2", 0), 2, 2)

U <- matrix(0, 2, 1)

Q <- matrix(list("q", 0, 0, 0), 2, 2)

A <- matrix(0, 1, 1)

R <- matrix("r")

V <- matrix(0, 2, 2)

pi <- matrix(mean(noisy.data), 2, 1)

model.list.2ss <- list(

Z = Z, B = B, U = U, Q = Q, A = A,

18.4 MARSS(p): models with observation error 251

R = R, x0 = pi, V0 = V, tinitx = 0

)

Fit as usual:

ar2ss <- MARSS(noisy.data, model = model.list.2ss)

Success! abstol and log-log tests passed at 101 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 101 iterations.

Log-likelihood: -1368.796

AIC: 2745.592 AICc: 2745.632

Estimate

R.r 0.477

B.b1 -1.414

B.b2 -0.685

Q.q 0.140

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

We can compare the results to modeling the data as if there is no obser-
vation error, and we see that the assumption of no observation error leads to
poor B estimates:

model.list.2ss.bad <- model.list.2ss

set R to zero in this model

model.list.2ss.bad$R <- matrix(0)

Fit using the model with R set to 0:

ar2ss2 <- MARSS(noisy.data, model = model.list.2ss.bad)

Compare results

print(cbind(

true = true.2ss,

model.no.error = c(NA, coef(ar2ss2, type = "vector")),

model.w.error = coef(ar2ss, type = "vector")

))

true model.no.error model.w.error

r 0.50 NA 0.4772368

252 18 Models with lag-p

b1 -1.50 -0.52826082 -1.4136279

b2 -0.75 0.03372857 -0.6853180

q 0.10 0.95834464 0.1404334

The middle column are the estimates assuming that the data have no ob-
servation error and the right column are our estimates with the observation
error estimated. Clearly, assuming no observation error when it is present has
negative consequences for the B and Q estimates.

By the way, there is a straight-forward way to deal with the measurement
error if you are working with univariate ARMA models and you are only in-
terested in the AR parameters (the b’s). Inclusion of measurement error leads
to additional MA components up to lag p (Staudenmayer and Buonaccorsi,
2005). This means that if you are fitting an AR(p) model with measurement
error, you can fit a ARMA(p,p) and the measurement error will be absorbed in
the p MA components. For the example above, we could estimate the AR pa-
rameters for our AR(2) data with measurement error by fitting a ARMA(p,p)
model. Here’s how we could do that using R ’s arima() function:

arima(noisy.data, order = c(2, 0, 2), include.mean = FALSE)

Call:

arima(x = noisy.data, order = c(2, 0, 2), include.mean = FALSE)

Coefficients:

ar1 ar2 ma1 ma2

-1.4448 -0.6961 0.9504 0.3428

s.e. 0.0593 0.0427 0.0686 0.0482

sigma^2 estimated as 0.9069: log likelihood = -1368.99, aic = 2747.99

Accounting for the measurement error definitely improves the estimates for
the AR component.

18.5 Discussion

Although both MARSS(1) and ARMA(p,p) approaches can be used to deal
with AR(p) processes (univariate data) observed with error, our simulations
suggest that the MARSS(1) approach is less biased and more precise (Figure
18.1) and that the EM algorithm is working better for this problem. The
performance of different approaches depends greatly on the underlying model.
We chose AR parameters where both ARMA(p,p) and MARSS(1) approaches
work. If we used, for example, b1 = 0.8 and b2 =−0.2, the ARMA(2,2) gives
b1 estimates close to 0 (i.e., wrong) while the MARSS(1) EM approach gives
estimates close to the truth (though rather variable). One would want to
also check REML approaches for fitting the ARMA(p,p) models since REML

18.5 Discussion 253

A
R

(2
)

M
A

R
S

S
E

M

M
A

R
S

S
B

F
G

S

A
R

M
A

(2
,2

)

A
R

(2
)

M
A

R
S

S
E

M

M
A

R
S

S
B

F
G

S

A
R

M
A

(2
,2

)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

es
tim

at
es

 o
f t

he
 a

r
co

ef
fic

ie
nt

s

x

x

x
x

x

x
x

x

b1 b2

Fig. 18.1. Comparison of the AR parameter estimates using different approaches to
model ARSS(2) data (univariate AR(2) data observed with error). Results are from
200 simulations of AR(2) data with 100 time steps. Results are shown for the b1 and
b2 parameters of the AR process fit with a 1) AR(2) model with no correction for
measurement error, 2) MARSS(1) model fit via the EM optimization, 3) MARSS(1)
model fit via BFGS optimization (initial conditions not optimized), 4) ARMA(2,2)
model fit with thearima() function, and 5) AR(2) model fit 2nd differencing with
the arima() function. The ”x” shows the mean of the simulations and the bar in the
boxplot is the median. The true values are shown with the dashed horizontal line.
The σ2 for the AR process was 0.1 and the σ2 for the measurement error was 0.5.
The b1 parameters was -1.5, and b2 was -0.75.

has been found to be less biased than ML estimation for this class (Cheang
and Reinsel, 2000; Ives et al., 2010). Ives et al. 2010 has R code for REML
estimation of ARMA(p,q) models in their appendix.

For multivariate data observed with error, especially multivariate data
without a one-to-one relationship to the underlying autoregressive process,
an explicit MARSS model will need to be used rather than an ARMA(p,p)
model. The time steps required for good parameter estimates are likely to be
large; in our simulations, we used 100 for a AR(3) and 1000 for a ARSS(2).

254 18 Models with lag-p

Thorough simulation testing should be conducted to determine if the data
available are sufficient to allow estimation of the B terms at multiple lags.

19

Structural Time Series Models

Structural time series models are linear Gaussian state-space models which
decompose the time series into additive random walks for the level, trend and
season. These models can be written as a MARSS model. R provides the
StructTS() function in the {stats} package to fit the level, level plus trend,
and level plus trend plus season versions of structural time series models to
univariate data.

Here it is shown how to fit structural time series models with MARSS() using
the same initial conditions assumptions as used in the StructTS() function.
With MARSS(), you are not restricted to univariate time series and you have
control over any parameter constraints that you wish to impose. You will see
how to fit multivariate structural time series models after the univariate cases
are shown.

Required libraries for this chapter:

library(MARSS)

library(tidyr)

library(ggplot2)

library(forecast)

19.1 Univariate models

19.1.1 Level model

The basic stochastic level model fit by stats::StructTS() and using the
notation of that function is

yt = mt + vt where vt ∼ N(0,σ2
ε) (19.1)

Type RShowDoc("Chapter_Structural_TS.R",package="MARSS") at the R com-
mand line to open a file with all the code for the examples in this chapter.

256 19 STS Models

where m is the level and is a random walk:

mt = mt−1 +wt where wt ∼ N(0,σ2
ξ
) (19.2)

The initial conditions assumption used in the StructTS() function is the
following and this must be used in the MARSS() model in order to replicate
the StructTS() output. The initial condition at t = 0 for m is stochastic with
fixed mean equal to y1 and variance equal to 10000 times the variance of the
data, denoted s2.

m0 ∼ N(y1,10000s2) (19.3)

Here the model is fit to 20 time steps of tree ring data. fit1 is the
StructTS() output, fit2 is fit with MARSS() with parameters fixed at the
StructTS() estimated values, fit3 is the model fit with MARSS() using BFGS,
and fit4 is the model fit with MARSS() using EM. fit3 and fit4 are slightly
different than fit1 because the optimization algorithm is a hill-climbing algo-
rithm for all these fits and stops at slightly different points on the likelihood
hill.

Fit with StructTS().

y <- window(treering, start = 0, end = 20)

fit1 <- StructTS(y, type = "level")

Fit with MARSS(). We set control=list(allow.degen=FALSE) when us-
ing the EM algorithm (the default) in order to compare results to the BFGS
algorithm used in StructTS(). This will not allow variances to go to zero;
they may appear that way in the output but that is rounding.

vy <- var(y, na.rm = TRUE) / 100

mod.list <- list(

x0 = matrix(y[1]), U = "zero", tinitx = 0,

Q = matrix(fit1$coef[1]), R = matrix(fit1$coef[2]),

V0 = matrix(1e+06 * vy)

)

fit2 <- MARSS(as.vector(y), model = mod.list)

Now estimate the parameters

mod.list <- list(

x0 = matrix(y[1]), U = "zero", tinitx = 0, V0 = matrix(1e+06 * vy),

Q = matrix("s2xi"), R = matrix("s2eps")

)

fit3 <- MARSS(as.vector(y), model = mod.list, method = "BFGS")

fit4 <- MARSS(as.vector(y),

model = mod.list,

control = list(allow.degen = FALSE)

)

19.1 Univariate models 257

A difference with StructTS() is that the reported fitted level (the x state
estimate) is the estimate of the state conditioned on the data up to t not T .
In the {MARSS} package, the state estimate (in the states element of the
fitted object) is reported conditioned on all the data (up to T). To compare the
outputs, we need to use MARSSkfss() to get xtt (the estimate of x conditioned
on data up to t).

fit2$kf <- MARSSkfss(fit2)

fit3$kf <- MARSSkfss(fit3)

fit4$kf <- MARSSkfss(fit4)

df <- data.frame(

StructTS = fit1$fitted, fit2 = fit2$kf$xtt[1,],

fit.bfgs = fit3kfxtt[1,], fit.em = fit4kfxtt[1,]

)

head(df)

level fit2 fit.bfgs fit.em

1 1.265000 1.265000 1.265000 1.265000

2 1.132475 1.132475 1.132546 1.136460

3 1.200246 1.200246 1.200210 1.198366

4 1.457141 1.457141 1.457002 1.449322

5 1.448101 1.448101 1.448104 1.448054

6 1.123611 1.123611 1.123786 1.133389

MARSS BFGS MARSS EM StructTS

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.5

1.0

1.5

t

va
lu

e

Level estimate from model fit with StructTS and MARSS

Fig. 19.1. Comparison of the level estimates for the stochastic level model.

19.1.2 Level plus trend model

The basic stochastic level plus trend model fit by stats::StructTS() is

yt = mt + vt where vt ∼ N(0,σ2
ε) (19.4)

258 19 STS Models

where m and n are the stochastic level and trend. mt = mt−1 +nt−1 +wt and in
matrix form this is[

m
n

]
t
=

[
1 1
0 1

][
m
n

]
t−1

+wt where wt ∼ MVN

(
0,

[
σ2

ξ
0

0 σ2
ζ

])
(19.5)

The initial conditions assumption used in StructTS() for this model is the
following where s2 is the variance in the data (var(y)):[

m
n

]
0
∼ MVN

([
y1
0

]
,

[
10000s2 10000s2

10000s2 10000s2

])
(19.6)

Because MARSS() does an inversion of the initial variance matrix as part of
code to force positive definite matrices and deal with degenerate models with
0s on diagonals of Q or R, the initial conditions variance used in StructTS()

needs to be made positive definite for MARSS(). This is done by adding a
small value (1e-10) to the diagonal as shown in the mod.list used for fit3
and fit4.

This model will be illustrated with the UKgas data set. For the tree ring
data, the trend variance estimate is 0 and that will not illustrate a stochastic
trend. The subset.ts() function in the {forecast} package is used to subset
just the 2nd quarter data.

Fit with StructTS().

y <- log10(forecast:::subset.ts(UKgas, quarter = 2))

fit1 <- StructTS(y, type = "trend")

Fit with MARSS(). First we will create a MARSS model with the same
parameters as the StructTS fit.

vy <- var(y, na.rm = TRUE) / 100

B <- matrix(c(1, 0, 1, 1), 2, 2)

Z <- matrix(c(1, 0), 1, 2)

fitx parameters at fit1 values

mod.list <- list(

x0 = matrix(c(y[1], 0), 2, 1), U = "zero", tinitx = 0,

Q = diag(fit1$coef[1:2]), R = matrix(fit1$coef[3]),

V0 = matrix(1e+06 * vy, 2, 2), Z = Z, B = B

)

fit2 <- MARSS(as.vector(y),

model = mod.list, fit = FALSE,

control = list(trace = -1)

)

fit2$par <- fit2$start # otherwise par is NULL since fit=FALSE

Now estimate the parameters with MARSS().

mod.list <- list(

x0 = matrix(c(y[1], 0), 2, 1), U = "zero", tinitx = 0,

19.1 Univariate models 259

Q = ldiag(c("s2xi", "s2zeta")), R = matrix("s2eps"),

V0 = matrix(1e+06 * vy, 2, 2) + diag(1e-10, 2), Z = Z, B = B

)

fit3 <- MARSS(as.vector(y), model = mod.list, method = "BFGS")

fit4 <- MARSS(as.vector(y),

model = mod.list,

control = list(allow.degen = FALSE)

)

Figure 19.2 shows the comparisons for the full level and trend estimates.
The EM algorithm would need a lower tolerance to get closer to the maximum
likelihood parameter values.

fit2$kf <- MARSSkfss(fit2)

fit3$kf <- MARSSkfss(fit3)

fit4$kf <- MARSSkfss(fit4)

data.frame(

StructTS = fit1$fitted[, 2], fit2 = fit2$kf$xtt[2,],

fit.bfgs = fit3kfxtt[2,], fit.em = fit4kfxtt[2,]

)[1:5,]

StructTS fit2 fit.bfgs fit.em

1 0.000000000 0.000000000 0.000000000 0.000000000

2 -0.003519920 -0.003519920 -0.003518509 -0.003545700

3 0.005201072 0.005201072 0.005203550 0.005262259

4 0.006762808 0.006762808 0.006759700 0.006886398

5 0.007290557 0.007290557 0.007286018 0.007425123

level slope

1960 1970 1980 1960 1970 1980

0.00

0.01

0.02

0.03

2.2

2.4

2.6

2.8

t

va
lu

e

model

MARSS BFGS

MARSS EM

StructTS

Fig. 19.2. Comparison of the level and trend estimates for the stochastic level plus
trend model.

260 19 STS Models

19.1.3 Seasonal or BSM model

The seasonal model fit by StructTS() is the level plus trend model with an
additional seasonal component st . The mt model is the same as for the level
plus trend model.

yt = mt + st + vt where vt ∼ N(0,σ2
ε) (19.7)

where
st =−st−1 −·· ·− st− f+1 + vt where vt ∼ N(0,σ2

w) (19.8)

f is the frequency of the seasonality. For quarterly data, f = 4 and the st
model is

st =−st−1 − st−2 − st−3 + vt (19.9)

Written in MARSS form, the model for a quarterly seasonality is the fol-
lowing. s is the seasonality term while s1 and s2 are just keeping track of st−1
and st−2.

yt =
[
1 0 1 0 0

]


m
n
s
s1
s2


t

+ vt (19.10)

and the x model is 
m
n
s
s1
s2


t

=


1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0




m
n
s
s1
s2


t−1

+wt (19.11)

where

wt ∼ MVN

0,


σ2

ξ
0 0 0 0

0 σ2
ζ

0 0 0
0 0 σ2

w 0 0
0 0 0 0 0
0 0 0 0 0


 (19.12)

The initial conditions assumption is the following where again s2 is the vari-
ance in the data (var(y)):

m
n
s
s1
s2


0

∼ MVN




y1
0
0
0
0

 ,


104s2 104s2 104s2 104s2 104s2

104s2 104s2 104s2 104s2 104s2

104s2 104s2 104s2 104s2 104s2

104s2 104s2 104s2 104s2 104s2

104s2 104s2 104s2 104s2 104s2


 (19.13)

Let’s see an example with the UK gas data set used in the help page
?StructTS.

19.1 Univariate models 261

y <- log10(UKgas)

fit1 <- StructTS(y, type = "BSM")

To make B for MARSS(), we write a little helper function. nf is the frequency.

makeB <- function(nf) {

B <- matrix(0, nf + 1L, nf + 1L)

B[1L:2L, 1L:2L] <- c(1, 0, 1, 1)

B[3L,] <- c(0, 0, rep(-1, nf - 1L))

if (nf >= 3L) {

ind <- 3:nf

B[cbind(ind + 1L, ind)] <- 1

}

return(B)

}

Now we can fit with MARSS().

nf <- frequency(y)

vy <- var(y) / 100

B <- makeB(nf)

Z <- matrix(c(1, 0, 1, rep(0, nf - 2L)), 1, nf + 1)

Q <- ldiag(list("s2xi", "s2zeta", "s2w", 0, 0))

R <- matrix("s2eps")

V0 <- matrix(1e+06 * vy, nf + 1, nf + 1) + diag(1e-10, nf + 1)

mod.list <- list(

x0 = matrix(c(y[1], rep(0, nf)), ncol = 1),

U = "zero", A = "zero", tinitx = 0,

Q = Q, R = R, V0 = V0, Z = Z, B = B

)

fit3 <- MARSS(as.vector(y), model = mod.list, method = "BFGS")

fit4 <- MARSS(as.vector(y),

model = mod.list,

control = list(allow.degen = FALSE)

)

fit4$kf <- MARSSkfss(fit4)

fit3$kf <- MARSSkfss(fit3)

Figure 19.3 shows the comparisons.

