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License agreement

Rfmtool is distributed under GNU LESSER GENERAL PUBLIC LICENSE.
The terms of the license are provided in the file ”copying” in the root direc-
tory of this distribution.

You can also obtain the GNU License Agreement from
http://www.gnu.org/licenses/licenses.html

Rfmtool partly depends on another package, lpsolve, which is also dis-
tributed under Lesser GPL.
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Chapter 1

Introduction

This manual describes the programming library Rfmtool, which provides
various tools for handling fuzzy measures, calculating various indices, Cho-
quet and Sugeno integrals, as well as fitting fuzzy measures to empirical
data. This package is designed for R, but is also includes the C++ source
files and this user manual.

Chapter 2 provides some background on fuzzy measures. A more de-
tailed overview can be found in [4, 8, 12] and references therein. Chapter 3
outlines computational methods used to fit fuzzy measures to empirical data.
The description of the programming library Rfmtool is given in Chapter 4.
Examples of its usage are provided in Section 4.4.

To cite Rfmtool package, use references [2–4].

New in version 2

We added fitting K-maxitive and K-tolerant fuzzy measures, based on linear
and mixed integer programming. See functions fittingktolerant and fittingK-
maxitive.

We added a method for fitting sub-modular fuzzy measures reported in
[3]. Supermodular fuzzy measure can also be fit by using duality: construct
dual data set, fit a sub-modular fuzzy measure and then compute its dual.
See function FuzzyMeasureFitLP.

We added an extra requirement of preservation of output ordering. See
function FuzzyMeasureFitLP.

Fixed many warnings in the lpsolve code.
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Chapter 2

Background on fuzzy
measures

2.1 Preliminaries

Definition 1 (Aggregation function) An aggregation function is a func-
tion of n > 1 arguments that maps the (n-dimensional) unit cube onto the
unit interval f : [0, 1]n → [0, 1], with the properties

(i) f(0, 0, . . . , 0︸ ︷︷ ︸
n−times

) = 0 and f(1, 1, . . . , 1︸ ︷︷ ︸
n−times

) = 1.

(ii) x ≤ y implies f(x) ≤ f(y) for all x,y ∈ [0, 1]n.

A large family of aggregation functions is based on Choquet and Sugeno
integrals. The Choquet integral generalizes the Lebesgue integral, and like
it, is defined with respect to a measure. We note that measures can be addi-
tive (the measure of a set is the sum of the measures of its non-intersecting
subsets) or non-additive. Lengths, areas and volumes are examples of ad-
ditive measures. Lebesgue integration is defined with respect to additive
measures. If a measure is non-additive, then the measure of the total can
be larger or smaller than the sum of the measures of its components.

Choquet and Sugeno integration are defined with respect to not neces-
sarily additive monotone measures, called fuzzy measures (see Definition 2
below), or capacities. In this manual we are interested only in discrete fuzzy
measures, which are defined on finite discrete subsets. This is because our
construction of aggregation functions involves a finite set of inputs.

The main purpose of Choquet integral-based aggregation is to combine
the inputs in such a way that not only the importance of individual inputs
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(as in weighted means), or of their magnitude (as in OWA), are taken into
account, but also of their groups (or coalitions). For example, a particular
input may not be important by itself, but become very important in the
presence of some other inputs. In medical diagnosis, for instance, some
symptoms by themselves may not be really important, but may become key
factors in the presence of other signs.

A discrete fuzzy measure allows one to assign importances to all possible
groups of criteria, and thus offers a much greater flexibility for modeling ag-
gregation. It also turns out that weighted arithmetic means and OWA are
special cases of Choquet integrals with respect to additive and symmetric
fuzzy measures respectively. Thus we deal with a much broader class of
aggregation functions. The uses of Choquet and Sugeno integrals as aggre-
gation functions are documented in [7, 10,11,13,14].

2.2 Basic definitions

Definition 2 (Fuzzy measure) Let N = {1, 2, . . . , n}. A discrete fuzzy
measure is a set function1 v : 2N → [0, 1] which is monotonic (i.e. v(A) ≤
v(B) whenever A ⊂ B) and satisfies v(∅) = 0 and v(N ) = 1.

In the context of aggregation functions, we are interested in the inter-
pretation of the values of a fuzzy measure as the importance of a coalition.
In the Definition 2, a subset A ⊆ N can be considered as a coalition, so that
v(A) gives us an idea about the importance or the weight of this coalition.
The monotonicity condition implies that adding new elements to a coalition
does not decrease its weight.

Definition 3 (Möbius transformation) Let v be a fuzzy measure. The
Möbius transformation of v is a set function defined for every A ⊆ N as

M(A) =
∑
B⊆A

(−1)|A\B|v(B).

Möbius transformation is invertible, and one recovers v by using its in-
verse, called Zeta transform ,

v(A) =
∑
B⊆A

M(B) ∀A ⊆ N .

1A set function is a function whose domain consists of all possible subsets of N . For
example, for n = 3, a set function is specified by 23 = 8 values at v(∅), v({1}), v({2}),
v({3}), v({1, 2}), v({1, 3}), v({2, 3}), v({1, 2, 3}).
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Möbius transformation is helpful in expressing various quantities, like
the interaction indices discussed later, in a more compact form. It also
serves as an alternative representation of a fuzzy measure, called Möbius
representation. That is, one can either use v or M to perform calculations,
whichever is more convenient. The conditions of monotonicity of a fuzzy
measure, and the boundary conditions v(∅) = 0, v(N ) = 1 are expressed,
respectively, as ∑

B⊆A|i∈B

M(B) ≥ 0, for all A ⊆ N and all i ∈ A, (2.1)

M(∅) = 0 and
∑
A⊆N

M(A) = 1.

There are various special classes of fuzzy measures, which we discuss
below. We now proceed with the definition of the Choquet integral–based
aggregation functions.