19.1.4 Forecasting

Forecasts can be made with the predict() function or the forecast() func-
tion in the {forecast} package. Here we will use the BSMmodel fits to illustrate
forecasting.

y <- log10(UKgas)

fit1 <- StructTS(y, type = "BSM")

262 19 STS Models

level sea slope

1960 1970 1980 1960 1970 1980 1960 1970 1980

−0.02

−0.01

0.00

0.01

0.02

0.0

0.1

0.2

0.3

2.0

2.2

2.4

2.6

2.8

t

va
lu

e

model

MARSS BFGS

MARSS EM

StructTS

Fig. 19.3. Comparison of the level, trend and season estimates for the BSM model.

nf <- frequency(y)

vy <- var(y) / 100

B <- makeB(nf) # defined in the BSM section above

Z <- matrix(c(1, 0, 1, rep(0, nf - 2L)), 1, nf + 1)

V0 <- matrix(1e+06 * vy, nf + 1, nf + 1) + diag(1e-10, nf + 1)

mod.list <- list(

x0 = matrix(c(y[1], rep(0, nf)), ncol = 1), U = "zero", A = "zero", tinitx = 0,

Q = diag(c(fit1$coef[1:3], 0, 0)), R = matrix(fit1$coef[4]), V0 = V0, Z = Z, B = B

)

fit2 <- MARSS(as.vector(y), model = mod.list)

fit1 and fit2 are exactly the same since fit2 used the fit1 estimated
parameters.

stats::predict.StructTS() is only for forecasting and takes the fit and
n.ahead as arguments. It returns a list with the forecasts in pred and a ts
object and their standard errors in se.

fr1 <- predict(fit1, n.ahead = 5)

fr1

$pred

Qtr1 Qtr2 Qtr3 Qtr4

1987 3.130126 2.831481 2.580969 2.947872

1988 3.177549

$se

Qtr1 Qtr2 Qtr3 Qtr4

1987 0.05450292 0.05465622 0.05773393 0.06022966

1988 0.08818051

The MARSS::predict.marssMLE() does both predicting within the data
(similar to other predict methods) and will forecast if n.ahead is passed in.

19.1 Univariate models 263

It returns a list with the predictions and forecasts in pred as a data frame
in long form (suitable for ggplot() calls). The standard errors and intervals
(confidence or prediction) are included in pred. The standard error is not
printed but is in the pred data frame.

fr2 <- predict(fit2, n.ahead = 5, interval = "prediction")

fr2

.rownames t estimate Lo 80 Hi 80 Lo 95

109 Y1 109 3.130126 3.060278 3.199975 3.023303

110 Y1 110 2.831481 2.761436 2.901526 2.724357

111 Y1 111 2.580969 2.506980 2.654958 2.467813

112 Y1 112 2.947872 2.870685 3.025059 2.829824

113 Y1 113 3.177549 3.064541 3.290557 3.004718

Hi 95

109 3.236950

110 2.938605

111 2.694125

112 3.065920

113 3.350380

The estimates are the same. ft is the time steps associated with the fore-
cast.

rbind(

pred1 = fr1$pred, pred2 = fr2$pred$estimate[fr2$ft],

se1 = fr1$se, se2 = fr2$pred$se[fr2$ft]

)

[,1] [,2] [,3] [,4]

pred1 3.13012625 2.83148104 2.58096899 2.94787202

pred2 3.13012625 2.83148104 2.58096899 2.94787202

se1 0.05450292 0.05465622 0.05773393 0.06022966

se2 0.05450292 0.05465622 0.05773393 0.06022966

[,5]

pred1 3.17754896

pred2 3.17754896

se1 0.08818051

se2 0.08818051

If we use the forecast::forecast.StructTS() function instead of predict(),
we get an object that can be plotted since the {forecast} package has
a plot method for StructTS objects. The {MARSS} package has a plot
method for marssPredict objects returned by predict() and forecast()

functions used with marssMLE objects. The forecast() function can be
called with forecast::forecast() if you have the {forecast} package in-
stalled or forecast.marssMLE() if not.

264 19 STS Models

The plots from the StructTS and marssMLE objects are similar though
they have slightly different formats.

2.4

2.7

3.0

3.3

1985 1986 1987 1988 1989
Time

y

Forecasts from Basic structural model

Y1

105 110 115
2.4

2.7

3.0

3.3

Time

E
st

im
at

e

Data ytT Forecasts + 80, 95% PI

Fig. 19.4. Comparison of the forecast plots.

19.1.5 Fitted values

fitted(x) applied to a StructTS object will return the expected value of
Xt (but only the first 3 states) conditioned on the data up to time t. It is
returned as a ts or mts object depending if there is one state (”level”) or
multiple (”trend” or ”BSM”). For the BSM model, plotting this will show the
decomposed time series with the estimated level mt , slope or trend nt and
season st terms. In the {MARSS} package, the estimated states conditioned
on the data up to time t is returned with tsSmooth(x, type="xtt"). The
function fitted() in the {MARSS} package has the more typical meaning of
fitted for a statistical model (model prediction of y or x).

fitted2 <- tsSmooth(fit2, type = "xtt")

fitted2 <- subset(fitted2, .rownames %in% c("X1", "X2", "X3"))

This is a data frame in long-form which we can plot with ggplot(). Alterna-
tively instead of tsSmooth(x, type="xtt"), we can use MARSSkfss(x)$xtt

to return the state estimates as a matrix. Converting the matrix to a ts object
makes it easier to plot.

To output the model fitted value for y, we add the level and season states
together if using StructTS() because for the BSM model, the model for yt is
mt +st . With {MARSS}, this would be output with fitted(x, type="ytt").
Alternative we could add the mt and st states from the {MARSS} output, but
fitted(x, type="ytt") allows you to easily compute this for cases that are
more complex with a non-identity Z, non-zero a and covariates d.

19.1 Univariate models 265

fitted1 <- fitted(fit1)

plot(fitted1)

2.
0

2.
6

le
ve

l

−
0.

04
0.

01

sl
op

e

−
0.

4
0.

0

1960 1965 1970 1975 1980 1985

se
a

Time

fitted1

Fig. 19.5. Output from a plot of a fitted StructTS object.

ggplot(fitted2, aes(x = t, y = .estimate)) +

geom_line() +

facet_wrap(~.rownames, ncol = 1, scale = "free_y")

X3

X2

X1

0 30 60 90

2.0
2.2
2.4
2.6
2.8

−0.04
−0.02

0.00
0.02

−0.4
−0.2

0.0
0.2

t

.e
st

im
at

e

Fig. 19.6. Output from a plot of the states from the marssMLE object using tsS-
mooth() output.

19.1.6 Residuals

residuals(x) applied to a StructTS object will return the difference between
yt and the expected value of Yt conditioned on the data up to time t. The resid-
uals are returned as a ts object. The residuals are standardized, i.e., divided
by the square root of the conditional variance of residuals (conditioned on the
data). Note the conditional variance of the residuals is not var(resids); see
?MARSSresiduals for a discussion of how the conditional variance of state-
space residuals is computed.

266 19 STS Models

fitted3 <- MARSSkfss(fit2)$xtt

fitted3 <- ts(t(fitted3[1:3,]))

plot(fitted3)

2.
0

2.
6

X
1

−
0.

04
0.

01

X
2

−
0.

4
0.

0

0 20 40 60 80 100

X
3

Time

fitted3

Fig. 19.7. Output from a plot of states from a marssMLE object.

StructTS

MARSS

1960 1970 1980

2.1

2.4

2.7

3.0

2.1

2.4

2.7

3.0

t

fit
te

d

Fig. 19.8. Data and model fitted values.

resids1 <- residuals(fit1)

In the {MARSS} package, the residuals() function will return the model
residuals conditioned on all the data, data up to time t −1 or up to time t. To
replicate the behavior for StructTS objects, we need to use conditioning up to
time t which is type="tt" and we need to specify marginal standardization.

resids2 <- residuals(fit2, type = "tt", standardization = "marginal")

The output is a data frame in long-form which we can plot with ggplot().

19.2 Multivariate models 267

difference

StructTS

MARSS

1960 1970 1980

−2
0
2
4

−2
0
2
4

−2e−07
0e+00
2e−07

t

re
si

ds

Marginal standardized model residuals

Fig. 19.9. The initial difference in the residuals is due to the small value added to
the diagonal of the initial condition variance-covariance matrix to allow MARSS() to
fit this model.

19.2 Multivariate models

The {MARSS} package allows one to fit multivariate structural equation mod-
els. In this section, we will use the level plus trend model as the example,
however the approaches work for all the structural models. The focus for this
example will be estimating a changing trend using multiple observation time
series.

19.2.1 Multiple observations of same process

The basic stochastic level plus trend model is

yt =
[
1 0
][m

n

]
t
+ vt (19.14)

[
m
n

]
t
=

[
1 1
0 1

][
m
n

]
t−1

+wt where wt ∼ MVN

(
0,

[
σ2

ξ
0

0 σ2
ζ

])
(19.15)

Now imagine that there are three independent yt observations of the mt pro-
cess. The observation model then becomes.y1

y2
y3


t

=

1 0
1 0
1 0

[m
n

]
t
+vt where vt ∼ MVN

0,

σ2
ε 0 0

0 σ2
ε 0

0 0 σ2
ε

 (19.16)

The initial conditions assumption used in the StructTS() for this model
is the following and we will keep that with the addition of a small amount to
the diagonal to make the initial condition matrix positive definite.[

m
n

]
0
∼ MVN

([
y1
0

]
,

[
10000s2 +1e−10 10000s2

10000s2 10000s2 +1e−10

])
(19.17)

268 19 STS Models

Simulated data

We will model a simulated random walk with level and an abrupt trend change.
We will generate observations that are the level + substantial error. We will
also insert 50% missing values into the y to illustrate how the method will
deal with missing values. Figure 19.10 shows the simulated data. We will fit
to the points. The line is the true level.

set.seed(100)

TT <- 60

t <- 1:TT

q <- 0.01

r <- 0.01

trend <- 0.2 * sin((1:TT) / 4)

level <- cumsum(rnorm(TT, trend, sqrt(q)))

Simulated data

n <- 5

miss.percent <- 0.5

ym <- matrix(1, n, 1) %*% level + matrix(rnorm(TT * n, 0, sqrt(r * 100)), n, TT)

ym[sample(n * TT, miss.percent * n * TT)] <- NA

0 10 20 30 40 50 60

−
2

1
4

t

tr
en

d trend
level

0 10 20 30 40 50 60

−
2

1
4

bad data

y

Fig. 19.10. Observations (points) and truth (line).

Model set-up

Set up the x part of the equation for MARSS(). This part does not change from
the univariate case except that we will estimate the initial condition for the
level and will treat the variance for the level as known (at the true value). It
can be hard to separate the variances with large observation error. We will
assume that we know something about the level process and it is the changing
trend that we want to estimate.

19.2 Multivariate models 269

vy <- var(y, na.rm = TRUE) / 100

mod.list.x <- list(

x0 = matrix(list("x0", 0), nrow = 2), tinitx = 1,

V0 = matrix(1e+06 * vy, 2, 2) + diag(1e-10, 2),

Q = ldiag(list(q, "qt")),

B = matrix(c(1, 0, 1, 1), 2, 2),

U = "zero"

)

Next we set up the y part of the equation. This is the part that changes. We
will assume that the observations are independent with the same bias (i.e.,
expected value of each y is the same). We will relax this assumption later.

mod.list.y <- list(

A = "zero",

R = "diagonal and equal"

)

Fit model

Estimate the level and trend from one of the simulated observation time series:

Z <- matrix(c(1, 0), 1, 2, byrow = TRUE)

mod.list <- c(mod.list.x, mod.list.y, list(Z = Z))

fitu <- MARSS(ym[1,], model = mod.list, method = "BFGS", inits = list(x0 = 0))

Now estimate the parameters with all the time series.

Z <- matrix(c(1, 0), n, 2, byrow = TRUE)

mod.list <- c(mod.list.x, mod.list.y, list(Z = Z))

fitm <- MARSS(ym, model = mod.list, method = "BFGS", inits = list(x0 = 0))

Compare trend estimate to truth

Our objective is to estimate the level and trend states (Figure 19.11). In this
example, the multivariate model is able to estimate the trend variance unlike
when we fit to only one time series (the flat line in the trend plot). But if
we increase the error added or the missing values, the ability to estimate the
trend variance would disappear.

19.2.2 Covariate affects observations

We can add a known covariate that affects the observations. In this case, it is
a step function representing a before-after effect. We will have it affect only
the first few observation time series and the effect will be different for each
series (Figure 19.12).

We fit by passing the covariate into d (because it affects the observations
not the process). The estimated versus true effects are shown in Figure 19.13
and the estimated trend is in Figure 19.14.

270 19 STS Models

X1 X2

0 20 40 60 0 20 40 60

−0.2

−0.1

0.0

0.1

0.2

0.0

0.5

1.0

1.5

2.0

t

.e
st

im
at

e

name

multiple bad

one bad

true

Fig. 19.11. State estimates from the one bad time series versus multivariate bad time
series.

0 10 20 30 40 50 60

−
2

1
4

data

y

0 10 20 30 40 50 60

0.
0

0.
6

covariate

t

co
va

ria
te

[1
,]

Fig. 19.12. Observations (points) of the true data (line) with covariate effect plus
error and missing values added. It affects some time series positively and others
negatively.

Z <- matrix(c(1, 0), n, 2, byrow = TRUE)

mod.list <- c(mod.list.x, mod.list.y, list(Z = Z, d = covariate))

fitmc <- MARSS(ymc, model = mod.list, method = "BFGS", inits = list(x0 = 0))

19.2.3 Observations with bias and different errors

Our observations may have different (unknown) levels of observation error and
be biased relative to each other (Figure 19.15).

We fit by changing the R and a specifications. The R estimates are shown
in Figure 19.16.

19.2 Multivariate models 271

−1.0

−0.5

0.0

0.5

1.0

y1 y2 y3 y4 y5
observation series

D
 e

st
im

at
e name

estimate

true

D true and estimated values

Fig. 19.13. Estimate of the effect of the covariate.

X1 X2

0 20 40 60 0 20 40 60

−0.2

−0.1

0.0

0.1

0.2

0.0

0.5

1.0

1.5

2.0

t

.e
st

im
at

e

name

multiple bad

multiple w covariate

one bad

true

Fig. 19.14. State estimates from the univariate good data, multivariate bad data,
and multivariate with a covariate.

0 10 20 30 40 50 60

−
2

2
4

data with different error and bias

y

Fig. 19.15. Observations (points) with differing error and bias added.

272 19 STS Models

Z <- matrix(c(1, 0), n, 2, byrow = TRUE)

mod.list <- c(mod.list.x, list(Z = Z, R = "diagonal and unequal", A = "scaling"))

fitm2 <- MARSS(ym2, model = mod.list, method = "BFGS", inits = list(x0 = 0))

0

1

2

3

4

y1 y2 y3 y4 y5
observation series

R
 v

ar
ia

nc
e

es
tim

at
e

name

estimate

true

R true and estimated values

Fig. 19.16. Estimate of the observation variances.

The level will be scaled up or down to fit the first observation time series.
We have to set one of the a to 0 and by default, MARSS() sets the first one to
zero. The estimates are in Figure 19.17.

X1 X2

0 20 40 60 0 20 40 60

−0.2

−0.1

0.0

0.1

0.2

0

1

2

t

.e
st

im
at

e

name

multiple bad

multiple w covariate

multiple w different Rs

one bad

true

Fig. 19.17. State estimates. The level for the model with bias will be shifted up or
down. This is not an error but a feature of having to scale to one of the time series
and by default, the first is chosen.

19.2 Multivariate models 273

19.2.4 Indepenent realizations of the same process

In the last section, we had multiple observations of the same process. We
can also have multiple realizations of independent processes with the same
variance values. In this example, we assume that the level is an independent
observation of a shared trend.

m1
m2
n


t

=

1 0 1
0 1 1
0 0 1

m1
m2
n


t−1

+wt where wt ∼ MVN

0,

σ2
ξ

0 0
0 σ2

ξ
0

0 0 σ2
ζ


 (19.18)

Each is observed by an independent yt observation.[
y1
y2

]
t
=

[
1 0 0
0 1 0

]m1
m2
n


t

+vt where vt ∼ MVN

(
0,
[

σ2
ε 0

0 σ2
ε

])
(19.19)

Simulated data

We simulate data as in the last section but simulate two levels and trends.
Figure 19.18 shows the simulated data.

set.seed(100)

TT <- 60

t <- 1:TT

q <- 0.5

qt <- 0.01

r <- 0.1

b <- 0.5

trend <- 0.2 * sin((1:TT) / 4)

level1 <- cumsum(rnorm(TT, trend, sqrt(q)))

level2 <- cumsum(rnorm(TT, trend, sqrt(q)))

Simulated data

ym <- rbind(level1, level2) + matrix(rnorm(TT * 2, 0, sqrt(r)), 2, TT)

Fit models

Estimate the level and trend from each observation time series alone:

vy <- var(y, na.rm = TRUE) / 100

Z <- matrix(c(1, 0), 1, 2)

mod.list.x <- list(

x0 = matrix(list("x0", 0), nrow = 2), tinitx = 1,

V0 = matrix(1e+06 * vy, 2, 2) + diag(1e-10, 2),

Q = ldiag(list(q, "qt")),

274 19 STS Models

0 10 20 30 40 50 60

−
4

0
4

t
ym

[1
,]

0 10 20 30 40 50 60

−
4

0
4

t

ym
[2

,]

Fig. 19.18. Observations (points) and truth (line). The levels (line) have the same
variance but are independent. The level processes share a trend, i.e., m1,t = m1,t−1 +
nt−1 and m2,t = m2,t−1 +nt−1.

B = matrix(c(1, 0, 1, 1), 2, 2),

U = "zero"

)

mod.list <- c(mod.list.x, mod.list.y, list(Z = Z))

fitm1 <- MARSS(ym[1,], model = mod.list, method = "BFGS", inits = list(x0 = 0))

fitm2 <- MARSS(ym[2,], model = mod.list, method = "BFGS", inits = list(x0 = 0))

Estimate the level and trend from the two simulated observation time
series together:

Z <- matrix(c(1, 0, 0, 0, 1, 0), 2, 3, byrow = TRUE)

m <- 3

mod.list.x <- list(

x0 = matrix(list("x0.1", "x0.2", 0), nrow = m), tinitx = 1,

V0 = matrix(1e+06 * vy, m, m) + diag(1e-10, m),

Q = ldiag(list("q", "q", "qt")),

B = matrix(c(1, 0, 1, 0, 1, 1, 0, 0, 1), m, m, byrow = TRUE),

U = "zero"

)

mod.list <- c(mod.list.x, mod.list.y, list(Z = Z))

fitm3 <- MARSS(ym, model = mod.list, method = "BFGS", inits = list(x0 = 0))

Compare state estimates

The two time series alone are not able to estimate the trend. Both put all the
variation in the data into the level state.

19.3 Summary 275

trend

level 2

level 1

0 20 40 60

0
1
2
3
4
5

−2
0
2

−0.2
−0.1

0.0
0.1
0.2
0.3

t

.e
st

im
at

e

name

true

ts 1 & 2 together

ts 1 alone

ts 2 alone

Fig. 19.19. Common trend and separate level estimates.

19.3 Summary

This chapter illustrates how to fit the structural equation models fit by the
StructTS() function in R . The initial conditions used in that function were
used here, however those initial conditions should not be assumed to be the
best choice. The default behavior in the {MARSS} package is to treat x0 as
an estimated parameter with initial conditions variance matrix set to all 0.
Structural time series models can be a challenge for the EM algorithm and
for most examples the BFGS algorithm was used. If using EM, the algorithm
will need to be run longer to achieve the maximum likelihood.

The {MARSS} package allows you to fit multivariate structural time series
models with a flexible data structure and flexible relationships between the
data. It allows you to include covariates and model intervention effects. You
can model multiple observations of the same process or different observations
of independent processes that share some or all parameter values. You can also
model cases where the trend (or seasonality) is shared across processes but
not the levels. The ability to use multiple data sets can improve estimation
and allow you to estimate an underlying process which might remain hidden
if only one data set were used for estimation.

20

Comparison to the {KFAS} Package

The {MARSS} package uses the Kalman filter and smoother in the
{KFAS} package (KFAS: Kalman Filter and Smoother for Exponential Fam-
ily State Space Models) (Helske, 2017) which implements the more stable
filter and smoother algorithm by Koopman and Durbin (2000); Durbin and
Koopman (2012). The {KFAS} package also provides filtering and smoothing
for the general exponential class for the observation errors, e.g., Gaussian,
Poisson, binomial, negative binomial, and gamma distributions.

This chapter compares the {KFAS} versus {MARSS} functions for the
filter and smoother, fitted values, residuals and predictions for state-space
models. Understanding the relationship between the package functions can
help understand the state-space outputs. State-space output is complex be-
cause there are two processes (state and observation), three possible data
conditionings (1 to t −1, 1 to t, and 1 to T where T is the last time step), and
conditional fitted values versus conditional expected values which the condi-
tional expectation of the right side of the process equation without or with
the error term.

This chapter uses the following packages:

library(MARSS)

library(KFAS)

library(ggplot2) # plotting

library(tidyr) # data frame manipulation

20.1 Nile River example

This is the Nile River example in Durbin and Koopman (2012) and shown in
Chapter 12 on structural breaks. This model is

Type RShowDoc("Chapter_KFAS.R",package="MARSS") at the R command line to
open a file with all the code for the examples in this chapter.

278 20 KFAS

xt = xt−1 +wt where wt ∼ N(0,q)
yt = xt + vt where vt ∼ N(0,r)

(20.1)

20.1.1 Fitting models

KFAS::SSModel() sets up the {KFAS} model which will be passed to the fit-
ting functions. KFAS::SSMtrend(degree = 1) designates a local level model.
KFAS::fitSSM() fits the model.

model_Nile <- SSModel(Nile ~ SSMtrend(

degree = 1,

Q = list(matrix(NA))

),

H = matrix(NA)

)

kinits <- c(log(var(Nile)), log(var(Nile)))

fit_kfas_default <- fitSSM(model_Nile, kinits, method = "BFGS")

{KFAS} uses a stochastic prior on the initial condition and the fitting
function does not estimate x0. By default, a diffuse prior on x0 is used. The
default behavior for {MARSS}, in contrast, is to estimate x0 as a parameter
and fix V 0

0 (the conditional variance of x0) to 0. This will lead to small differ-
ences between the fits. The EM algorithm in {MARSS} does not implement
a true diffuse prior but we can specify a stochastic prior to mimic a {KFAS}
fit.

We will set a stochastic prior on x1 with a mean of 0 and variance of 1000
by changing P1, P1inf, and a1 in the {KFAS} model. Setting P1inf to 0,
turns off the diffuse prior.

model_Nile_stoch <- model_Nile

model_Nile_stoch$a1[1, 1] <- 0

model_Nile_stoch$P1[1, 1] <- 1000

model_Nile_stoch$P1inf[1, 1] <- 0

kinits <- c(log(var(Nile)), log(var(Nile)))

fit_kfas_stoch <- fitSSM(model_Nile_stoch, kinits, method = "BFGS")

kfs_kfas_stoch <- KFS(fit_kfas_stoch$model)

With MARSS, the model is specified as:

mod.nile <- list(

Z = matrix(1), A = matrix(0), R = matrix("r"),

B = matrix(1), U = matrix(0), Q = matrix("q"),

tinitx = 1

)

The default initial conditions in the {MARSS} package is to estimate x1 as a
parameter (and set V1 to zero). This default behavior prevents prior informa-
tion about the covariance structure of the states from affecting the estimates,

20.1 Nile River example 279

though for some models, the initial conditions estimation is not well defined
(in which case setting a stochastic prior is helpful).

We will fit with the EM and BFGS algorithm in the {MARSS} package.
We will start the BFGS algorithm at the same initial conditions used in our
{KFAS} fitting call, although this isn’t quite the same because {MARSS}
and {KFAS} are using different approaches to ensure that the variances stay
positive-definite during the BFGS maximization steps.

dat <- t(as.matrix(Nile))

rownames(dat) <- "Nile"

fit_em_default <- MARSS(dat, model = mod.nile, silent = TRUE)

inits <- list(Q = matrix(var(Nile)), R = matrix(var(Nile)))

fit_bfgs_default <- MARSS(dat,

model = mod.nile, inits = inits,

method = "BFGS", silent = TRUE

)

We will also fit a stochastic prior so that we can compare more directly to
the same model fit with {KFAS}.

mod.nile.stoch <- mod.nile

mod.nile.stoch$x0 <- fit_kfas_stoch$model$a1

mod.nile.stoch$V0 <- fit_kfas_stoch$model$P1

fit_em_stoch <- MARSS(dat, model = mod.nile.stoch, silent = TRUE)

fit_bfgs_stoch <- MARSS(dat,

model = mod.nile.stoch, inits = inits,

method = "BFGS", silent = TRUE

)

MARSSkfas() will return the SSModel object that is passed to KFAS::KFS()
(internally in the {MARSS} functions). {MARSS} does not use KFAS::fitSSM()
but it does use KFAS::KFS() for the filter, smoother and log-likelihood. The
SSModel used inside {MARSS} looks different than model_Nile because the
a term is in T and the u term is in T. We can set Q and H to NA to estimate
those values. The results are the same as for fit_kfas_stoch.

marss_kfas_model <- MARSSkfas(fit_em_stoch,

return.kfas.model = TRUE,

return.lag.one = FALSE

)$kfas.model

marss_kfas_model$Q[1, 1, 1] <- NA

marss_kfas_model$H[1, 1, 1] <- NA

kinits <- c(log(var(Nile)), log(var(Nile)))

fit_marss_kfas <- fitSSM(marss_kfas_model, kinits, method = "BFGS")

The {KFAS} parameter estimates are in $model. The negative log-likelihood
is in $optim.out$value (or use KFS(kfas_temp$model)$logLik for the log-
likelihood). Here is the comparison of all the models. Note that the default

280 20 KFAS

{KFAS} model is fundamentally different than the default {MARSS} model
because the former uses a diffuse prior while the later is estimating x1 as a
parameter.

Q R logLik

KFAS default 1469.163 15098.65 -632.5456

MARSS em default 1526.011 14882.34 -637.6218

MARSS bfgs default 1267.610 15281.78 -637.6092

KFAS stoch 15210.195 33874.59 -697.8576

MARSS em stoch 15027.174 33924.66 -697.8586

MARSS bfgs stoch 15102.741 33956.00 -697.8580

KFAS w marss kfas model 15210.195 33874.59 -697.8576

20.1.2 State filtering and smoothing

For this section, we will compare filter and smoother output from the two
packages. For this we need identical models.

fit_kfas <- fit_kfas_stoch

fit_marss <- fit_em_stoch

fit_marssparQ[1, 1] <- fit_kfas$model$Q

fit_marssparR[1, 1] <- fit_kfas$model$H

The Kalman filter and smoother function in {KFAS} is KFS(). This returns
a variety of output:

kf_kfas <- KFS(fit_kfas$model,

filtering = "state",

smoothing = "state", simplify = FALSE

)

The analogous function in {MARSS} is MARSSkfas(). It uses KFAS::KFS() for
the implementation of the Koopman and Durbin Kalman filter and smoother
algorithm (Koopman and Durbin, 2000) but transforms the state-space model
passed into that function in order to get a variety of variables needed for the
EM algorithm, specifically the lag-1 smoother values.

kf_marss <- MARSSkfss(fit_marss)

The terminology of the filter/smoother variables is different between
MARSSkfas() and KFAS::KFS(). Note {MARSS} also includes MARSSkfss(),
which is the classic (less stable) Kalman filter and smoother; see for example
the chapter on the Kalman filter in Shumway and Stoffer (2006).

names(kf_kfas)

names(kf_marss)

The {MARSS} semantics are first letter: x or y process, second letter: time
(usually t), and third letter: the time conditioning. So xtT means the estimate

20.1 Nile River example 281

of the x process at time t conditioned on all the data while xtt1 means the
estimate of the x process at time t conditioned on the data from time step 1
to time step t −1.

• kf_kfas$a is kf_marss$xtt1. This is the expected value of Xt conditioned
on the data up to time step t −1. kf_kfas$att is kf_marss$xtt. This is
the expected value of Xt conditioned on the data up to time step t.
cbind(

a = kf_kfas$a[1:n], xtt1 = kf_marss$xtt1[1:n],

att = kf_kfas$att[1:n], xtt = kf_marss$xtt[1:n]

)

a xtt1 att xtt

[1,] 0.00000 0.00000 32.11507 32.11507

[2,] 32.11507 32.11507 396.72378 396.72378

[3,] 396.72378 396.72378 643.48197 643.48197

[4,] 643.48197 643.48197 909.42338 909.42338

[5,] 909.42338 909.42338 1029.38565 1029.38565

• kf_kfas$alphahat is kf_marss$xtT. This is the expected value of Xt con-
ditioned on all the data.
cbind(kf_kfas$alphahat[1:n], kf_marss$xtT[1:n])

[,1] [,2]

[1,] 64.38081 64.38081

[2,] 569.63686 569.63686

[3,] 809.81105 809.81105

[4,] 981.20113 981.20113

[5,] 1049.85712 1049.85712

• kf_kfas$v is kf_marss$Innov. These are the innovations or one-step-
ahead model residuals. kf_kfas$F is kf_marss$Sigma. This the variance-
covariance matrix of the innovations.
cbind(

v = kf_kfas$v[1:n], Innov = kf_marss$Innov[1:n],

F = kf_kfas$F[1:n], Sigma = kf_marss$Sigma[1:n]

)

v Innov F Sigma

[1,] 1120.0000 1120.0000 34874.59 34874.59

[2,] 1127.8849 1127.8849 50056.11 50056.11

[3,] 566.2762 566.2762 60035.34 60035.34

[4,] 566.5180 566.5180 63845.84 63845.84

[5,] 250.5766 250.5766 64986.59 64986.59

• kf_kfas$P is kf_marss$Vtt1. This is the conditional variance of Xt con-
ditioned on the data up to time step t −1. kf_kfas$Ptt is kf_marss$Vtt.
This is the conditional variance of Xt conditioned on the data up to time
step t.

282 20 KFAS

cbind(

P = kf_kfas$P[1:n], Vtt1 = kf_marss$Vtt1[1:n],

Ptt = kf_kfas$Ptt[1:n], Vtt = kf_marss$Vtt[1:n]

)

P Vtt1 Ptt Vtt

[1,] 1000.00 1000.00 971.3258 971.3258

[2,] 16181.52 16181.52 10950.5590 10950.5590

[3,] 26160.75 26160.75 14761.0518 14761.0518

[4,] 29971.25 29971.25 15901.7997 15901.7997

[5,] 31112.00 31112.00 16217.2867 16217.2867

• ”r”, ”r0”, ”r1”, ”N”, ”N0”, ”N1” and ”N2” are specific to the Koopman and
Durbin algorithm and are not returned by MARSSkfss() though you could
get them by using the SSModel object returned by MARSSkfas().

20.1.3 Observation filtering and smoothing

Both {KFAS} and {MARSS} return the smoothed and filtered (one-step
ahead) model predictions via fitted(). However, for {KFAS} this just re-
turns the smoothed values. The KFAS::KFS() function will return the filtered
and smoothed model predictions in matrix form along with other filter and
smoother output.

kf_kfas <- KFS(fit_kfas$model,

filtering = "signal",

smoothing = "signal", simplify = FALSE

)

The function to obtain these output in {MARSS} is fitted().

kf_marss <- MARSSkf(fit_marss)

Note, the function MARSShatyt() is the statistical counterpart to MARSSkf()

and returns the equivalent values but for the observation equation. This is
very different than what KFS() (or MARSS::fitted()) returns for the signal.
MARSShatyt() returns the expected value of Yt conditioned on Yt = yt . If
there are no missing data, this is simply yt and the covariance of Yt and Xt
conditioned on Yt = yt would be 0. These values are not this when there are
missing values and these expectations are crucial to the general EM algorithm
for missing values.

ytT means the estimate of the y process conditioned on all the data while
ytt1 means the estimate of the y process conditioned on the data 1 to t −1.

• kf_kfas$m is the one-step ahead prediction of yt . In MARSS, this is re-
turned by fitted(fit_marss, type="ytt1") in the .fitted column.
”ytt1”means the expected value of Yt conditioned on the data up to time
step t −1.