Definition 4 (Discrete Choquet integral) The discrete Choquet inte-
gral with respect to a fuzzy measure v is given by

Cv(x) =

n∑
i=1

x(i)[v({j|xj ≥ x(i)})− v({j|xj ≥ x(i+1)})], (2.2)

where x↗ = (x(1), x(2), . . . , x(n)) is a non-decreasing permutation of the in-
put x, and x(n+1) = ∞ by convention.

Alternative expressions

• By rearranging the terms of the sum, (2.2) can also be written as

Cv(x) =

n∑
i=1

[
x(i) − x(i−1)

]
v(Hi). (2.3)

where x(0) = 0 by convention, and Hi = {(i), . . . , (n)} is the subset of
indices of the n− i+ 1 largest components of x.

• Choquet integral can be expressed with the help of the Möbius trans-
formation as

Cv(x) =
∑
A⊆N

M(A)min
i∈A

xi =
∑
A⊆N

M(A)hA(x), (2.4)

with hA(x) = min
i∈A

xi.
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Main properties

• The Choquet integral is a continuous piecewise linear idempotent ag-
gregation function;

• An aggregation function is a Choquet integral if and only if it is ho-
mogeneous, shift-invariant and comonotone additive, i.e., Cv(x+y) =
Cv(x) + Cv(y) for all comonotone 2 x,y;

• The Choquet integral is uniquely defined by its values at the vertices of
the unit cube [0, 1]n, i.e., at the points x, whose coordinates xi ∈ {0, 1}.
Note that there are 2n such points, the same as the number of values
that determine the fuzzy measure v;

• The discrete Choquet integral is a linear function of the values of the
fuzzy measure v.

• The class of Choquet integrals includes weighted means and OWA
functions, as well as minimum, maximum and order statistics as special
cases;

• A linear convex combination of Choquet integrals with respect to fuzzy
measures v1 and v2, αCv1 + (1 − α)Cv2 , α ∈ [0, 1], is also a Choquet
integral with respect to v = αv1 + (1− α)v2.

Calculation

Calculation of the discrete Choquet integral is performed using Equation
(2.3) using the following procedure. Consider the vector of pairs
((x1, 1), (x2, 2), . . . , (xn, n)), where the second component of each pair is
just the index i of xi. The second component will help keeping track of
all permutations.

Calculation of Cv(x).

1. Sort the components of ((x1, 1), (x2, 2), . . . , (xn, n)) with respect to
the first component of each pair in non-decreasing order. We obtain
((x(1), i1), (x(2), i2), . . . , (x(n), in)), so that x(j) = xij and x(j) ≤ x(j+1)

for all i. Let also x(0) = 0.

2Two vectors x,y ∈ ℜn are called comonotone if there exists a common permutation
P of {1, 2, . . . , n}, such that xP (1) ≤ xP (2) ≤ · · · ≤ xP (n) and yP (1) ≤ yP (2) ≤ · · · ≤ yP (n).
Equivalently, this condition is frequently expressed as (xi − xj)(yi − yj) ≥ 0 for all i, j ∈
{1, . . . , n}.
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2. Let T = {1, . . . , n}, and S = 0.

3. For j = 1, . . . , n do

(a) S := S + [x(j) − x(j−1)]v(T );

(b) T := T \ {ij}

4. Return S.

For computational purposes it is convenient to store the values of a fuzzy
measure v in an array v of size 2n, and to use the following indexing system,
which provides a one-to-one mapping between the subsets J ⊆ N and the
set of integers I = {0, . . . , 2n − 1}, which index the elements of v. Take the
binary representation of each index in I, e.g. j = 5 = 101 (binary). Now
for a given subset J ⊆ N = {1, . . . , n} define its characteristic vector c ∈
{0, 1}n : cn−i+1 = 1 if i ∈ J and 0 otherwise. For example, if n = 5, J =
{1, 3}, then c = (0, 0, 1, 0, 1). Put the value v(J ) into correspondence with
vj , so that the binary representation of j corresponds to the characteristic
vector of J . In our example v({1, 3}) = v5.

Such an ordering of the subsets of N is called binary ordering:

∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, . . . , {1, 2, . . . , n}.

The values of v are mapped to the elements of vector v as follows

v0 v1 v2 v3 v4 v5 . . .
= v(0000) = v(0001) = v(0010) = v(0011) = v(0100) = v(0101)
v(∅) v({1}) v({2}) v({1, 2}) v({3}) v({1, 3}) . . .

An alternative ordering of the values of v is based on set cardinality:

∅, {1}, {2}, . . . , {n}︸ ︷︷ ︸
n singletons

, {1, 2}, {1, 3}, . . . , {1, n}, {2, 3}, . . . , {n− 1, n}︸ ︷︷ ︸
(n2) pairs

, {1, 2, 3}, . . . .

Such an ordering is useful when dealing with k-additive fuzzy measures
(see Definition 16 and Proposition 1 below), as it allows one to group non-
zero values M(A) (in Möbius representation) at the beginning of the array.
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2.3 Types of fuzzy measures

In this section we present the most important definitions and classes of fuzzy
measures.

Definition 5 (Dual fuzzy measure) Given a fuzzy measure v, its dual
fuzzy measure v∗ is defined by

v∗(A) = 1− v(Ac), for all A ⊆ N ,

where Ac = N \ A is the complement of A in N .

Definition 6 (Self–dual fuzzy measure) A fuzzy measure v is self-dual
if it is equal to its dual v∗, i.e.,

v(A) + v(Ac) = 1, holds for all A ⊆ N .

Definition 7 (Submodular and supermodular fuzzy measure) A fuzzy
measure v is called submodular if for any A,B ⊆ N

v(A ∪ B) + v(A ∩ B) ≤ v(A) + v(B). (2.5)

It is called supermodular if

v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B). (2.6)

Two weaker conditions which are frequently used are called sub- and
super-additivity. These are special cases of sub- and supermodularity for
disjoint subsets

Definition 8 (Subadditive and superadditive fuzzy measure) A fuzzy
measure v is called subadditive if for any two nonintersecting subsets A,B ⊂
N , A ∩ B = ∅:

v(A ∪ B) ≤ v(A) + v(B). (2.7)

It is called superadditive if

v(A ∪ B) ≥ v(A) + v(B). (2.8)

Note 1 A general fuzzy measure may be submodular only with respect to
specific pairs of subsets A,B, and supermodular with respect to other pairs.
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Definition 9 (Additive (probability) measure) A fuzzy measure v is
called additive if for any A,B ⊂ N , A ∩ B = ∅:

v(A ∪ B) = v(A) + v(B). (2.9)

An additive fuzzy measure is called a probability measure.