20.1 Nile River example 283

ytt1_fit <- fitted(fit_marss, type = "ytt1")$.fitted

ytt1_hatyt <- MARSShatyt(fit_marss, only.kem = FALSE)$ytt1

cbind(m = kf_kfas$m[1:n], fitted = ytt1_fit[1:n], MARSShatyt = ytt1_hatyt[1:n])

m fitted MARSShatyt

[1,] 0.00000 0.00000 0.00000

[2,] 32.11507 32.11507 32.11507

[3,] 396.72378 396.72378 396.72378

[4,] 643.48197 643.48197 643.48197

[5,] 909.42338 909.42338 909.42338

[6,] 1029.38565 1029.38565 1029.38565

[7,] 1092.24553 1092.24553 1092.24553

[8,] 957.66596 957.66596 957.66596

[9,] 1088.96405 1088.96405 1088.96405

[10,] 1224.47121 1224.47121 1224.47121

• kf_kfas$P_mu is the variance-covariance matrix of the expected value
of Yt conditioned on the data from time step 1 to time step t − 1.
MARSShatyt(fit_marss)$var.Eytt1 returns the same values; ”var.Eytt1”
indicates that it is the variance of the expected value of Yt conditioned on
data up to time step t−1. In {MARSS}, the standard errors of the one-step
ahead prediction are also returned by fitted(..., type = "ytt1", interval = "confidence").
Using fitted(), you can output the values as matrices instead of a data
frame if you need the variance-covariance matrices not just standard errors.
var.Eytt1_fit <-

fitted(fit_marss, type = "ytt1", interval = "confidence")$.se^2

var.Eytt1_hatyt <-

MARSShatyt(fit_marss, only.kem = FALSE)$var.Eytt1

cbind(

P_mu = kf_kfas$P_mu[1:n], fitted = var.Eytt1_fit[1:n],

MARSShatyt = var.Eytt1_hatyt[1:n]

)

P_mu fitted MARSShatyt

[1,] 1000.00 1000.00 1000.00

[2,] 16181.52 16181.52 16181.52

[3,] 26160.75 26160.75 26160.75

[4,] 29971.25 29971.25 29971.25

[5,] 31112.00 31112.00 31112.00

[6,] 31427.48 31427.48 31427.48

[7,] 31512.79 31512.79 31512.79

[8,] 31535.71 31535.71 31535.71

[9,] 31541.86 31541.86 31541.86

[10,] 31543.51 31543.51 31543.51

• kf_kfas$muhat is the smoothed prediction of yt . It is the expected value
of ZXt + a conditioned on the data up to time T ; notice it is not the ex-
pected value of Yt rather ZXt +a, which is the model prediction of yt . In

284 20 KFAS

{MARSS}, this is returned by fitted(fit_marss, type="ytT")$.fitted.
Note, MARSShatyt(fit_marss)$ytT does not return this. MARSShatyt()
returns the expected value of Yt conditioned on the data up to time T ,
i.e., all the data, which if there are no missing data is simply the observed
data.
ytT_fit <- fitted(fit_marss, type = "ytT")$.fitted

ytT_hatyt <- MARSShatyt(fit_marss)$ytT

cbind(

a = kf_kfas$muhat[1:n], fitted = ytT_fit[1:n],

MARSShatyt = ytT_hatyt[1:n], Nile = Nile[1:n]

)

a fitted MARSShatyt Nile

[1,] 64.38081 64.38081 1120 1120

[2,] 569.63686 569.63686 1160 1160

[3,] 809.81105 809.81105 963 963

[4,] 981.20113 981.20113 1210 1210

[5,] 1049.85712 1049.85712 1160 1160

[6,] 1069.05730 1069.05730 1160 1160

[7,] 1047.42286 1047.42286 813 813

[8,] 1131.04778 1131.04778 1230 1230

[9,] 1170.24168 1170.24168 1370 1370

[10,] 1119.74113 1119.74113 1140 1140

• kf_kfas$V_mu is the variance of the expected value of Yt conditioned on all
the data. In {MARSS}, this is returned in the standard errors returned by
fitted(..., interval="confidence") . Again, var.Eytt1 returned by
MARSShatyt() is not this because it returns the variance of the expected
value of Yt conditioned on all the data not the expected value of ZXt +a.
The latter is the model prediction. For the former, if there are no missing
values, E[Yt |Yt = yt] = yt and the variance is 0.
var.EytT_fit <-

fitted(fit_marss, type = "ytT", interval = "confidence")$.se^2

var.EytT_hatyt <-

MARSShatyt(fit_marss, only.kem = FALSE)$var.EytT

cbind(

V_mu = kf_kfas$V_mu[1:n], fitted = var.EytT_fit[1:n],

MARSShatyt = var.EytT_hatyt[1:n]

)

V_mu fitted MARSShatyt

[1,] 942.3097 942.3097 0

[2,] 8128.6821 8128.6821 0

[3,] 10055.5588 10055.5588 0

[4,] 10572.2107 10572.2107 0

[5,] 10710.7402 10710.7402 0

[6,] 10747.8841 10747.8841 0

20.1 Nile River example 285

[7,] 10757.8434 10757.8434 0

[8,] 10760.5138 10760.5138 0

[9,] 10761.2298 10761.2298 0

[10,] 10761.4218 10761.4218 0

20.1.4 Confidence and prediction intervals

Both {KFAS} and {MARSS} use predict() for predictions. The inputs and
outputs of the predice() functions from the two packages have many simi-
larities but also many differences.

Smoothed predictions

With newdata and n.ahead not passed in, predict() returns the model pre-
diction for Yt (i.e., fitted values) conditioned on all the data. This is the ex-
pected value and standard error of ZXt +a conditioned on all the data (before
and after t).

conf_kfas <- predict(fit_kfas$model,

interval = "confidence",

se.fit = TRUE

)

head(conf_kfas)

fit lwr upr se.fit

[1,] 64.38081 4.215678 124.5460 30.69706

[2,] 569.63686 392.928063 746.3456 90.15920

[3,] 809.81105 613.270944 1006.3512 100.27741

[4,] 981.20113 779.675175 1182.7271 102.82126

[5,] 1049.85712 847.015139 1252.6991 103.49271

[6,] 1069.05730 865.863912 1272.2507 103.67200

In {MARSS}, the same prediction is returned by fitted(). By default
fitted() returns a data frame, but the output can be changed to return
matrices.

conf_marss1 <- fitted(fit_marss, type = "ytT", interval = "confidence")

head(conf_marss1)

.rownames t y .fitted .se .conf.low

1 Nile 1 1120 64.38081 30.69706 4.215678

2 Nile 2 1160 569.63686 90.15920 392.928063

3 Nile 3 963 809.81105 100.27741 613.270944

4 Nile 4 1210 981.20113 102.82126 779.675175

5 Nile 5 1160 1049.85712 103.49271 847.015139

6 Nile 6 1160 1069.05730 103.67200 865.863912

.conf.up

286 20 KFAS

1 124.5460

2 746.3456

3 1006.3512

4 1182.7271

5 1252.6991

6 1272.2507

predict() can also be used (with type specified). predict() returns a list
and the data frame is in pred.

conf_marss2 <- predict(fit_marss,

type = "ytT",

interval = "confidence", level = 0.95

)

head(conf_marss2$pred)

.rownames t y estimate se Lo 95

1 Nile 1 1120 64.38081 30.69706 4.215678

2 Nile 2 1160 569.63686 90.15920 392.928063

3 Nile 3 963 809.81105 100.27741 613.270944

4 Nile 4 1210 981.20113 102.82126 779.675175

5 Nile 5 1160 1049.85712 103.49271 847.015139

6 Nile 6 1160 1069.05730 103.67200 865.863912

Hi 95

1 124.5460

2 746.3456

3 1006.3512

4 1182.7271

5 1252.6991

6 1272.2507

Prediction intervals are the intervals for new data. They are the expected
value and standard error of ZXt +a+vt conditioned on all the data (before and
after t). predict.SSModel() returns the upper and lower prediction intervals,
but the standard error returned is the standard error for the confidence interval
(i.e., for ZXt +a) not the prediction interval.

pred_kfas <- predict(fit_kfas$model,

interval = "prediction", se.fit = TRUE

)

head(pred_kfas)

fit lwr upr se.fit

[1,] 64.38081 -301.3345 430.0961 30.69706

[2,] 569.63686 167.9481 971.3256 90.15920

[3,] 809.81105 399.0120 1220.6101 100.27741

[4,] 981.20113 567.9935 1394.4088 102.82126

20.1 Nile River example 287

[5,] 1049.85712 636.0060 1463.7082 103.49271

[6,] 1069.05730 655.0339 1483.0807 103.67200

In MARSS, fitted() or predict() can be used to return the prediction
intervals. These functions return the standard deviation of ZXt + a+ vt (so
standard deviation of the prediction intervals). .sd will not be the same as
se.fit returned by predict.SSModel() but the intervals will be the same.

pred_marss1 <- fitted(fit_marss, type = "ytT", interval = "prediction")

head(pred_marss1)

.rownames t y .fitted .sd .lwr .upr

1 Nile 1 1120 64.38081 186.5929 -301.3345 430.0961

2 Nile 2 1160 569.63686 204.9470 167.9481 971.3256

3 Nile 3 963 809.81105 209.5952 399.0120 1220.6101

4 Nile 4 1210 981.20113 210.8241 567.9935 1394.4088

5 Nile 5 1160 1049.85712 211.1524 636.0060 1463.7082

6 Nile 6 1160 1069.05730 211.2403 655.0339 1483.0807

This would return the same values but as a marssPredict object instead of a
data frame.

pred_marss2 <- predict(fit_marss,

type = "ytT",

interval = "prediction", level = 0.95

)

One step ahead predictions

The default for predict.SSModel() in {KFAS} is to return model fitted
values conditioned on all the data. For the one-step ahead predictions, set
filtered=TRUE. This returns the expected value and standard error of ZXt +a
conditioned on the data up to t −1 only.

conf_kfas_t1 <- predict(fit_kfas$model,

interval = "confidence",

se.fit = TRUE, filtered = TRUE

)

head(conf_kfas_t1)

fit lwr upr se.fit

[1,] 0.00000 -61.97950 61.9795 31.62278

[2,] 32.11507 -217.20530 281.4354 127.20661

[3,] 396.72378 79.71359 713.7340 161.74287

[4,] 643.48197 304.16897 982.7950 173.12206

[5,] 909.42338 563.71332 1255.1334 176.38593

[6,] 1029.38565 681.92720 1376.8441 177.27798

288 20 KFAS

In {MARSS}, this output is returned by setting type="ytt1".

conf_marss1_t1 <- fitted(fit_marss, type = "ytt1", interval = "confidence")

head(conf_marss1_t1)

.rownames t y .fitted .se .conf.low

1 Nile 1 1120 0.00000 31.62278 -61.97950

2 Nile 2 1160 32.11507 127.20661 -217.20530

3 Nile 3 963 396.72378 161.74287 79.71359

4 Nile 4 1210 643.48197 173.12206 304.16897

5 Nile 5 1160 909.42338 176.38593 563.71332

6 Nile 6 1160 1029.38565 177.27798 681.92720

.conf.up

1 61.9795

2 281.4354

3 713.7340

4 982.7950

5 1255.1334

6 1376.8441

With predict(), the one-step ahead predictions are returned using:

conf_marss2_t1 <- predict(fit_marss,

type = "ytt1",

interval = "confidence", level = 0.95

)

head(conf_marss2_t1$pred)

.rownames t y estimate se Lo 95

1 Nile 1 1120 0.00000 31.62278 -61.97950

2 Nile 2 1160 32.11507 127.20661 -217.20530

3 Nile 3 963 396.72378 161.74287 79.71359

4 Nile 4 1210 643.48197 173.12206 304.16897

5 Nile 5 1160 909.42338 176.38593 563.71332

6 Nile 6 1160 1029.38565 177.27798 681.92720

Hi 95

1 61.9795

2 281.4354

3 713.7340

4 982.7950

5 1255.1334

6 1376.8441

As before, we can get prediction intervals for the one-step ahead new data
also.

pred_kfas_t1 <- predict(fit_kfas$model,

interval = "prediction",

20.1 Nile River example 289

se.fit = TRUE, filtered = TRUE

)

head(pred_kfas_t1)

fit lwr upr se.fit

[1,] 0.00000 -366.01817 366.0182 31.62278

[2,] 32.11507 -406.39204 470.6222 127.20661

[3,] 396.72378 -83.50877 876.9563 161.74287

[4,] 643.48197 148.24349 1138.7205 173.12206

[5,] 909.42338 409.78022 1409.0665 176.38593

[6,] 1029.38565 528.53116 1530.2401 177.27798

In {MARSS}, fitted() or predict() can be used. Again, these functions
return the standard deviation of ZXt + a+ vt (so standard deviation of pre-
dictions) not the standard error of the mean prediction. The {KFAS} returns
the latter for prediction intervals.

pred_marss1_t1 <- fitted(fit_marss, type = "ytt1", interval = "prediction")

head(pred_marss1_t1)

.rownames t y .fitted .sd .lwr .upr

1 Nile 1 1120 0.00000 186.7474 -366.01817 366.0182

2 Nile 2 1160 32.11507 223.7322 -406.39204 470.6222

3 Nile 3 963 396.72378 245.0211 -83.50877 876.9563

4 Nile 4 1210 643.48197 252.6773 148.24349 1138.7205

5 Nile 5 1160 909.42338 254.9247 409.78022 1409.0665

6 Nile 6 1160 1029.38565 255.5427 528.53116 1530.2401

This would return the same values.

pred_marss2_t1 <- predict(fit_marss,

type = "ytt1",

interval = "prediction", level = 0.95

)

20.1.5 Residuals

Mathematically, the state and model residuals are

model : v̂t = E[ZXt +a+vt |Y = y]−E[ZXt +a|Y = y]
state : ŵt = E[BXt−1 +u+wt |Y = y]−E[BXt−1 +u|Y = y]

joint : εt ∼ MVN

([
v̂t

ŵt+1

]
,Σt

) (20.2)

The expectation can be conditioned on all the data (smoothation), data 1 to
t −1 (one-step ahead), or data 1 to t (contemporaneous). Σt is the conditional
(on data) variance of the joint residuals (state and observation); note the

290 20 KFAS

residuals for the v̂t and ŵt in εt have different time indexing1 Residuals can be
standardized by either the full Σ matrix via the inverse of the lower triangle
of the Cholesky matrix or via the inverse of the square root of the diagonal of
the Σ matrix (aka marginal or Pearson residuals).

The {MARSS} residuals function will return all combinations of state ver-
sus observations, three conditioning types, and four standardization types
(none, Cholesky, marginal, or Block Cholesky for states only). This amounts
to 2 times 3 times 4 = 24 possible residuals (except that state contempora-
neous residuals do not exist and Block Cholesky standardization only applies
to states so 3*3 + 2*4 = 17 residual types). {KFAS} has two residuals func-
tions: residuals() and rstandard(). These will return some of the possible
residuals types but the names used in {KFAS} versus {MARSS} are different.
{MARSS} has two residuals functions, which return the same information
in different forms. The normal one for users is residuals() and returns a
data frame. With residuals(), one must specify the conditioning (tT, tt or
tt1) and the standardization (none, Cholesky, marginal or Block.Cholesky).
MARSSresiduals() returns matrices for all 3 standardizations along with the
full Σ matrices. With MARSSresiduals(), only the conditioning (tT, tt or tt1)
needs to be specified. For normal use, residuals() is the function to use. For
those needing to develop new functions or doing research on the properties of
state-space residuals, the full matrices will be helpful.

Here is a table of the correspondence between the {KFAS} and {MARSS}
residual functions. The header is the {MARSS} naming scheme for state versus
observation (x versus y) and conditioning (all data = tT, 1 to t = tt, and 1
to t-1 = tt1). This shows the corresponding {KFAS} function for a call to
MARSS::residuals(marss_fit, type=..., conditioning=...)

marss_fit is output from MARSS(). In the {KFAS} functions, kfas_fit is
output from fitSSM().

Case 1. Recursive residuals

kfs <- KFS(fit_kfas$model)

resid_kfas <- residuals(kfs, type = "recursive")

resid_marss <- residuals(fit_marss,

type = "tt1",

standardization = "marginal"

)

resid_marss <- subset(resid_marss, name == "model")

df <- cbind(

MARSS = resid_marss$.resids,

KFAS = as.vector(resid_kfas)

1 The joint residuals for MARSS models are traditionally written this way but you
can certainly write them with the same time indexing if you wanted.

20.1 Nile River example 291

type name standardization
tT tt tt1 model state none chol mar bchol

residuals(kfas_obj, type = "recursive") X X X
residuals(kfas_obj, type = "pearson") X X X
residuals(kfas_obj, type = "response") X X X

residuals(kfas_obj, type = "state") X X X
rstandard(kfas_obj, type = "recursive", X X X

standardization_type = "marginal")

rstandard(kfas_fit$model, type = "recursive", X X X X
standardization_type = "cholesky")

rstandard(kfas_obj, type = "pearson", X X X
standardization_type = "marginal")

rstandard(kfas_fit$model, type = "pearson", X X X X
standardization_type = "cholesky")

rstandard(kfas_obj, type = "state", X X X
standardization_type = "marginal")

rstandard(kfas_fit$model, type = "state", X X X
standardization_type = "cholesky")

)

head(df)

MARSS KFAS

[1,] 1120.0000 1120.0000

[2,] 1127.8849 1127.8849

[3,] 566.2762 566.2762

[4,] 566.5180 566.5180

[5,] 250.5766 250.5766

[6,] 130.6143 130.6143

kfs <- KFS(fit_kfas$model)

resid_kfas <- rstandard(kfs,

type = "recursive",

standardization_type = "marginal"

)

resid_marss <- residuals(fit_marss,

type = "tt1",

standardization = "marginal"

)

resid_marss <- subset(resid_marss, name == "model")

df <- cbind(

MARSS = resid_marss$.std.resids,

KFAS = as.vector(resid_kfas)

)

head(df)

292 20 KFAS

MARSS KFAS

[1,] 5.9974062 5.9974062

[2,] 5.0412268 5.0412268

[3,] 2.3111324 2.3111324

[4,] 2.2420611 2.2420611

[5,] 0.9829438 0.9829438

[6,] 0.5111253 0.5111253

In the univariate case, the Cholesky standardization is not different.

kfs <- KFS(fit_kfas$model)

resid_kfas <- rstandard(kfs,

type = "recursive",

standardization_type = "cholesky"

)

resid_marss <- residuals(fit_marss,

type = "tt1",

standardization = "Cholesky"

)

resid_marss <- subset(resid_marss, name == "model")

df <- cbind(

MARSS = resid_marss$.std.resids,

KFAS = as.vector(resid_kfas)

)

head(df)

MARSS KFAS

[1,] 5.9974062 5.9974062

[2,] 5.0412268 5.0412268

[3,] 2.3111324 2.3111324

[4,] 2.2420611 2.2420611

[5,] 0.9829438 0.9829438

[6,] 0.5111253 0.5111253

Case 2. Pearson residuals

No standardization is done for residuals(kfs, type = "pearson").

kfs <- KFS(fit_kfas$model)

resid_kfas <- residuals(kfs, type = "pearson")

resid_marss <- residuals(fit_marss, type = "tT")

resid_marss <- subset(resid_marss, name == "model")

df <- cbind(

MARSS = resid_marss$.resids,

KFAS = as.vector(resid_kfas)

)

head(df)

20.1 Nile River example 293

MARSS KFAS

[1,] 1055.6192 1055.6192

[2,] 590.3631 590.3631

[3,] 153.1889 153.1889

[4,] 228.7989 228.7989

[5,] 110.1429 110.1429

[6,] 90.9427 90.9427

kfs <- KFS(fit_kfas$model)

resid_kfas <- rstandard(kfs,

type = "pearson",

standardization_type = "marginal"

)

resid_marss <- residuals(fit_marss,

type = "tT",

standardization = "marginal"

)

resid_marss <- subset(resid_marss, name == "model")

df <- cbind(

MARSS = resid_marss$.std.resids,

KFAS = as.vector(resid_kfas)

)

head(df)

MARSS KFAS

[1,] 5.8169639 5.8169639

[2,] 3.6792994 3.6792994

[3,] 0.9925797 0.9925797

[4,] 1.4988347 1.4988347

[5,] 0.7236875 0.7236875

[6,] 0.5980134 0.5980134

In the univariate case, the Cholesky standardization is not different.

kfs <- KFS(fit_kfas$model)

resid_kfas <- rstandard(kfs,

type = "pearson",

standardization_type = "cholesky"

)

resid_marss <- residuals(fit_marss,

type = "tT",

standardization = "Cholesky"

)

resid_marss <- subset(resid_marss, name == "model")

df <- cbind(

MARSS = resid_marss$.std.resids,

KFAS = as.vector(resid_kfas)

294 20 KFAS

)

head(df)

MARSS KFAS

[1,] 5.8169639 5.8169639

[2,] 3.6792994 3.6792994

[3,] 0.9925797 0.9925797

[4,] 1.4988347 1.4988347

[5,] 0.7236875 0.7236875

[6,] 0.5980134 0.5980134

Case 3. Response residuals

kfs <- KFS(fit_kfas$model)

resid_kfas <- residuals(kfs, type = "response")

resid_marss <- residuals(fit_marss, type = "tT")

resid_marss <- subset(resid_marss, name == "model")

df <- cbind(

MARSS = resid_marss$.resids,

KFAS = as.vector(resid_kfas)

)

head(df)

MARSS KFAS

[1,] 1055.6192 1055.6192

[2,] 590.3631 590.3631

[3,] 153.1889 153.1889

[4,] 228.7989 228.7989

[5,] 110.1429 110.1429

[6,] 90.9427 90.9427

Case 4. State residuals

No standardization.

kfs <- KFS(fit_kfas$model, smoothing = "disturbance")

resid_kfas <- residuals(kfs, type = "state")

resid_marss <- residuals(fit_marss, type = "tT")

resid_marss <- subset(resid_marss, name == "state")

df <- cbind(

MARSS = resid_marss$.resids,

KFAS = as.vector(resid_kfas)

)

head(df)

20.1 Nile River example 295

MARSS KFAS

[1,] 505.25604 505.25604

[2,] 240.17420 240.17420

[3,] 171.39008 171.39008

[4,] 68.65598 68.65598

[5,] 19.20019 19.20019

[6,] -21.63444 -21.63444

Marginal standardization.

kfs <- KFS(fit_kfas$model, smoothing = "disturbance")

resid_kfas <- rstandard(kfs,

type = "state",

standardization_type = "marginal"

)

resid_marss <- residuals(fit_marss,

type = "tT",

standardization = "marginal"

)

resid_marss <- subset(resid_marss, name == "state")

df <- cbind(

MARSS = resid_marss$.std.resids,

KFAS = as.vector(resid_kfas)

)

head(df)

MARSS KFAS

[1,] 5.9899274 5.9899274

[2,] 3.2550586 3.2550586

[3,] 2.4247425 2.4247425

[4,] 0.9832026 0.9832026

[5,] 0.2758730 0.2758730

[6,] -0.3111264 -0.3111264

kfs <- KFS(fit_kfas$model, smoothing = "disturbance")

resid_kfas <- rstandard(kfs,

type = "state",

standardization_type = "cholesky"

)

resid_marss <- residuals(fit_marss,

type = "tT",

standardization = "Block.Cholesky"

)

resid_marss <- subset(resid_marss, name == "state")

df <- cbind(

MARSS = resid_marss$.std.resids,

KFAS = as.vector(resid_kfas)

296 20 KFAS

)

head(df)

MARSS KFAS

[1,] 5.9899274 5.9899274

[2,] 3.2550586 3.2550586

[3,] 2.4247425 2.4247425

[4,] 0.9832026 0.9832026

[5,] 0.2758730 0.2758730

[6,] -0.3111264 -0.3111264

The Cholesky standardization is ”block” style in {KFAS} and treats the
model and state smoothed residuals as independent (they are not).

kfs <- KFS(fit_kfas$model, smoothing = "disturbance")

resid_kfas <- rstandard(kfs,

type = "state",

standardization_type = "marginal"

)

resid_marss <- residuals(fit_marss,

type = "tT",

standardization = "marginal"

)

resid_marss <- subset(resid_marss, name == "state")

df <- cbind(

MARSS = resid_marss$.std.resids,

KFAS = as.vector(resid_kfas)

)

head(df)

MARSS KFAS

[1,] 5.9899274 5.9899274

[2,] 3.2550586 3.2550586

[3,] 2.4247425 2.4247425

[4,] 0.9832026 0.9832026

[5,] 0.2758730 0.2758730

[6,] -0.3111264 -0.3111264

kfs <- KFS(fit_kfas$model, smoothing = "disturbance")

resid_kfas <- rstandard(kfs,

type = "state",

standardization_type = "cholesky"

)

resid_marss <- residuals(fit_marss,

type = "tT",

standardization = "Block.Cholesky"

)

20.1 Nile River example 297

resid_marss <- subset(resid_marss, name == "state")

df <- cbind(

MARSS = resid_marss$.std.resids,

KFAS = as.vector(resid_kfas)

)

head(df)

MARSS KFAS

[1,] 5.9899274 5.9899274

[2,] 3.2550586 3.2550586

[3,] 2.4247425 2.4247425

[4,] 0.9832026 0.9832026

[5,] 0.2758730 0.2758730

[6,] -0.3111264 -0.3111264

kfs <- KFS(fit_kfas$model, smoothing = "disturbance")

test <- cbind(

b = fit_kfas$model$Q[1, 1, 1] - kfs$V_eta[1, 1,],

a = MARSSresiduals(fit_marss, type = "tT")$var.residuals[2, 2,]

)

test <- as.data.frame(test)

test$diff <- test$b - test$a

head(test)

b a diff

1 7115.082 7115.082 9.094947e-13

2 5444.212 5444.212 -9.094947e-13

3 4996.203 4996.203 1.818989e-12

4 4876.079 4876.079 0.000000e+00

5 4843.870 4843.870 1.818989e-12

6 4835.234 4835.234 1.818989e-12

tail(test)

b a diff

95 4825.374 4825.374 3.637979e-12

96 4807.095 4807.095 3.637979e-12

97 4738.924 4738.924 1.818989e-12

98 4484.677 4484.677 0.000000e+00

99 3536.451 3536.451 1.818989e-12

100 0.000 NA NA

Plotting

We can plot the confidence intervals and predictions (Figure 20.1).
With {MARSS}, there is a plot method (and ggplot2::autoplot()

method) for marssMLE objects which will make the smoothed model pre-
dictions with CIs and PIs (Figure 20.2). Alternatively you could used the

298 20 KFAS

River Nile

Time

P
re

di
ct

ed
 a

nn
ua

l f
lo

w

1880 1900 1920 1940 1960
0

10
00

Fig. 20.1. KFAS smooth model fit (expected value of ZXt + a) confidence intervals
and predictions.

plot.type <- ifelse(packageVersion("MARSS") < '3.11.4', "model.ytT", "fitted.ytT")

plot(fit_marss, plot.type = plot.type, pi.int = TRUE)

0 20 40 60 80 100

0
40

0
80

0
12

00

E
st

im
at

e

Nile + CI + PI (dashed)

Fig. 20.2. MARSS smooth model fit (expected value of ZXt + a) confidence inter-
vals and predictions. Although plot() is used here, ggplot2::autoplot() is the
recommended plotting function for marssMLE objects.

fitted output (Figure 20.3).

Missing observations

Missing values are handled seamlessly in both {KFAS} and {MARSS}. We
will use a model with a stochastic x1 again so we can compare directly to
{MARSS} output.

NileNA <- Nile

NileNA[c(21:40, 61:80)] <- NA

model_NileNA_stoch <-

20.1 Nile River example 299

require(ggplot2)

df <- cbind(conf_marss1, pred_marss1[, c(".lwr", ".upr")])

ggplot(df, aes(x = t, y = .fitted)) +

geom_ribbon(aes(ymin = .lwr, ymax = .upr), fill = "grey") +

geom_ribbon(aes(ymin = .conf.low, ymax = .conf.up), fill = "blue", alpha = 0.25) +

geom_line(linetype = 2) +

ylab("Predicted Annual Flow") +

xlab("") +

ggtitle("River Nile")

0

500

1000

1500

0 25 50 75 100

P
re

di
ct

ed
 A

nn
ua

l F
lo

w

River Nile

Fig. 20.3. MARSS smooth model fit with confidence intervals and predictions using
ggplot.

SSModel(NileNA ~ SSMtrend(

degree = 1,

Q = list(matrix(NA))

),

H = matrix(NA)

)

model_NileNA_stoch$a1[1, 1] <- 0

model_NileNA_stoch$P1[1, 1] <- model_Nile_stoch$P1[1, 1]

model_NileNA_stoch$P1inf[1, 1] <- 0

kinits <- c(log(var(Nile)), log(var(Nile)))

fit_kfas_NA <- fitSSM(model_NileNA_stoch, kinits, method = "BFGS")

fit_marss_NA <- MARSS(as.vector(NileNA),

model = mod.nile.stoch,

inits = inits, method = "BFGS", silent = TRUE

)

The fits are close. The difference is due to the maximization stopping at
different places.

rbind(

MARSS = c(

300 20 KFAS

Q = coef(fit_marss_NA, type = "matrix")$Q,

R = coef(fit_marss_NA, type = "matrix")$R,

logLik = logLik(fit_marss_NA)

),

KFAS = c(

Q = fit_kfas_NA$model$Q,

R = fit_kfas_NA$model$H,

logLik = -1 * fit_kfas_NA$optim.out$value

)

)

Q R logLik

MARSS 22133.85 52955.30 -433.0319

KFAS 22084.75 53400.57 -433.0312

Plot the confidence intervals on the estimate of the river flow (Figure 20.4).
This is the model fit conditioned on all the data.

conf_kfas_NA <-

predict(fit_kfas_NA$model, interval = "confidence", filtered = FALSE)

conf_marss_NA <-

predict(fit_marss_NA, interval = "confidence", type = "ytT", level = 0.95)$pred

KFAS MARSS

1875 1900 1925 1950 1875 1900 1925 1950

0

500

1000

1500

P
re

di
ct

ed
 A

nn
ua

l F
lo

w

River Nile with 95% CIs on estimate

Fig. 20.4. Estimates of the river flow. When there are NAs, the estimate is less
certain.

Compare model fitted values using all the data (smoothed) to one-step-
ahead estimates (Figure 20.5).

fitted_kfas_NA <- data.frame(

smooth = as.vector(fitted(fit_kfas_NA$model)),

one.step.ahead = as.vector(fitted(fit_kfas_NA$model, filtered = TRUE)),

name = "KFAS"

20.2 Global temperature example 301

)

fitted_marss_NA <- data.frame(

smooth = fitted(fit_marss_NA, type = "ytT")$.fitted,

one.step.ahead = fitted(fit_marss_NA, type = "ytt1")$.fitted,

name = "MARSS"

)

MARSS

KFAS

1875 1900 1925 1950

0

500

1000

0

500

1000

P
re

di
ct

ed
 A

nn
ua

l F
lo

w

type

one.step.ahead

smooth

River Nile − smoothed versus filtered

Fig. 20.5. Smoothed (all data) or filtered (one-step ahead) estimates of the river flow.

20.2 Global temperature example

This example uses two series of average global temperature deviations for
years 1880-1987 (Figure 20.6) using two observation time series (Shumway
and Stoffer, 2006, p. 327). This is a multivariate local level model with only
one state process but two observation processes.

xt = xt−1 +wt where wt ∼ N(0,q)

yt =

[
1
1

]
xt +vt where vt ∼ MVN

([
0
0

]
,

[
r c
c r

])
(20.3)

Fit with {KFAS} (following code in ?KFAS).

data("GlobalTemp")

model_temp <- SSModel(GlobalTemp ~ SSMtrend(1, Q = NA, type = "common"),

H = matrix(NA, 2, 2)

)

kinits <- chol(cov(GlobalTemp))[c(1, 4, 3)]

kinits <- c(0.5 * log(0.1), log(kinits[1:2]), kinits[3])

kfas_temp_default <- fitSSM(model_temp, kinits, method = "BFGS")

model_temp_stoch <- model_temp

302 20 KFAS

Two ts for Global Temperature

Time

1880 1900 1920 1940 1960 1980
−

0.
6

0.
0

0.
4

Fig. 20.6. GlobalTemp data set

model_temp_stoch$a1[1, 1] <- 0

model_temp_stoch$P1[1, 1] <- 1000 * max(diag(var(GlobalTemp)))

model_temp_stoch$P1inf[1, 1] <- 0

kfas_temp_stoch <- fitSSM(model_temp_stoch, kinits, method = "BFGS")

Fit with {MARSS}. We specify the equation matrices. Q is univariate so
we don’t need to specify that. B is not used so default is fine.

mod.list <- list(

Z = matrix(1, 2, 1),

R = matrix(c("r1", "c", "c", "r2"), 2, 2),

U = matrix(0),

A = matrix(0, 2, 1),

tinitx = 1

)

marss_temp_default <- MARSS(t(GlobalTemp), model = mod.list)

mod.list$x0 <- kfas_temp_stoch$model$a1

mod.list$V0 <- kfas_temp_stoch$model$P1

marss_temp_stoch_em <- MARSS(t(GlobalTemp), model = mod.list)

use inits from a short run of EM algorithm

inits <- MARSS(t(GlobalTemp),

model = mod.list, control = list(maxit = 20),

silent = TRUE

)

marss_temp_stoch_bfgs <- MARSS(t(GlobalTemp),

model = mod.list,

inits = inits, method = "BFGS"

)

Compare estimates. The first two are the default models fit by {KFAS} and
{MARSS} respectively. {KFAS} uses a diffuse prior while {MARSS} estimates
x1 as a parameters (with the variance of x0 equal to 0). These are not the

20.2 Global temperature example 303

same models and their log-likelihoods will not be comparable. The last two
are the same model (with a stochastic prior on x0) but fit with {KFAS} versus
{MARSS} EM or {MARSS} BFGS.