Note 2 For an additive fuzzy measure clearly v(A) =
∑

i∈A v({i}).

Note 3 Additivity implies that for any subset A ⊆ N \ {i, j}

v(A ∪ {i, j}) = v(A ∪ {i}) + v(A ∪ {j})− v(A).

Definition 10 (Balanced measure) A fuzzy measure v is called balanced
if it holds:

| A |<| B |=⇒ v(A) ≤ v(B), for all A,B ⊆ N .

Definition 11 (Symmetric fuzzy measure) A fuzzy measure v is called
symmetric if the value v(A) depends only on the cardinality of the set A,
i.e., for any A,B ⊆ N ,

if |A| = |B| then v(A) = v(B).

Alternatively, one can say that a fuzzy measure v is symmetric if for any
A ⊆ N it is

v(A) = Q

(
|A|
n

)
, (2.10)

for some monotone non-decreasing function Q : [0, 1] → [0, 1], Q(0) = 0 and
Q(1) = 1.

Definition 12 (Possibility and necessity measures) A fuzzy measure
is called a possibility, Pos, if for all A,B ⊆ N it satisfies

Pos(A ∪ B) = max{Pos(A), Pos(B)}.

A fuzzy measure is called a necessity, Nec, if for all A,B ⊆ N it satisfies

Nec(A ∩ B) = min{Nec(A), Nec(B)}.
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Note 4 Possibility and necessity measures are dual to each other in the
sense of Definition 5, that is, for all A ⊆ N

Nec(A) = 1− Pos(Ac).

A possibility measure is subadditive. A necessity measure is superadditive.

Definition 13 (Belief Measure) A belief measure Bel : 2N → [0, 1] is a
fuzzy measure that satisfies the following condition: for all m > 1

Bel(

m∪
i=1

Ai) ≥
∑

∅≠I⊂{1,...,m}

(−1)|I|+1Bel(
∩
i∈I

Ai),

where {Ai}i∈{1,...,m}, is any finite family of subsets of N . 3

Definition 14 (Plausibility measure) A plausibility measure Pl : 2N →
[0, 1] is a fuzzy measure that satisfies the following condition: for all m > 1

Pl(
m∩
i=1

Ai) ≤
∑

∅≠I⊂{1,...,m}

(−1)|I|+1Pl(
∪
i∈I

Ai),

where {Ai}i∈{1,...,m} is any finite family of subsets of N .

Note 5 A set function Pl : 2N → [0, 1] is a plausibility measure if its dual
set function is a belief measure, i.e., for all A ⊆ N

Pl(A) = 1−Bel(Ac).

Any belief measure is superadditive. Any plausibility measure is subadditive.

λ-fuzzy measures

Additive and symmetric fuzzy measures are two examples of very simple
fuzzy measures, whereas general fuzzy measures are sometimes too com-
plicated for applications. As a way of reducing the complexity of a fuzzy
measure Sugeno [16] introduced λ-fuzzy measures (also called Sugeno mea-
sures).

3For a fixed m ≥ 1 this condition is called m-monotonicity (simple monotonicity for
m = 1), and if it holds for all m ≥ 1, it is called total monotonicity. For a fixed m,
condition in Definition 14 is called m-alternating monotonicity. 2-monotone fuzzy mea-
sures are called supermodular (see Definition 7), also called convex, whereas 2-alternating
fuzzy measures are called submodular. If a fuzzy measure is m-monotone, its dual is
m-alternating and vice versa.
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Definition 15 (λ-fuzzy measure) Given a parameter λ ∈] − 1,∞[, a λ-
fuzzy measure is a fuzzy measure v that for all A,B ⊆ N ,A∩B = ∅ satisfies

v(A ∪ B) = v(A) + v(B) + λv(A)v(B). (2.11)

Under these conditions, all the values v(A) are immediately computed
from n independent values v({i}), i = 1, . . . , n, by using the explicit formula

v(

m∪
i=1

{i}) = 1

λ

(
m∏
i=1

(1 + λv({i}))− 1

)
, λ ̸= 0.

If λ = 0, λ-fuzzy measure becomes a probability measure. The coefficient λ
is determined from the boundary condition v(N ) = 1, which gives

λ+ 1 =

n∏
i=1

(1 + λv({i})), (2.12)

which can be solved on (−1, 0) or (0,∞) numerically (note that λ = 0 is al-
ways a solution). Thus a λ-fuzzy measure is characterized by n independent
values v({i}), i = 1, . . . , n.

Note 6 A λ-fuzzy measure is either sub- or supermodular, when −1 < λ ≤ 0
or λ ≥ 0 respectively.

Note 7 When −1 < λ ≤ 0, a λ-fuzzy measure is a plausibility measure,
and when λ ≥ 0 it is a belief measure.

k - additive fuzzy measures

Another way to reduce complexity of aggregation functions based on fuzzy
measures is to impose various linear constraints on their values. Such con-
straints acquire an interesting interpretation in terms of interaction indices
discussed in the next section. One type of constraints leads to k-additive
fuzzy measures.

Definition 16 (k-additive fuzzy measure) A fuzzy measure v is called
k-additive (1 ≤ k ≤ n) if its Möbius transformation verifies

M(A) = 0

for any subset A with more than k elements, |A| > k, and there exists a
subset B with k elements such that M(B) ̸= 0.
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Definition 17 (Possibilistic Möbius transform) The possibilistic Möbius
transform of a fuzzy measure v on N is a mapping mp : P(N ) → [0, 1] de-
fined by

mp(A) =

v(A) if v(A) > max
B⊂A

v(B),

0 otherwise.
(2.13)

The possibilistic Zeta transform of mp is the mapping Zmp : P(N ) → [0, 1]
defined by:

Zmp(A) = max
B⊆A

mp(B). (2.14)

Definition 18 (k-maxitive fuzzy measure) A fuzzy measure v is called
k-maxitive if its possibilistic Möbius transform satisfies mp(A) = 0 for any
A such that |A| > k and there exists at least one subset A of N of exactly
k elements such that mp(A) ̸= 0.