Q R1 Rcov R2 logLik

KFAS default 0.00263 0.01950 0.00651 0.00539 177.7361

MARSS em default 0.00301 0.01928 0.00620 0.00498 179.7697

KFAS stoch 0.00263 0.01950 0.00651 0.00539 174.8593

MARSS em stoch 0.00299 0.01935 0.00628 0.00508 174.8430

MARSS bfgs stoch 0.00262 0.01951 0.00652 0.00539 174.8592

KFAS MARSS.BFGS MARSS.EM

1875 1900 1925 1950 1975 1875 1900 1925 1950 1975 1875 1900 1925 1950 1975

−0.4

−0.2

0.0

0.2

t

va
lu

e

Fig. 20.7. GlobalTemp estimates

Comparison of state and model (Pearson) residuals for the estimated mod-
els and a {MARSS} model that has the same parameters as the {KFAS}
estimated model.

mod.list <- list(

Z = matrix(kfas_temp_stoch$model$Z, ncol = 1),

R = kfas_temp_stoch$model$H[, , 1],

U = matrix(0),

A = matrix(0, 2, 1),

Q = matrix(kfas_temp_stoch$model$Q[, , 1]),

x0 = kfas_temp_stoch$model$a1,

V0 = kfas_temp_stoch$model$P1,

tinitx = 1

)

marss_test <- MARSS(t(GlobalTemp), model = mod.list)

304 20 KFAS

Folland HL state

187519001925195019751875190019251950197518751900192519501975

−0.002

0.000

0.002

va
lu

e

model

diff.est

diff.id

Difference in residuals KFAS vs MARSS

Fig. 20.8. Comparison of residuals. diff.est are the difference of the same models
estimated with BFGS with the {KFAS} versus {MARSS} package. diff.id are iden-
tical models (same parameter values) but the residuals are computed with different
algorithms.

20.3 Summary

{KFAS} fits state-space models in the general exponential family, of which
MARSS models with Gaussian errors are a part. The {KFAS} package relies,
largely, on the Durbin and Koopman algorithms which avoid the inversions
in the classical Kalman filter/smoother algorithms. These inversions lead to
numerical instability and are slow, and avoiding them greatly improves the
stability of the fitting of state-space models. The {KFAS} package also in-
cludes an exact algorithm for including diffuse priors. The {KFAS} package
has a number of functions to create a variety of structural time-series models.

The {MARSS} package implements a general EM algorithm which allows
seamless incorporation of linear constraints within matrices, including im-
portantly the Q and R matrices. It normally treats initial conditions as an
estimated parameter to avoid adding any information regarding the covari-
ance structure of the initial conditions, specifically to avoid a diagonal initial
conditions variance matrix.

The syntax of the {KFAS} and {MARSS} packages are different and the
output functions and semantics are different. This chapter illustrates how to
fit the same models with each package and obtain the same output.

Part IV

Appendices

A

Package MARSS: Warnings and errors

The following are brief descriptions of the warning and error messages you
may see and what they mean (or might mean). More warning information can
be found by typing MARSSinfo() at the commmand line.

Over the years of helping people fit MARSS models, we have found that
the most common problems arise when the MARSS model is inconsistent with
the data. The following are common scenarios.

• The data do not remotely follow a Gaussian distribution. For example,
they are binned data with long strings of one value.

• The MARSS model being fit is stationary but the data are clearly non
stationary.

• The MARSS model being fit is non-stationary but the data are clearly
stationary.

• The initial conditions are impossible given the model or the data. For
example, the initial conditions are fixed at 0 but data at t = 1 is far from
0. Or the model implies that the initial state are correlated but a diagonal
(= i.i.d.) initial condition variance-covariance matrix was used.

• The MARSS model has a equilibrium mean level but the data are nowhere
near that level and a was set to zero so there is no way for the model to
fit the data.

• The data just do not look anything like an autoregressive process.
• There isn’t enough data to estimate both process and observation vari-

ances.
• The user has designed a MARSS model with confounding parameters.

Models with multiple confounded intercepts easy to design by accident.

B update is outside the unit circle

If you are estimating B, then if the absolute value of all the eigenvalues of B are
less than 1, the system is stationary (meaning the X’s have some multivariate

308 A Package MARSS: Warnings and errors

distribution that does not change over time). In this case, we say that B is
within the unit circle. A pure univariate random walk for example would have
B = 1 and it is not stationary. The distribution of X for the pure random walk
has a variance that increases with time. If on the other hand |B|< 1, you have
an Ornstein-Uhlenbeck process and is stationary, with a stationary variance
of Q/(1−B2) (note B is a scalar here because in this example X is univariate).
If any of the eigenvalues (real part) are greater than 1, then the system will
“explode”—it rapidly diverges.

In the EM algorithm, there is nothing to force B to be on or within the
unit circle (real part of the eigenvalues less than or equal to 1). It is possible
at one of the EM iterations the B update will be outside the unit circle. The
problem is that if you get too far outside the unit circle, the algorithm becomes
numerically unstable since small errors are magnified by the “explosive” B
term. If you see the ‘B outside the unit circle’ warning, it is fine as long as it
is temporary and the log-likelihood does not start decreasing (you will see a
separate warning if that happens).

If you do see B outside the unit circle and the log-likelihood decreases,
then it probably means that you have poorly specified the model somehow.
An easy way to do this is to poorly specify the initial conditions, π and Λ.
If, say, you try to specify a vague prior on x0 (or x1) with π equal to zero
and Λ equal to a diagonal matrix with a large variance on the diagonal, you
will likely run into trouble if B has off-diagonal terms. The reason is that by
specifying that Λ is diagonal, you specified that the individual X ’s in X0 are
independent, yet if B has off-diagonal terms, the stationary distribution of X1
is NOT independent. If you force the diagonal terms on Λ to be big enough,
you can force the maximum-likelihood estimate of B to be outside the unit
circle since this is the only way to account for X0 independent and X1 highly
correlated.

The problem is that you will not know the stationary distribution of the X’s
(from which X0 was presumably drawn) without knowing the parameters you
are trying to estimate. One approach is the estimate both π and Λ by setting
x0="unconstrained" and V0="unconstrained" in the model specification.
Estimating both π and Λ cannot be done robustly for all MARSS models, and
in general, one probably wants to specify the model in such a way as to fix one
or both of these. Another, more robust approach, is to treat x1 as fixed but
unknown (instead of x0). You do this by setting model$tinitx=1, so that π

refers to t = 1 not t = 0. Then estimate π and fix Λ = 0. This eliminates Λ from
the model and often eliminates the problems with prior specification—as the
expense of m more parameters. Note, when you set Λ= 0, Λ is truly eliminated
from the model; the likelihood function is different, so do not expect Λ = 0
and Λ ∼ 0 to have the same likelihood under all conditions.

A Package MARSS: Warnings and errors 309

Warning! Reached maxit before parameters converged

The maximum number of EM iterations is set by control$maxit. If you get
this warning, it means that one of the parameters or log-likelihood had not
yet reached the convergence stopping criteria before maxit was reached. There
are many situations where you might want to set control$maxit lower than
the value needed to reach convergence. For example, if you are using the EM
algorithm to produce initial values for a different algorithm (like a Bayesian
MCMC algorithm or a Newton method) then you can set maxit low, say 20
or 50.

Stopped at iter=xx in MARSSkem() because numerical errors
were generated in MARSSkf

This means the Kalman filter/smoother algorithm became unstable and most
likely one of the variances became ill-conditioned. When that happens the
inverses of those matrices are poor, and you will start to get negative values
on the diagonals of your variance-covariance matrices. Once that happens,
the inverse of that variance-covariance matrix produces an error. If you get
this error, turn on tracing with control$trace=1. This will store the error
messages so you can see what is going on. It may be that you have specified
the model in such a way that some of the variances are being forced very
close to 0, which makes the variance-covariance matrix ill-conditioned. The
output from the MARSS call will be the parameter values just before the
error occurred.

Warning: the xyz parameter value has not converged

The algorithm checks whether the log-likelihood and each individual param-
eter has converged. If a parameter has not converged, you can try upping
control$maxit and see if it converges. If you set, maxit high, but the param-
eter is still not converging, then it suggests that one of the variance parameters
is so small that the EM update steps for that parameter are tiny. For example,
as Q goes to zero, the update steps for u go to zero. As Λ goes to zero, the
update steps for π go to zero. The first thing to do is to reflect on whether you
are inadvertently specifying the model in such a way that one of the variances
is forced to zero. For example, if the total variance in X is 0.1 and you fix
R = 0.2 then Q must go to zero. The second thing to do is to try using a
Newton algorithm, using your last EM values as the initial conditions for the
Newton algorithm. The initial values are set using the inits argument for
the MARSS() function.

310 A Package MARSS: Warnings and errors

MARSSkem: The solution became unstable and logLik
DROPPED

This is a more serious error as in the EM algorithm, the log-likelihood should
never drop. The first thing to do is check if you have specified a bizarre
model or data, inadvertently. Plot the data you are trying to fit. Often, this
error arises when a user has inadvertently scrambled their data order during
a demeaning or variance-standardization step. Second, check the model you
are trying to fit. Use test=MARSS(data, model=xyz, fit=FALSE) and then
summary(test$model). This shows you what MARSS() thinks your model is.
You may be trying to fit an illogical model.

If those checks looks good, then pass control$trace=1 into the MARSS()

call. This will report a fuller set of warnings. Look if the error “B is outside
the unit circle” appears. If so, you are probably specifying a strange B matrix.
Are you forcing the B matrix to be outside the unit circle (eigenvalues >
1)? If so, you need to rethink your B matrix constraints. If you do not see
that error, look at test$iter.record$logLik. If the log-likelihood is steadily
dropping (at each iteration) or drops by large amounts (much larger than the
machine precision), that is bad and means that the EM algorithm did not
work. If however the log-likelihood is just fluctuating by small amounts about
some steady value, that is ok as it means that the values converged but the
parameters are such that there are slight numerical fluctuations. Try passing
control$safe=TRUE in the MARSS() call. This can sometimes help as it inserts
a call to the Kalman filter after each individual parameter update.

Stopped at iter=xx in MARSSkem: solution became unstable.
R (or Q) update is not positive definite

First check if you have specified an illegally constrained variance-covariance
matrix. For example, if the variances (diagonal) are constrained to be equal,
you cannot specify the covariances (off-diagonals) as unequal. Or if you spec-
ify that some of the covariances are equal, you cannot specify the variances
as all unequal. These are illegal constraints on a variance-covariance matrix
from a statistical perspective (nothing to do with {MARSS} package functions
specifically).

This could also be due to numerical instability as B leaves the unit circle
or one of the variance matrix becomes ill-conditioned. Try turning on tracing
with control$trace=1 and turn on safe with control$safe=TRUE. This will
print out the error warnings at each parameter update step. Then consider
whether you have inadvertently specified the model in such a way as to force
this behavior in the B parameter.

You might also get this error if you inadvertantly specified an improper
structure for R or Q. For example, if you used R=diag(c(1,1,"r")) with the
intent of specifying a diagonal matrix with fixed variance 1 at R[1,1] and R[2,2]

A Package MARSS: Warnings and errors 311

and an estimated R[3,3], you would have actually specified a character matrix
with "0" on the off-diagonals and c("1","1","r") on the diagonal. MARSS()
interprets all elements in quotes as names of parameters to be estimated.
Thus it will estimate one off-diagonal covariance and two diagonal variances.
That happens to put illegal constraints on estimation of a variance-covariance
matrix having nothing to do with the MARSS() function but with estimation
of variance-covariance matrices in general.

iter=xx MARSSkf: logLik computation is becoming unstable.
Condition num. of Sigma[t=1] = Inf and of R = Inf.

This means, generally, that V0 (Λ) is very small, say 0, and R diagonal elements
are very small and very close to zero.

Warning: setting diagonal to 0 blocked at iter=X. logLik was
lower in attempt to set 0 diagonals on X

This is a warning not an error. What is happening is that one of the variances
(in Q or R) is getting small and the EM algorithm is attempting to set the
value to 0 (because control$degen.allow=TRUE). But when it tried to do this,
the new likelihood with the variance equal to 0 was lower and the variance
was not set to 0.

A model with a variance minuscule and a model with the same variance
equal to 0 are not the same model. In the first, a stochastic process with
small variance exists but in the second, the analogous process is determinis-
tic. And in the first case, you can get a situation where the likelihood term
L(x|mean=mu,sigma=0) appears. That term will be infinite when x=mu. So
in the model with variance minuscule, you will get very large likelihood values
as the variance term gets smaller and smaller. In the analogous model with
that variance set to 0, that likelihood term does not appear so the likelihood
does not go to infinity.

This is not an error nor pathological behavior; the models are fundamen-
tally different. Nonetheless, this will pose a dilemma when you want to chose
the best model based on maximum likelihood. The model with minuscule
variance will have infinite likelihood but the same behavior as the one with
variance 0. In our experience, this dilemma arises when one has a lot of miss-
ing data near the beginning of the time series and is affected by how you
specify the prior on the initial state. Try setting the prior at t = 0 versus t = 1.
Try using a diffuse prior. You absolutely want to compare estimates using the
BFGS and EM algorithms in this case, because the different algorithms differ
in their ability to find the maximum in this strange case. Neither is uniformly
better or worse. It seems to depend on which variance (Q or R) is going to
zero.

312 A Package MARSS: Warnings and errors

Warning: kf returned error at iter=X in attempt to set 0
diagonals for X

This is a warning that the EM algorithm tried to set one of the diagonals of
element X to 0 because allow.degen is TRUE and element X is going to zero.
However when this was tried, the Kalman filter returned an error. Typically,
this happens when both R and Q elements are both trying to be set to 0. If
the maximum-likelihood estimate is that both R and Q are zero, it probably
means that your MARSS model is not a very good description of the data.

Warning: At iter=X attempt to set 0 diagonals for R blocked
for elements where corresponding rows of A or Z are not fixed.

You have control$degen.allow=TRUE and one of the R diagonal elements is
getting very small. {MARSS} attempts to set these R elements to 0, but if row
i of R is 0, then the corresponding i rows of a and Z must be fixed. This is for
the EM algorithm. It might work with the BFGS algorithm, or might spit out
garbage without warning you. Always be suspicious when the EM and BFGS
behavior is different. That is a good sign that something is wrong with how
your model describes the data. It’s not a problem with the algorithms per se;
rather for certain pathological models, the algorithms behave differently from
each other.

Stopped at iter=X in MARSSkem. XYZ is not invertible.

There are a series of checks in {MARSS} that check if matrix inversions are
possible before doing the inversion. These errors crop up most often when Q or
R are getting very small. At some point, they can get so small that inversions
become unstable. If this error is given, then the output will be the last pa-
rameter estimates before the error. Try setting control$allow.degen=FALSE.
Sometimes the error occurs when a diagonal element of Q or R is being set to
0. You will also have to set control$maxit to something smaller because the
EM algorithm will not stop since the problematic diagonal element will walk
slowly and inexorably to 0.

B

Package MARSS: Object structures

Model objects: class marssMODEL

Objects of class ‘marssMODEL’ specify Multivariate Autoregressive State
Space (MARSS) models. The model component of an ML estimation object
(class marssMLE; see below) is a marssMODEL object. These objects have
the following components:

data An optional matrix (not data frame), in which each row is a time series
(time across columns).

fixed A list with 8 matrices Z, A, R, B, U, Q, x0, V0, specifying which elements
of each parameter are fixed.

free A list with 8 matrices Z, A, R, B, U, Q, x0, V0, specifying which elements
of each parameter are to be estimated.

M An array of dim n× n×T (an n× n missing values matrix for each time
point). Each matrix is diagonal with 0 at the i, i value if the i-th value of
y is missing, and 1 otherwise.

miss.value Deprecated. Replace missing values with NAs before passing to
MARSS.

The matrices in fixed and free work as pairs to specify the fixed and
free elements for each model parameter. The dimensions for fixed and free

matrices are as follows, where n is the number of observation time series and
m is the number of state processes:

Z n x m
B m x m
U m x 1
Q m x m
A n x 1
R n x n
x0 m x 1
V0 m x m

314 B Package MARSS: Object structures

MARSSinputs

All the user inputs to a MARSS() call are put into a list and then passed to
a function called MARSS.form() where form is the text specified by the form
argument, e.g., MARSS.marss(). This function is used to create the marss-
MODEL object and then MARSScheckinputs() is called to error check the
other arguments.

data A matrix (not data frame) of observations (rows) × time (columns).
model The specification is form dependent. For the default marxss form, the

inputs are a list with up to 14 elements Z, A, R, B, U, Q, x0, V0, C, c, D,
d, tinitx, diffuse

inits A list with up to 10 matrices Z, A, R, B, U, Q, x0, V0, C, D specifying
initial values for parameters. Dimensions are given in the class ‘marss-
MODEL’ section.

miss.value Deprecated. Specifies missing value representation (default is NA).
method The method used for estimation: ‘kem’ for EM, ‘BFGS’ for quasi-

Newton.
form The form to use to interpret the ‘model’ argument and create the marss-

MODEL object.
control List of estimation options. These are method dependent.

ML estimation objects: class marssMLE

Objects of class marssMLE specify maximum-likelihood estimation for a
MARSS model, both before and after fitting. A minimal marssMLE object
contains components model, start and control, which must be present for
estimation by functions like MARSSkem().

model MARSS model specification (an object of class ‘marssMODEL’).
start List with 7 matrices A, R, B, U, Q, x0, V0, specifying initial values for

parameters. Dimensions are given in the class marssMODEL section.
control A list specifying estimation options. For method="kem", these are

minit Minimum number of iterations in the maximization algorithm.
maxit Maximum number of iterations in the maximization algorithm.
abstol Optional tolerance for log-likelihood change. If log-likelihood de-

creases less than this amount relative to the previous iteration, the
EM algorithm exits.

trace A positive integer. If not zero, a record will be created of each vari-
able the maximization iterations. The information recorded depends
on the maximization method.

safe If TRUE, MARSSkem() will rerun MARSSkf() after each individual
parameter update rather than only after all parameters are updated.

silent Suppresses printing of progress bar and convergence information.