Definition 19 (k-tolerant fuzzy measure) Let k ∈ {1, 2, ..., n} = N . A
fuzzy measure on N is k-tolerant if v(A) = 1 for all A ⊆ N such that |A| ≥ k
and there exists a subset B ⊆ N , with |B| = k − 1, such that v(B) ̸= 1. A
fuzzy measure v on N is k-intolerant if v(A) = 0 for all A ⊆ N such that
|A| ≤ n− k and there exists a subset B ⊆ N , with |B| = n− k+1, such that
v(B) ̸= 0.

k-intolerant fuzzy measures can be obtained from k-tolerant measures by
using duality. The Choquet integral with respect to a k-tolerant capacity is
independent of the first n− k smallest inputs.

2.4 Interaction, importance and other indices

When dealing with multiple criteria, it is often the case that these are not
independent, and there is some interaction (positive or negative) among the
criteria. For instance, two or more criteria may point essentially to the same
concept, for example criteria such as “learnability” and “memorability” that
are used to evaluate software user interface. If the criteria are combined by
using, e.g., weighted means, their scores will be double counted. In other
instances, contribution of one criterion to the total score by itself may be
small, but sharply rise when taken in conjunction with other criteria (i.e.,
in a “coalition”).

Thus to measure such concepts as the importance of a criterion and in-
teraction among the criteria, we need to account for contribution of these
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criteria in various coalitions. To do this we will use the concepts of Shapley
value, which measures the importance of a criterion i in all possible coali-
tions, and the interaction index, which measures the interaction of a pair of
criteria i, j in all possible coalitions [8, 9].

Definition 20 (Shapley value) Let v be a fuzzy measure. The Shapley
index for every i ∈ N is

ϕ(i) =
∑

A⊆N\{i}

(n− |A| − 1)!|A|!
n!

[v(A ∪ {i})− v(A)].

The Shapley value is the vector ϕ(v) = (ϕ(1), . . . , ϕ(n)).

The Shapley value is interpreted as a kind of average value of the con-
tribution of each criterion alone in all coalitions.

Definition 21 (Interaction index) Let v be a fuzzy measure. The inter-
action index for every pair i, j ∈ N is

Iij =
∑

A⊆N\{i,j}

(n− |A| − 2)!|A|!
(n− 1)!

[v(A∪{i, j})−v(A∪{i})−v(A∪{j})+v(A)].

The interaction indices verify Iij < 0 as soon as i, j are positively cor-
related (negative synergy, redundancy). Similarly Iij > 0 for negatively
correlated criteria (positive synergy, complementarity). Iij ∈ [−1, 1] for any
pair i, j.

Note 8 For a submodular fuzzy measure v, all interaction indices verify
Iij ≤ 0. For a supermodular fuzzy measure, all interaction indices verify
Iij ≥ 0.

Definition 22 (Interaction index for coalitions) Let v be a fuzzy mea-
sure. The interaction index for every set A ⊆ N is

I(A) =
∑

B⊆N\A

(n− |B| − |A|)!|B|!
(n− |A|+ 1)!

∑
C⊆A

(−1)|A\C|v(B ∪ C).

Note 9 Clearly I(A) coincides with Iij if A = {i, j}, and coincides with
ϕ(i) if A = {i}.

An alternative to the Shapley value is the Banzhaf index [1]. It measures
the same concept as the Shapley index, but weights the terms [v(A∪{i})−
v(A)] in the sum equally.
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Definition 23 (Banzhaf Index) Let v be a fuzzy measure. The Banzhaf
index bi for every i ∈ N is

bi =
1

2n−1

∑
A⊆N\{i}

[v(A ∪ {i})− v(A)].

Definition 24 (Banzhaf interaction index for coalitions) Let v be a
fuzzy measure. The Banzhaf interaction index between the elements of A ⊆
N is given by

J(A) =
1

2n−|A|

∑
B⊆N\A

∑
C⊆A

(−1)|A\C|v(B ∪ C).

Note 10 Möbius transformation help one to express the indices mentioned
above in a more compact form [8,9,12,14], namely

ϕ(i) =
∑

B| i∈B

1

|B|
M(B),

I(A) =
∑

B|A⊆B

1

|B| − |A|+ 1
M(B),

J(A) =
∑

B|A⊆B

1

2|B|−|A|M(B).

The next result due to Grabisch [8, 9] establishes a fundamental prop-
erty of k-additive fuzzy measures, which justifies their use in simplifying
interactions between the criteria in multiple criteria decision making.

Proposition 1 Let v be a k-additive fuzzy measure, 1 ≤ k ≤ n. Then

• I(A) = 0 for every A ⊆ N such that |A| > k;

• I(A) = J(A) = M(A) for every A ⊆ N such that |A| = k.

Thus k-additive measures acquire an interesting interpretation. These
are fuzzy measures that limit interaction among the criteria to groups of size
at most k. For instance, for 2-additive fuzzy measures, there are pairwise
interactions among the criteria but no interactions in groups of 3 or more. By
limiting the class of fuzzy measures to k-additive measures, one reduces their
complexity (the number of values) by imposing linear equality constraints.
The total number of linearly independent values is reduced from 2n − 1 to∑k

i=1

(
n
i

)
− 1.
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Orness value

The measure of orness, also called the degree of orness, orness value or
attitudinal character, is an important numerical characteristic of averaging
aggregation functions. Basically, the measure of orness measures how far
a given averaging function is from the max function, which is the weakest
disjunctive function. The measure of orness is computed for any averaging
function [5, 6] using

Definition 25 (Measure of orness) Let f be an averaging aggregation
function. Then its measure of orness is

orness(f) =

∫
[0,1]n f(x)dx−

∫
[0,1]n min(x)dx∫

[0,1]n max(x)dx−
∫
[0,1]n min(x)dx

. (2.15)

Clearly, orness(max) = 1 and orness(min) = 0, and for any f , orness(f) ∈
[0, 1]. The calculation of the integrals of max and min functions results in
simple equations∫

[0,1]n
max(x)dx =

n

n+ 1
and

∫
[0,1]n

min(x)dx =
1

n+ 1
. (2.16)

By using the Möbius transform one can calculate the orness of a Choquet
integral Cv with respect to a fuzzy measure v as follows.

Proposition 2 (Orness of Choquet integral) [15] For any fuzzy mea-
sure v the orness of the Choquet integral with respect to v is

orness(Cv) =
1

n− 1

∑
A⊆N

n− |A|
|A|+ 1

M(A),

where M(A) is the Möbius representation of A. In terms of v the orness
value is

orness(Cv) =
1

n− 1

∑
A⊆N

(n− |A|)!|A|!
n!

v(A).

2.5 Sugeno Integral

Similarly to the Choquet integral, Sugeno integral is also frequently used to
aggregate inputs, such as preferences in multicriteria decision making. Var-
ious important classes of aggregation functions, such as medians, weighted
minimum and weighted maximum are special cases of Sugeno integral.
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Definition 26 (Discrete Sugeno integral) The Sugeno integral with re-
spect to a fuzzy measure v is given by

Sv(x) = max
i=1,...,n

min{x(i), v(Hi)}, (2.17)

where x↗ = (x(1), x(2), . . . , x(n)) is a non-decreasing permutation of the in-
put x, and Hi = {(i), . . . , (n)}.

Sugeno integrals can be expressed, for arbitrary fuzzy measures, by
means of the Median function in the following way:

Sv(x) = Med(x1, . . . , xn, v(H2), v(H3), . . . , v(Hn)).

Let us denote max by ∨ and min by ∧ for compactness. We denote by
x ∨ y = z the componentwise maximum of x,y (i.e., zi = max(xi, yi)), and
by x ∧ y their componentwise minimum.

Main properties

• Sugeno integral is a continuous idempotent aggregation function;

• An aggregation function is a Sugeno integral if and only if it is min-
homogeneous, i.e., Sv(x1∧ r, . . . , xn∧ r) = Sv(x1, . . . , xn)∧ r and max-
homogeneous, i.e., Sv(x1 ∨ r, . . . , xn ∨ r) = Sv(x1, . . . , xn) ∨ r for all
x ∈ [0, 1]n, r ∈ [0, 1] (See [13], Th. 4.3. There are also alternative
characterizations);

• Sugeno integral is comonotone maxitive and comonotone minimitive,
i.e., Sv(x ∨ y) = Sv(x) ∨ Sv(y) and Sv(x ∧ y) = Sv(x) ∧ Sv(y) for all
comonotone4 x,y ∈ [0, 1]n.

Calculation

Calculation of the discrete Sugeno integral is performed using Equation
(2.17) similarly to calculating the Choquet integral on p. 10. We take the
vector of pairs ((x1, 1), (x2, 2), . . . , (xn, n)), where the second component of
each pair is just the index i of xi. The second component will help keeping
track of all permutations.

Calculation of Sv(x).

4See footnote 2 on p. 10.
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1. Sort the components of ((x1, 1), (x2, 2), . . . , (xn, n)) with respect to
the first component of each pair in non-decreasing order. We obtain
((x(1), i1), (x(2), i2), . . . , (x(n), in)), so that x(j) = xij and x(j) ≤ x(j+1)

for all i.

2. Let T = {1, . . . , n}, and S = 0.

3. For j = 1, . . . , n do

(a) S := max(S,min(x(j), v(T )));

(b) T := T \ {ij}

4. Return S.

2.6 Constructing fuzzy measures

This section outlines the problem of fitting fuzzy measures to some sort of
empirical data, the observed (or sometimes desired) pairs of input-output
values. In the most typical case, the data comes in pairs (x, y), where
x ∈ [0, 1]n is the input vector and y ∈ [0, 1] is the desired output. There are
several pairs, which will be denoted by a subscript k: (xk, yk), k = 1, . . . ,K.

When the data comes from an experiment, it will normally contain some
errors, and therefore it is pointless to interpolate the inaccurate values yk.
In this case our aim is to stay close to the desired outputs without actually
matching them.

The goal is to find a fuzzy measure v, such that the function f = Cv

approximates yk, f(xk) ≈ yk. The satisfaction of approximate equalities
f(xk) ≈ yk is usually translated into the following minimization problem.

minimize ||r|| (2.18)

subject to f satisfies properties P1,P2, . . . ,

where ||r|| is the norm of the residuals, i.e., r ∈ RK is the vector of the
differences between the predicted and observed values rk = f(xk) − yk.
There are many ways to choose the norm, and the most popular are the
least squares norm

||r||2 =

(
K∑
k=1

r2k

)1/2

,
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the least absolute deviation norm

||r||1 =
K∑
k=1

|rk|,

and the Chebyshev norm

||r||∞ = max
k=1,...,K

|rk|.

It was also suggested that for decision making problems, the actual nu-
merical value of the output f(xk) was not as important as the ranking of the
outputs. For instance, if yk ≤ yl, then it should be f(xk) ≤ f(xl). Indeed,
people are not really good at assigning consistent numerical scores to their
preferences, but they are good at ranking the alternatives. Thus a suitable
choice of aggregation function should be consistent with the ranking of the
outputs yk rather than their numerical values. The use of the mentioned
fitting criteria does not preserve the ranking of outputs, unless they are in-
terpolated. Preservation of ranking of outputs can be done by imposing the
constraints f(xk) ≤ f(xl) if yk ≤ yl for all pairs k, l.