B Package MARSS: Object structures 315

MARSSkem() appends the following components to the marssMLE’ object:

method A string specifying the estimation method (‘kem’ for estimation by
MARSSkem()).

par A list with 8 matrices of estimated parameter values Z, A, R, B, U, Q, x0,
V0. If there are fixed elements in the matrices, the corresponding elements
in $par are set to the fixed values.

kf A list containing Kalman filter/smoother output. See Chapter 2
numIter Number of iterations required for convergence.
convergence Convergence status.
logLik the exact Log-likelihood. See Section 3.4.
errors any error messages
iter.record record of the parameter values at each iteration (if control$trace=1)

Several functions append additional components to the ‘marssMLE’ object
passed in. These include:

MARSSaic() Appends AIC, AICc, AICbb, AICbp, depending on the AIC
flavors requested.

MARSShessian() Appends Hessian, gradient, parMean and parSigma.
MARSSparamCIs() Appends par.se, par.bias, par.upCI and par.lowCI.

C

Model specification in the core functions

Most users will not directly work with the core functions nor build marss-
MODEL objects from scratch. Instead, they will interact with the core func-
tions via the function MARSS() described in Chapter 4. With the MARSS()

function, the user specifies the model structure with matrices or text strings
(“diagonal”, “unconstrained”, etc.) and MARSS() builds the marssMODEL ob-
ject. However, a basic understanding of the structure of marssMODEL objects
is useful if one wants to interact directly with the core functions.

C.1 The fixed and free components of the model parameters

In a marssMODEL object, each parameter is written in vec form and specificed
by the equation of the form f+Dβββ as in Equation 77 in Holmes (2012). f is the
fixed matrix, D is the free matrix and βββ is the column vector of parameters.
In a marssMODEL object, the fixed list has the f for each parameter matrix,
the free list has the D matrix for each parameter matrix, and par in the
marssMLE object has the βββ column vector of estimated parameters.

C.2 Examples

C.2.1 Q is a diagonal matrix with one variance value

In this case, there is only one value on the diagonal and the off-diagonals are
0. Thus there is only one estimated parameter and the fixed values are all 0.

Q =

α 0 0
0 α 0
0 0 α


fixed$Q is

318 C Model specification in the core functions

f =



0
0
0
0
0
0
0
0
0


par$Q is

βββ =
[

”al pha”
]

and free$Q is

D =



1
0
0
0
1
0
0
0
1


Notice that f+Dβββ is the vec of Q.

C.2.2 Q is a diagonal matrix with unique variance values

Q =

α1 0 0
0 α2 0
0 0 α3


The fixed matrix is the same with all 0s, but the par and free matrices change.
par$Q is

βββ =

 ”al pha1”
”al pha2”
”al pha3”


and free$Q is

D =



1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1



C.2 Examples 319

C.2.3 Q has one variance and one covariance

Q =

α β β

β α β

β β α


The fixed vector is still the same, all zero. par$Q is

βββ =

[
”al pha”
”beta”

]
and free$Q is

D =



1 0
0 1
0 1
0 1
1 0
0 1
0 1
0 1
1 0


C.2.4 Q is unconstrained

Since Q is a variance-covariance matrix, it must be symmetric across the
diagonal.

Q =

α1 β1 β2
β1 α2 β3
β2 β3 α3


There are no fixed values in Q so f is still all zero. par$Q is

βββ =


”al pha1”
”beta1”
”beta2”

”al pha2”
”beta3”

”al pha3”


and free$Q is

D =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



320 C Model specification in the core functions

C.2.5 Q is fixed

For example,

Q =

0.1 0 0
0 0.1 0
0 0 0.1


The fixed$Q matrix is 

0.1
0
0
0

0.1
0
0
0

0.1


There are no estimated parameters so the free matrix is 9× 0 and the par
matrix is 0×1.

C.3 Limits on the model forms that can be fit

The main limitation is that one must specify a model that has only one solu-
tion. The core functions will allow you to attempt to fit an improper model
(one with multiple solutions). If you do this accidentally, it may or may not be
obvious that you have a problem. The estimation functions may chug along
happily and return some solution. Careful thought about your model structure
and the structure of the estimated parameter matrices will help you determine
if your model is under-constrained and unsolvable.

D

Textbooks and articles that use MARSS modeling
for population modeling

Textbooks Describing the Estimation of Process and
Non-process Variance

There are many textbooks on Kalman filtering and estimation of state-space
models. The following are a sample of books on state-space modeling that we
have found especially helpful.

Shumway, R. H., and D. S. Stoffer. 2006. Time series analysis and its
applications. Springer-Verlag.

Harvey, A. C. 1989. Forecasting, structural time series models and the
Kalman filter. Cambridge University Press.

Durbin, J., and S. J. Koopman. 2001. Time series analysis by state space
methods. Oxford University Press.

Kim, C. J. and Nelson, C. R. 1999. State space models with regime switch-
ing. MIT Press.

King, R., G. Olivier, B. Morgan, and S. Brooks. 2009. Bayesian analysis
for population ecology. CRC Press.

Giovanni, P., S. Petrone, and P. Campagnoli. 2009. Dynamic linear models
in R. Springer-Verlag.

Pole, A., M. West, and J. Harrison. 1994. Applied Bayesian forecasting
and time series analysis. Chapman and Hall.

Bolker, B. 2008. Ecological models and data in R. Princeton University
Press.

West, M. and Harrison, J. 1997. Bayesian forecasting and dynamic models.
Springer-Verlag.

Tsay, R. S. 2010. Analysis of financial time series. Wiley.

Maximum-likelihood papers

This is just a sample of the papers from the population modeling literature.

322 D Textbooks and articles that use MARSS modeling for population modeling

de Valpine, P. 2002. Review of methods for fitting time-series models with
process and observation error and likelihood calculations for nonlinear, non-
Gaussian state-space models. Bulletin of Marine Science 70:455-471.

de Valpine, P. and A. Hastings. 2002. Fitting population models incorpo-
rating process noise and observation error. Ecological Monographs 72:57-76.

de Valpine, P. 2003. Better inferences from population-dynamics exper-
iments using Monte Carlo state-space likelihood methods. Ecology 84:3064-
3077.

de Valpine, P. and R. Hilborn. 2005. State-space likelihoods for nonlin-
ear fisheries time series. Canadian Journal of Fisheries and Aquatic Sciences
62:1937-1952.

Dennis, B., J.M. Ponciano, S.R. Lele, M.L. Taper, and D.F. Staples. 2006.
Estimating density dependence, process noise, and observation error. Ecolog-
ical Monographs 76:323-341.

Ellner, S.P. and E.E. Holmes. 2008. Resolving the debate on when extinc-
tion risk is predictable. Ecology Letters 11:E1-E5.

Erzini, K. 2005. Trends in NE Atlantic landings (southern Portugal): iden-
tifying the relative importance of fisheries and environmental variables. Fish-
eries Oceanography 14:195-209.

Erzini, K., Inejih, C. A. O., and K. A. Stobberup. 2005. An applica-
tion of two techniques for the analysis of short, multivariate non-stationary
time-series of Mauritanian trawl survey data ICES Journal of Marine Science
62:353-359.

Hinrichsen, R.A. and E.E. Holmes. 2009. Using multivariate state-space
models to study spatial structure and dynamics. In Spatial Ecology (editors
Robert Stephen Cantrell, Chris Cosner, Shigui Ruan). CRC/Chapman Hall.

Hinrichsen, R.A. 2009. Population viability analysis for several populations
using multivariate state-space models. Ecological Modelling 220:1197-1202.

Holmes, E.E. 2001. Estimating risks in declining populations with poor
data. Proceedings of the National Academy of Sciences of the United States
of America 98:5072-5077.

Holmes, E.E. and W.F. Fagan. 2002. Validating population viability anal-
ysis for corrupted data sets. Ecology 83:2379-2386.

Holmes, E.E. 2004. Beyond theory to application and evaluation: diffu-
sion approximations for population viability analysis. Ecological Applications
14:1272-1293.

Holmes, E.E., W.F. Fagan, J.J. Rango, A. Folarin, S.J.A., J.E. Lippe, and
N.E. McIntyre. 2005. Cross validation of quasi-extinction risks from real time
series: An examination of diffusion approximation methods. U.S. Department
of Commerce, NOAA Tech. Memo. NMFS-NWFSC-67, Washington, DC.

Holmes, E.E., J.L. Sabo, S.V. Viscido, and W.F. Fagan. 2007. A statistical
approach to quasi-extinction forecasting. Ecology Letters 10:1182-1198.

Kalman, R.E. 1960. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering 82:35-45.

D Textbooks and articles that use MARSS modeling for population modeling 323

Lele, S.R. 2006. Sampling variability and estimates of density dependence:
a composite likelihood approach. Ecology 87:189-202.

Lele, S.R., B. Dennis, and F. Lutscher. 2007. Data cloning: easy maximum
likelihood estimation for complex ecological models using Bayesian Markov
chain Monte Carlo methods. Ecology Letters 10:551-563.

Lindley, S.T. 2003. Estimation of population growth and extinction pa-
rameters from noisy data. Ecological Applications 13:806-813.

Ponciano, J.M., M.L. Taper, B. Dennis, S.R. Lele. 2009. Hierarchical mod-
els in ecology: confidence intervals, hypothesis testing, and model selection
using data cloning. Ecology 90:356-362.

Staples, D.F., M.L. Taper, and B. Dennis. 2004. Estimating population
trend and process variation for PVA in the presence of sampling error. Ecology
85:923-929.

Zuur, A. F., and G. J. Pierce. 2004. Common trends in Northeast Atlantic
squid time series. Journal of Sea Research 52:57-72.

Zuur, A. F., I. D. Tuck, and N. Bailey. 2003. Dynamic factor analysis to
estimate common trends in fisheries time series. Canadian Journal of Fisheries
and Aquatic Sciences 60:542-552.

Zuur, A. F., R. J. Fryer, I. T. Jolliffe, R. Dekker, and J. J. Beukema. 2003.
Estimating common trends in multivariate time series using dynamic factor
analysis. Environmetrics 14:665-685.

Bayesian papers

This is a sample of the papers from the population modeling and animal
tracking literature.

Buckland, S.T., K.B. Newman, L. Thomas and N.B. Koestersa. 2004.
State-space models for the dynamics of wild animal populations. Ecological
modeling 171:157-175.

Calder, C., M. Lavine, P. Müller, J.S. Clark. 2003. Incorporating multiple
sources of stochasticity into dynamic population models. Ecology 84:1395-
1402.

Chaloupka, M. and G. Balazs. 2007. Using Bayesian state-space modelling
to assess the recovery and harvest potential of the Hawaiian green sea turtle
stock. Ecological Modelling 205:93-109.

Clark, J.S. and O.N. Bjørnstad. 2004. Population time series: process vari-
ability, observation errors, missing values, lags, and hidden states. Ecology
85:3140-3150.

Jonsen, I.D., R.A. Myers, and J.M. Flemming. 2003. Meta-analysis of an-
imal movement using state space models. Ecology 84:3055-3063.

Jonsen, I.D, J.M. Flemming, and R.A. Myers. 2005. Robust state-space
modeling of animal movement data. Ecology 86:2874-2880.

324 D Textbooks and articles that use MARSS modeling for population modeling

Meyer, R. and R.B. Millar. 1999. BUGS in Bayesian stock assessments.
Can. J. Fish. Aquat. Sci. 56:1078-1087.

Meyer, R. and R.B. Millar. 1999. Bayesian stock assessment using a state-
space implementation of the delay difference model. Can. J. Fish. Aquat. Sci.
56:37-52.

Meyer, R. and R.B. Millar. 2000. Bayesian state-space modeling of age-
structured data: fitting a model is just the beginning. Can. J. Fish. Aquat.
Sci. 57:43-50.

Newman, K.B., S.T. Buckland, S.T. Lindley, L. Thomas, and C. Fernán-
dez. 2006. Hidden process models for animal population dynamics. Ecological
Applications 16:74-86.

Newman, K.B., C. Fernández, L. Thomas, and S.T. Buckland. 2009. Monte
Carlo inference for state-space models of wild animal populations. Biometrics
65:572-583

Rivot, E., E. Prévost, E. Parent, and J.L. Baglinière. 2004. A Bayesian
state-space modelling framework for fitting a salmon stage-structured popu-
lation dynamic model to multiple time series of field data. Ecological Modeling
179:463-485.

Schnute, J.T. 1994. A general framework for developing sequential fisheries
models. Canadian J. Fisheries and Aquatic Sciences 51:1676-1688.

Swain, D.P., I.D. Jonsen, J.E. Simon, and R.A. Myers. 2009. Assessing
threats to species at risk using stage-structured state-space models: mortality
trends in skate populations. Ecological Applications 19:1347-1364.

Thogmartin, W.E., J.R. Sauer, and M.G. Knutson. 2004. A hierarchical
spatial model of avian abundance with application to cerulean warblers. Eco-
logical Applications 14:1766-1779.

Trenkel, V.M., D.A. Elston, and S.T. Buckland. 2000. Fitting population
dynamics models to count and cull data using sequential importance sampling.
J. Am. Stat. Assoc. 95:363-374.

Viljugrein, H., N.C. Stenseth, G.W. Smith, and G.H. Steinbakk. 2005.
Density dependence in North American ducks. Ecology 86:245-254.

Ward, E.J., R. Hilborn, R.G. Towell, and L. Gerber. 2007. A state-space
mixture approach for estimating catastrophic events in time series data. Can.
J. Fish. Aquat. Sci., Can. J. Fish. Aquat. Sci. 644:899-910.

Wikle, C.K., L.M. Berliner, and N. Cressie. 1998. Hierarchical Bayesian
space-time models. Journal of Environmental and Ecological Statistics 5:117-
154

Wikle, C.K. 2003. Hierarchical Bayesian models for predicting the spread
of ecological processes. Ecology 84:1382-1394.

References

Biernacki, C., Celeux, G., and Govaert, G. 2003. Choosing starting
values for the EM algorithm for getting the highest likelihood in multivari-
ate gaussian mixture models. Computational Statistics and Data Analysis
41:561–575.

Brockwell, P. J. and Davis, R. A. 1991. Time series: theory and methods.
Springer-Verlag, New York, NY.

Cavanaugh, J. E. and Shumway, R. H. 1997. A bootstrap variant of AIC
for state-space model selection. Statistica Sinica 7:473–496.

Cheang, W. K. and Reinsel, G. C. 2000. Bias reduction of autoregres-
sive estimates in time series regression model through restricted maximum
likelihood. Journal of the American Statistical Association 95:1173–1184.

de Jong, P. and Penzer, J. 1998. Diagnosing shocks in time series. Journal
of the American Statistical Association 93:796–806.

Dempster, A., Laird, N., and Rubin, D. 1977. Likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series
B 39:1–38.

Dennis, B., Munholland, P. L., and Scott, J. M. 1991. Estimation
of growth and extinction parameters for endangered species. Ecological
Monographs 61:115–143.

Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L., and Staples,
D. F. 2006. Estimating density dependence, process noise, and observation
error. Ecological Monographs 76:323–341.

Durbin, J. and Koopman, S. J. 2012. Time series analysis by state space
methods. Oxford University Press, Oxford, 2 edition.

Ellner, S. P. and Holmes, E. E. 2008. Resolving the debate on when
extinction risk is predictable. Ecology Letters 11:E1–E5.

Faraway, J. 2004. Linear models with R. CRC Press.
Gerber, L. R., DeMaster, D. P., and Kareiva, P. M. 1999. Grey
whales and the value of monitoring data in implementing the u.s. endan-
gered species act. Conservation Biology 13:1215–1219.

326 References

Ghahramani, Z. and Hinton, G. E. 1996. Parameter estimation for linear
dynamical systems. Technical Report CRG-TR-96-2, University of Toronto,
Dept. of Computer Science.

Hamilton, J. D. 1994. State-space models, pp. 3039–3080. In R. F. Engle and
D. L. McFadden (eds.), Handbook of Econometrics, volume IV, chapter 50.
Elsevier Science.

Hampton, S. E., Holmes, E. E., Pendleton, D. E., Scheef, L.,
Scheuerell, M. D., and Ward, E. 2013. Quantifying effects of abiotic
and biotic drivers on community dynamics with multivariate autoregressive
(MAR) models. Ecology 94:2663–2669.

Hampton, S. E., Izmest’Eva, L. R., Moore, M. V., Katz, S. L., Den-
nis, B., and Silow, E. A. 2008. Sixty years of environmental change in
the world’s largest freshwater lake – Lake Baikal, Siberia. Global Change
Biology 14:1947–1958.