In the case when f is the Choquet integral with respect to a fuzzy
measure v, Cv, our goal is to identify the values of v from the data set
(xk, yk), k = 1, . . . ,K. Identification of the 2n− 2 values from the data (two
are given explicitly as v(∅) = 0, v(N) = 1) involves the least squares or least
absolute deviation problems

minimize
K∑
k=1

(Cv(x1k, . . . , xnk)− yk)
2 , or

minimize

K∑
k=1

|Cv(x1k, . . . , xnk)− yk| ,

subject to the conditions of monotonicity of the fuzzy measure (they trans-
late into a number of linear constraints, see below).

We concentrate on the least absolute deviation problem, because a) it
is less sensitive to outliers, and b) it can be translated into a linear pro-
gramming problem, which can be solved quickly and reliably even in the
case of a very large number of parameters and constraints. Note that the
main difficulty in fitting fuzzy measures is the large number of unknowns,
and typically a much smaller number of data [10], for instance when n = 15,
2n − 2 = 32766.
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Importance and interaction indices

The interaction indices defined in Section 2.4 are all linear functions of the
values of the fuzzy measure. Conditions involving these functions can be
expressed as linear equations and inequalities.

One can specify given values of importance (Shapley value) and interac-
tion indices ϕ(i), Iij (see p. 17) by adding linear equality constraints. Of
course, these values may not be specified exactly, but as intervals, say, for
Shapley value we may have ai ≤ ϕ(i) ≤ bi. In this case we obtain a pair of
linear inequalities.

k-additivity

Recall that Definition 16 specifies k-additive fuzzy measures through their
Möbius transform

M(A) = 0

for any subset A with more than k elements. Since Möbius transform is a
linear combination of values of v, we obtain a set of linear equalities. By
using interaction indices, we can express k-additivity as (see Proposition 1)
I(A) = 0 for every A ⊆ N , |A| > k, which is again a set of linear equalities.

However, these conditions on the fuzzy measures do not reduce the com-
plexity of the least squares or least absolute deviation problems. They only
add a number of equality and inequality constraints to these problems. How-
ever, it is possible to reduce the complexity of the problem when working in
Möbius representation.

As the variables we will use mj = mA = M(A) such that |A| ≤ k
in some appropriate indexing system, such as the one based on cardinality
ordering on p. 11. This is a much reduced set of variables (

∑k
i=1

(
n
i

)
− 1

compared to 2n − 2). Now, monotonicity of a fuzzy measure, expressed as

v(A ∪ {i})− v(A) ≥ 0, ∀A|i ̸∈ A, i = 1, . . . , n,

converts into (2.1), and using k-additivity, into∑
B⊆A|i∈B,|B|≤k

mB ≥ 0, for all A ⊆ N and all i ∈ A.

The (non-redundant) set of non-negativity constraints v({i}) ≥ 0, i = 1, . . . , n,
is a special case of the previous formula when A is a singleton, which simply
become ∑

B={i}

mB = m{i} ≥ 0, i = 1, . . . , n.
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Finally, condition v(N ) = 1 becomes
∑

B⊆N||B|≤k

mB = 1.

Then the least absolute deviation problem is translated into a simplified
optimization problem

minimize
K∑
j=1

∣∣∣∣∣∣
∑

A| |A|≤k

hA(xj)mA − yj

∣∣∣∣∣∣ , (2.19)

s.t.
∑

B⊆A|i∈B,|B|≤k

mB ≥ 0,

for all A ⊆ N , |A| > 1, and all i ∈ A,

m{i} ≥ 0, i = 1, . . . , n,∑
B⊆N||B|≤k

mB = 1,

where hA(x) = min
i∈A

xi. Note that only the specified mB are non-negative,

others are unrestricted. The number of monotonicity constraints is the same
for all k-additive fuzzy measures for k = 2, . . . , n.

The problem (2.19) will be subsequently converted to a linear program-
ming problem (LP) using the following technique. Let rj = f(xj) − yj be
the j− th residual. We represent it as a difference of a positive and nega-
tive parts rj = r+j − r−j , r

+
j , r

−
j ≥ 0. The absolute value is |rj | = r+j + r−j .

Now the problem (2.19) is converted into an LP problem with respect to
m, r+, r−

minimize
K∑
j=1

(r+j + r−j ), (2.20)

s.t.
∑

A| |A|≤k

hA(xj)mA −(r+j − r−j ) = yj , j = 1, . . . ,K

other constraints from (2.19),

r+j , r
−
j ≥ 0.

Similar problems are set for fitting k-maxitive and k-tolerant fuzzy mea-
sures, however fitting k-maxitive fuzzy measures requires solving a mixed
integer programming problem MIP, which could be expensive computation-
ally, hence relaxation techniques can be used here for larger n.

In the next Chapter we spell out the exact formulation of the LP prob-
lem, in which we also take into account the optional constraints on Shapley
values, interaction indices, orness value and preservation of output ordering
condition.



Chapter 3

Computational methods

3.1 Representations of set functions

When dealing with discrete set functions, like discrete fuzzy measures, on a
computer, it is important to encode the 2n values of such functions vA in
some array. Typically one uses either binary or cardinality orderings on p.11,
and both orderings are best suited for different purposes. It is convenient
to use both orderings at the same time, and have a conversion mechanism,
for example a lookup table.

A discrete set is conveniently encoded as a binary string, which can be
represented by an unsigned integer on a computer (e.g., in C language).
The i-th bit of such integer indicates the presence or absence of the i-th
element in a set. Sets of up to 32 elements can be efficiently encoded on
32-bit computers into a single integer, and of course arrays of integers can
be used for sets with more elements.

Bitwise operations on integers allow one to calculate easily set union,
intersection, complement, determine whether a set is a subset of another
one and so on. In Rfmtool library there are a number of routines that
perform these operations.

We have also seen in the previous Chapter that the standard and Möbius
representations of set functions can be used for various calculation, and
sometimes one is preferred to another because of computational efficiency.
Thus conversion routines (the Möbius and Zeta transforms) are essential.

25
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3.2 Basic manipulations and tests

Fuzzy measures can be characterized by various indices, such as interaction
indices, and can belong to specific classes, such as sub or super-additive.
Rfmtool implements a number of calculation routines and tests, in particu-
lar:

1. Calculation of Shapley values;

2. Calculation of Banzhaf indices;

3. Calculation of all interaction indices;

4. Calculation of all Banzhaf interaction indices;

5. Calculation of the dual fuzzy measure;

6. Calculation of the orness value of the Choquet integral;

7. Calculation of the entropy of the Choquet integral;

8. Tests whether a fuzzy measure is:

• Balanced;

• Self-dual;

• Subadditive;

• Superadditive;

• Additive;

• Submodlar;

• Supermodular;

• Symmetric;

• k-maxitive.

Tests are performed with a given tolerance. For numerical efficiency
reasons, certain quantities (like ordering conversion tables, tables of sets
cardinalities and factorials) are pre-computed for a given n, at the initial-
ization stage. Rfmtool uses the formulas presented in Sections 2.3 and 2.4
using the standard and the Möbius representations interchangeably. For
Sugeno fuzzy measures it also computes the value of λ (given the values of
v at singletons).

Rfmtool also implements an efficient calculation of the Choquet and
Sugeno integrals as described on p. 10 and p. 20.
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3.3 Fitting fuzzy measures to data

Throughout this section n will denote the dimensionality of the space, and
K will denote the size of the data set. We are given a data set representing
the values of an unknown function f For example, when n = 4 we have

x1 x2 x3 x4 y
x11 x12 x13 x14 y1
x21 x22 x23 x24 y2
x31 x32 x33 x34 y3

.

.

.
xK1 xK2 xK3 xK4 yK

The goal is to identify a fuzzy measure v, such that the corresponding
Choquet integral f = Cv predicts the outputs yk as close as possible in the
least absolute deviation sense. This is done by solving a linear programming
problem (2.20). In addition, optional conditions on the bounds of interac-
tion indices, Shapley values or orness value are also incorporated as linear
constraints.

The problem is set in Möbius representation. To obtain a standard LP
formulation, equality constraints are represented by pairs of inequality con-
straints, and unconstrained variables (in Möbius representation only the val-
ues corresponding to singletons are non-negative) are replaced with pairs of
non-negative variables (the positive and negative parts of the unconstrained
variable). The decision variables are:

r+1 , . . . , r
+
K , r−1 , . . . , r

−
K︸ ︷︷ ︸

residuals

,m1,m2, . . . ,mn︸ ︷︷ ︸
singletons

,m+
12, . . . ,m

+
12...n,m

−
12, . . . ,m

−
12...n︸ ︷︷ ︸

positive and negative parts of
other values

.

If the fuzzy measure is assumed to be k-additive, then in Möbius repre-
sentation values corresponding to subsets of cardinality greater than k are 0.
These decision variables (from the third group) are explicitly excluded from
the problem formulation, which is the key to reducing its complexity. For
instance, for 2-additive fuzzy measures we will have the decision variables

r+1 , . . . , r
+
K , r−1 , . . . , r

−
K︸ ︷︷ ︸

residuals

,m1,m2, . . . ,mn︸ ︷︷ ︸
singletons

,m+
12, . . . ,m

+
n−1,n,m

−
12, . . . ,m

−
n−1,n︸ ︷︷ ︸

positive and negative parts of
other values, up to {n− 1, n}

.

An instance of a complete problem formulation is presented in Table.3.1.
For numerical efficiency purposes, a dual of this LP problem is actually
solved in Rfmtool, because when the fuzzy measure is k-additive, the number
of variables is much less than that of constraints.
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Fitting k-tolerant fuzzy measures can be done by solving the following
LP in the standard representation v (not Möbius).

minimize
K∑
j=1

r+j + r−j , (3.1)

s.t. r+j − r−j =
∑
A

v(A)gA(xj)− yj data fitting

v(A) ≥ v(A \ {i}), ∀i ∈ A for all A ⊆ N, |A| ≤ k, monotonicity

v(A) = 1, for all A, |A| ≥ k. k-tolerance,

where the functions gA are

gA(x) = max(0,min
i∈A

xi − max
i∈N\A

xi). (3.2)

Fitting k-maxitive fuzzy measure is performed by solving MIP

minimize
K∑
j=1

r+j + r−j , (3.3)

s.t. r+j − r−j −
∑
A

v(A)gA(xj) = −yj data fitting

v(A)− v(A \ {i}) ≥ 0, ∀i ∈ A for all A ⊆ N, monotonicity

v(A)− v(A \ {i})− c(A, i) ≤ 0, ∀i ∈ A and |A| > k, k-maxitivity∑
i∈A c(A, i) ≤ |A| − 1, for all A ⊆ N, |A| > k, at least one active

v(N) = 1, c(A, i) ∈ {0, 1}. constraint.

The binary variables c(A, i) indicate for which i we have equality v(A) =
v(A \ {i}).

We also implemented an alternative MIP relaxation heuristic for n > 6
or n − k > 3 as follows. We solve the problem in two steps. At Step 1 we
solve a relaxation to (3.3) in which c(A, i) were not required to be binary
(the restriction was c(A, i) ∈ [0, 1]). We then used the optimal solution for
c(A, i) to fix the k-maxitivity constraints for every A, |A| > k. Namely, for
every fixed A we selected i ∈ A which corresponded to the smallest value
c(A, i) in the optimal solution to the relaxed problem. We then fixed that
variable c(A, i) = 0, meaning active constraint v(A) = v(A \ {i}). At Step
2 we solved LP (3.3) without requiring c(A, i) to be binary, but fixing some
of its values at 0 according to our selection above.
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Chapter 4

Description of the library

4.1 Installation

Installation of Rfmtool package is standard: the user just needs to install
the package from CRAN or from a local file

R CMD INSTALL Rfmtool 2.0.0.tar.gz

4.2 Description of the functions in R package Rfmtool

fm()

The function prints the list of all functions implemented in the Rfmtool package.

fm.test()

This function tests the correctness of installation by running tests for all functions
included in the package.