Hampton, S. E., Scheuerell, M. D., and Schindler, D. E. 2006. Coa-
lescence in the Lake Washington story: Interaction strengths in a planktonic
food web. Limnology and Oceanography 51:2042–2051.

Hampton, S. E. and Schindler, D. E. 2006. Empirical evaluation of
observation scale effects in community time series. Oikos 113:424–439.

Harvey, A., Koopman, S. J., and Penzer, J. 1998. Messy time series: a
unified approach. Advances in Econometrics 13:103–143.

Harvey, A. C. 1989. Forecasting, structural time series models and the
Kalman filter. Cambridge University Press, Cambridge, UK.

Harvey, A. C. and Koopman, S. J. 1992. Diagnostic checking of unob-
served components time series models. Journal of Business and Economic
Statistics 10:377–389.

Harvey, A. C. and Shephard, N. 1993. Structural time series models.
In G. Maddala, C. Rao, and H. Vinod (eds.), Handbook of Statistics, vol-
ume 11, chapter 10. Elsevier Science Publishers, Amsterdam.

Helske, J. 2017. Kfas: Exponential family state space models in r. Journal
of Statistical Software 78:1–39.

Hinrichsen, R. and Holmes, E. E. 2009. Using multivariate state-space
models to study spatial structure and dynamics, pp. 145–166. In R. S.
Cantrell, C. Cosner, and S. Ruan (eds.), Spatial Ecology, chapter 8. CRC
and Chapman Hall.

Holmes, E. E. 2001. Estimating risks in declining populations with poor
data. Proceedings of the National Academy of Sciences of the United States
of America 98:5072–5077.

Holmes, E. E. 2004. Beyond theory to application and evaluation: diffusion
approximations for population viability analysis. Ecological Applications
14:1272–1293.

Holmes, E. E. 2012. Derivation of the EM algorithm for constrained and un-
constrained MARSS models. Technical report, arXiv:1302.3919 [stat.ME].

References 327

Holmes, E. E., Sabo, J. L., Viscido, S. V., and Fagan, W. F. 2007.
A statistical approach to quasi-extinction forecasting. Ecology Letters
10:1182–1198.

Holmes, E. E., Ward, E. J., and Wills, K. 2012. MARSS: Multivariate
autoregressive state-space models for analyzing time-series data. The R
Journal 4:11–19.

Holmes, E. E. and Ward, E. W. 2010. Analyzing noisy, gappy, and mul-
tivariate population abundance data: modeling, estimation, and model se-
lection in a maximum-likelihood framework. Technical report, Northwest
Fisheries Science Center, Mathematical Biology Program.

Ives, A. R. 1995. Measuring resilience in stochastic systems. Ecological
Monographs 65:217–233.

Ives, A. R., Abbott, K. C., and Ziebarth, N. L. 2010. Analysis of
ecological time series with ARMA(p,q) models. Ecology 91:858–871.

Ives, A. R., Carpenter, S. R., and Dennis, B. 1999. Community interac-
tion webs and zooplankton responses to planktivory manipulations. Ecology
80:1405–1421.

Ives, A. R., Dennis, B., Cottingham, K. L., and Carpenter, S. R.
2003. Estimating community stability and ecological interactions from time-
series data. Ecological Monographs 73:301–330.

Jeffries, S., Huber, H., Calambokidis, J., and Laake, J. 2003. Trends
and status of harbor seals in Washington State 1978-1999. Journal of
Wildlife Management 67:208–219.

Kalman, R. E. 1960. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering 82:35–45.

Klug, J. L. and Cottingham, K. L. 2001. Interactions among environ-
mental drivers: Community responses to changing nutrients and dissolved
organic carbon. Ecology 82:3390–3403.

Kohn, R. and Ansley, C. F. 1989. A fast algorithm for signal extraction,
influence and cross-validation in state-space models. Biometrika 76:65–79.

Koopman, S. J. 1993. Distrubance smoother for state space models.
Biometrika 80:117–126.

Koopman, S. J. and Durbin, J. 2000. Fast filtering and smoothing for non-
stationary time series models. Journal of American Statistical Assosiation
92:1630–1638.

Koopman, S. J., Shephard, N., and Doornik, J. A. 1999. Statistical al-
gorithms for models in state space using SsfPack 2.2. Econometrics Journal
2:113–166.

Lamon III, E., Carpenter, S. R., and Stow, C. A. 1998. Forecasting
PCB concentrations in Lake Michigan salmonids: a dynamic linear model
approach. Ecological Applications 8:659–668.

Lele, S. R., Dennis, B., and Lutscher, F. 2007. Data cloning: easy max-
imum likelihood estimation for complex ecological models using Bayesian
Markov Chain Monte Carlo methods. Ecology Letters 10:551–563.

328 References

McLachlan, G. J. and Krishnan, T. 2008. The EM algorithm and ex-
tensions. John Wiley and Sons, Inc., Hoboken, NJ, 2nd edition.

Penzer, J. 2001. Critical values for time series diagnostics. Technical report,
Department of Statistics, London School of Economics.

Petris, G., Petrone, S., and Campagnoli, P. 2009. Dynamic linear
Models with R. Use R! Springer, London.

Pole, A., West, M., and Harrison, J. 1994. Applied Bayesian forecasting
and time series analysis. Chapman and Hall, New York.

Rauch, H. E. 1963. Solutions to the linear smoothing problem. IEEE Trans-
actions on Automatic Control 8:371–372.

Rauch, H. E., Tung, F., and Striebel, C. T. 1965. Maximum likelihood
estimation of linear dynamical systems. Journal of AIAA 3:1445–1450.

Scheuerell, M. D. and Williams, J. G. 2005. Forecasting climate induced
changes in the survival of Snake River spring/summer Chinook salmon (On-
corhynchus tshawytscha). Fisheries Oceanography 14:448–457.

Schweppe, F. C. 1965. Evaluation of likelihood functions for Gaussian sig-
nals. IEEE Transactions on Information Theory IT-r:294–305.

Shumway, R. and Stoffer, D. 2006. Time series analysis and its applica-
tions. Springer-Science+Business Media, LLC, New York, New York, 2nd
edition.

Shumway, R. H. and Stoffer, D. S. 1982. An approach to time series
smoothing and forecasting using the EM algorithm. Journal of Time Series
Analysis 3:253–264.

Staples, D. F., Taper, M. L., and Dennis, B. 2004. Estimating popula-
tion trend and process variation for PVA in the presence of sampling error.
Ecology 85:923–929.

Staudenmayer, J. and Buonaccorsi, J. R. 2005. Measurement error in
linear autoregressive models. Journal of the American Statistical Associa-
tion 10:841–852.

Stoffer, D. S. and Wall, K. D. 1991. Bootstrapping state-space models:
Gaussian maximum likelihood estimation and the Kalman filter. Journal
of the American Statistical Association 86:1024–1033.

Taper, M. L. and Dennis, B. 1994. Density dependence in time series ob-
servations of natural populations: estimation and testing. Ecological Mono-
graphs 64:205–224.

Tsay, R. S. 2010. Analysis of financial time series. Wiley Series in Probability
and Statistics. JohnWiley and Sons, Inc., Hoboken, New Jersey, 3rd edition.

Ward, E. J., Chirakkal, H., González-Suárez, M., Aurioles-
Gamboa, D., Holmes, E. E., and Gerber, L. 2010. Inferring spatial
structure from time-series data: using multivariate state-space models to
detect metapopulation structure of California sea lions in the Gulf of Cali-
fornia, Mexico. Journal of Applied Ecology 1:47–56.

Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R., and Beukema,
J. J. 2003. Estimating common trends in multivariate time series using
dynamic factor analysis. Environmetrics 14:665–685.

Index

AIC, 34
animal tracking, 141
kftrack, 149

B matrix
estimation, 188, 251
species interaction matrix, 183
stability metrics, 203
troubleshooting estimation, 186,

190
bootstrap, 53
innovations, 15, 21, 22
MARSSboot function, 15
parametric, 15, 21, 22

confidence intervals, 86, 297
Hessian approximation, 15, 47,

88
KFAS, 285
MARSSparamCIs function, 15
non-parametric bootstrap, 15
parametric bootstrap, 15, 48, 86

covariates, 45, 163, 196, 199
observed with error, 198

density-independent, 69
diagnostics, 97, 176
ACF plot, 176, 177, 226
Q-Q plot, 225
residual trends, 97

dynamic factor analysis, 121
covariates, 138
diagnostics, 134
loadings, 132
model selection, 138
residuals, 134
rotation, 133

dynamic linear modeling
forecasting, 222
univariate, 217

error
observation, 70
process, 69, 70

errors
degenerate, 10
ill-conditioned, 10

estimation, 73
BFGS, 37
Dennis method, 74
EM, 14, 18, 73
Kalman filter, 15, 19
Kalman smoother, 15, 19
KFAS, 278
maximum-likelihood, 73, 74
Newton methods, 19
quasi-Newton, 15, 37
REML, 8

extinction, 69
diffusion approximation, 79

329

330 INDEX

uncertainty, 84

fitted values, 34, 264, 282
forecasting, 34, 222
diagnostics, 225
plotting, 263
structural ts models, 261

functions
AIC, 14
coef, 14, 49
fitted, 264
forecast, 261
gls, 233, 236, 240
is.marssMLE, 15
is.marssMODEL, 16
logLik, 233
MARSS, 13, 36, 39, 41, 43
MARSSaic, 15, 21, 22, 54, 315
MARSSboot, 15, 21, 53
MARSShatyt, 14
MARSShessian, 15, 315
MARSSkem, 14, 18, 19, 314,

315
MARSSkf, 14, 15, 19, 21, 49
MARSSkfas, 20
MARSSkfss, 20, 257
MARSSoptim, 15
MARSSparamCIs, 9, 15, 21, 47,

315
MARSSsimulate, 16, 22, 53
MARSSvectorizeparam, 16
optim, 15
predict, 261, 263
print, 14, 46
residuals, 14, 157, 176, 265
summary, 16, 46
tidy, 47
tsSmooth, 14, 49, 264

initial conditions, 57
Monte Carlo search, 62
setting for BFGS, 38
specifying, 57
using another fit, 61

Kalman filter and smoother, 34,
49, 257, 280

KFAS, 280
StructTS, 257

lag-1 covariance smoother, 49
likelihood, 15, 20, 34, 53
and missing values, 21
innovations algorithm, 20
MARSSkf function, 53
missing value modifications, 21
multimodal, 19
troubleshooting, 10, 19

MAR(p), 243, 244
MARSS(p), 250

MARSS model, 3, 6, 141
DFA example, 121
DLM example, 217
multivariate example, 89, 105,

141
univariate example, 70

missing values, 8, 298
and AICb, 22
and parametric bootstrap, 21
likelihood correction, 21

model selection, 22, 105, 130
AIC, 22, 96, 97, 101, 103
AIC weights, 112
AICc, 22, 103
bootstrap AIC, 22, 103
bootstrap AIC, AICbb, 22, 54
bootstrap AIC, AICbp, V, 22,

54, 103
MARSSaic function, 15, 54

model specification
in MARSS, 25
in marssMODEL objects, 317

multivariate linear regression, 164,
229

with autocorrelated errors, 166,
232, 239

objects
inputs, 314

INDEX 331

marssMLE, 13, 314, 315
marssMODEL, 13, 16, 313

Observation filtering and
smoothing, 14

KFAS, 282
outliers, 151

plotting, 34
confidence intervals, 297
predictions, 34, 263

prediction intervals, 289
KFAS, 285, 288

print, 46
marssMLE, 46
marssMODEL, 46
par, 46
states, 46

prior, 4, 29, 35
diffuse, 155
troubleshooting, 9, 38, 308, 311

residuals, 34, 289
auxiliary, 155
KFAS, 289
model, 157, 266
one-step-ahead, 290
pearson, 292, 303
smoothations, 155, 157
standardized, Block.Cholesky,

296
standardized, Cholesky, 292
standardized, marginal, 291
state, 157, 294
StructTS, 265

seasonality, 171
simulation, 22, 53, 70
standard errors, 15
one-step-ahead, 287

structural breaks, 151
structural ts model
Nile, 151, 277
trend, 158
univariate, 151

structural ts models
covariates, 269
fitted, 264
forecasting, 261
level, 255
multivariate, 267, 301
residuals, 265
seasonal, 260
trend, 257
univariate, 255, 277

tidy, 47
troubleshooting, 10, 307
B estimation, 186, 190
B outside unit circle, 307
collinearity, 234
degenerate, 10, 50
degenerate variances, 192
ill-conditioning, 10
Kalman filter errors, 312
local maxima, 19
logLik dropped, 310
matrix not invertible, 312
matrix not positive definite, 310
non-convergence, 10, 54, 233,

309
nonconvergence, 186
numerical instability, 10, 309,

310
sensitivity to x0 prior, 35, 38,

191
setting diagonal to 0 blocked,

311, 312
sigma condition number, 311

	Part I The MARSS package
	Overview
	What does the {MARSS} package do?
	Output: fitted values, residuals, predictions, plots etc
	How to get started (quickly)
	Getting your data in right format
	Important notes about the algorithms
	Troubleshooting
	Other related packages

	The main package functions
	The MARSS() function: inputs
	The MARSS() function: outputs
	Core functions for fitting a MARSS model
	Functions for a fitted marssMLE object
	Functions for marssMODEL objects

	Algorithms used in the {MARSS} package
	The full time-varying MARSS model
	Maximum-likelihood parameter estimation
	Kalman filter and smoother
	The exact likelihood
	Parametric and innovations bootstrapping
	Simulation and forecasting
	Model selection

	Part II Fitting models with {MARSS}
	The MARSS() function
	u, a and model structures
	Q, R, model structures
	B model structures
	Z model
	Default model structures

	Short Examples
	Fixed and estimated elements in parameter matrices
	Different numbers of state processes
	Linear constraints
	Time-varying parameters
	Including inputs (or covariates)
	Printing and summarizing models and model fits
	Tidy output
	Confidence intervals on a fitted model
	Vectors of just the estimated parameters
	Kalman filter and smoother output
	Degenerate variance estimates
	Bootstrap parameter estimates
	Data simulation
	Bootstrap AIC
	Convergence

	Setting and searching initial conditions
	Fitting a model with a new set of initial conditions
	Searching across initial values using a Monte Carlo routine

	Part III Applications
	Count-based population viability analysis (PVA) using corrupted data
	Background
	Simulated data with process and observation error
	Maximum-likelihood parameter estimation
	Probability of hitting a threshold (xd,te)
	Certain and uncertain regions
	More risk metrics and some real data
	Confidence intervals
	Discussion

	Combining multi-site data to estimate regional population trends
	Harbor seals in the Puget Sound, WA.
	A single well-mixed population with i.i.d. errors
	Single population with independent and non-identical errors
	Two subpopulations, north and south
	Other population structures
	Discussion

	Identifying spatial population structure and covariance
	Harbor seals on the U.S. west coast
	Question 1, How many distinct subpopulations?
	Fit the different models
	Summarize the data support
	Question 2, Are the subpopulations independent?
	Question 3, Is the Hood Canal independent?
	Discussion

	Dynamic factor analysis (DFA)
	Overview of DFA
	The data
	Setting up the model for MARSS()
	Using model selection to determine the number of trends
	Using varimax rotation to determine the loadings and trends
	Examining model fits
	Adding covariates
	Discussion

	Analyzing noisy animal tracking data
	A simple random walk model of animal movement
	Loggerhead sea turtle tracking data
	Estimate locations from the bad tag data
	Estimate speeds for each turtle
	Using specialized packages to analyze tag data

	Detection of outliers and structural breaks
	Background
	Different models for the Nile flow levels
	Observation and state residuals
	Discussion

	Incorporating covariates into MARSS models
	Covariates as inputs
	Examples using plankton data
	Observation-error only model
	Process-error only model
	Both process- & observation-error model
	Including seasonal effects in MARSS models
	Model diagnostics
	Covariates with missing values or observation error

	Estimation of species interaction strengths
	Background
	Two-species example using wolves and moose
	Some settings to improve performance when estimating B
	Analysis a four-species plankton community
	Stability metrics from estimated interaction matrices
	Further information

	Combining data from multiple time series
	Overview
	Salmon spawner surveys
	American kestrel abundance indices

	Univariate dynamic linear models (DLMs)
	Overview of dynamic linear models
	Example of a univariate DLM
	Forecasting with a univariate DLM

	Multivariate linear regression
	Univariate linear regression
	Multivariate response example using longitudinal data
	Discussion

	Lag-p MARSS models
	Background
	MAR(2) models
	MAR(p) models
	MARSS(p): models with observation error
	Discussion

	Structural Time Series Models
	Univariate models
	Multivariate models
	Summary

	Comparison to the {KFAS} Package
	Nile River example
	Global temperature example
	Summary

	Part IV Appendices
	Package MARSS: Warnings and errors
	Package MARSS: Object structures
	Model specification in the core functions
	The fixed and free components of the model parameters
	Examples
	Limits on the model forms that can be fit

	Textbooks and articles that use MARSS modeling for population modeling

	References