Operations on fuzzy measures

The first operation should always be initialisation. The internal structures are
precomputed for n variables and saved in the environment variable.

fm.Init(n)

The function computes the internal structures for n variables. The output is passed
to the subsequent operations. Example:

env<-fm.Init(3)

The following functions involve the parameters v (the array containing the fuzzy measure in
standard representation) or Mob (in Möbius representation), env - the environment
variable set to n variables. The values of the fuzzy measure always obey the binary
ordering.

fm.Choquet(x, v, env)
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The function computes and returns the value of the Choquet integral of x, wrt
fuzzy measure v (eq.(2.3)). The environment variable env is precomputed in the
fm.Init function. x ∈ [0, 1]n, v ∈ [0, 1]m. Example:
r <- fm.Choquet(c(0.6,0.3,0.8),c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),env)

fm.ChoquetMob(x, Mob)

The function computes and returns the value of the Choquet integral of x, wrt
fuzzy measure given in Möbius representation Mob (eq.(2.4)). Example:
r <- fm.ChoquetMob(c(0.6,0.3,0.8),c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1),

env)

fm.Sugeno(x, v, env)

Calculates the value of the Sugeno integral of x, wrt fuzzy measure v (eq.(2.17)).
Example:
r <- fm.Sugeno(c(0.6,0.3,0.8),c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.SugenoMob(x, Mob, env)

Calculates the value of the Sugeno integral of x, wrt the fuzzy measure in Möbius
representation Mob (eq.(2.17)). Example:
r <- fm.SugenoMob(c(0.6,0.3,0.8),c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1),

env)

fm.OrnessChoquet(v, env)

Calculates the orness value of the Choquet integral wrt fuzzy measure v in general
representation. Example:
r <- fm.OrnessChoquet(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.OrnessChoquetMob(Mob, env)

Calculates the orness value of the Choquet integral wrt fuzzy measure v given its
Möbius representation Mob. Example:
r <- fm.OrnessChoquetMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.EntropyChoquet(v, env)

Calculates the entropy value of the Choquet integral wrt fuzzy measure v in stan-
dard representation. Example:
r <- fm.EntropyChoquet(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.EntropyChoquetMob(Mob, env)

Calculates the entropy value of the Choquet integral wrt fuzzy measure in Möbius
representation Mob. Example:
r <- fm.EntropyChoquetMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.Mobius(v, env)

Calculates the Möbius representation of v. Example:
Mob <- fm.Mobius(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.Zeta(Mob, env)

Calculates the inverse Möbius representation of a fuzzy measure, i.e. the standard
representation. Example:
v <- fm.Zeta(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.Shapley(v, env)
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Calculates the Shapley values of v in standard representation and returns it as an
array of size n. Example:
x <- fm.Shapley(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.ShapleyMob(Mob, env)

Calculates the Shapley values of Mob in Möbius representation and returns it as
an array of size n. Example:
x <- fm.ShapleyMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.Banzhaf(v)

Calculates the Banzhaf values of v in standard representation and returns it as an
array of size n. Example:
x <- fm.Banzhaf(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.BanzhafMob(Mob, env)

Calculates the Banzhaf values of Mob in Mobius representation and returns it as
an array of size n. Example:
x <- fm.BanzhafMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.Interaction(v, env)

Calculates all the interaction indices of fuzzy measure v in standard representation
and returns it in an array of size m. Example:
w <- fm.Interaction(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.InteractionMob(v, env)

Calculates all the interaction indices of fuzzy measureMob in Möbius representation
and returns it in an array of size m. Example:
w <- fm.InteractionMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.InteractionB(v, env)

Calculates all the Banzhaf interaction indices of fuzzy measure v given in standard
representation and returns the result in an array of size m.
w <- fm.InteractionB(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.InteractionBMob(Mob, env)

Calculates all the Banzhaf interaction indices of fuzzy measure Mob in Möbius
representation and returns the result in an array of size m.
w <- fm.InteractionBMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.dualm(v, env)

Calculates the dual of fuzzy measure v in standard representation and returns it in
an array of size m. Example:
w <- fm.dualm(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.dualmMob(Mob, env)

Calculates the dual of fuzzy measure Mob in Möbius representation and returns it
in an array of size m. Example:
w <- fm.dualm(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.ConstructLambdaMeasure(singletons, env)

Given the values of a fuzzy measure at singletons, finds the value of λ, computes
all other values of the fuzzy measure in standard representation, and returns the
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pair (λ, v), where v is an array of size m. The input array singletons is an array
of size n of the values of fuzzy measure at singletons. Example:
(lambda, v) <- fm.ConstructLambdaMeasure(c(0, 0.3, 0.5), env)

fm.ConstructLambdaMeasureMob(Mob, env)

Given the values of a fuzzy measure at singletons, finds the value of λ, computes all
other values of the fuzzy measure in Möbius representation, and returns the pair
(λ,Mob), where v is an array of size m. The input array singletons is an array of
size n of the values of fuzzy measure at singletons. Example:
(lambda, Mob) <- fm.ConstructLambdaMeasure(c(0, 0.3, 0.5), env)

The following routines are self-explanatory. They return 1 if yes, 0 if no. The input
parameters are: fuzzy measure v in standard representation and fuzzy measure
Mob in Möbius representation.

IsMeasureAdditive(v, env)

IsMeasureAdditiveMob(Mob, env)

IsMeasureBalanced(v, env)

IsMeasureBalancedMob(Mob, env)

IsMeasureSelfdual(v, env)

IsMeasureSelfdualMob(Mob, env)

IsMeasureSubadditive(v, env)

IsMeasureSubadditiveMob(v, env)

IsMeasureSubmodular(v, env)

IsMeasureSubmodularMob(Mob, env)

IsMeasureSuperadditive(v, env)

IsMeasureSuperadditiveMob(Mob, env)

IsMeasureSupermodular(v, env)

IsMeasureSupermodularMob(Mob, env)

IsMeasureSymmetric(v, env)

IsMeasureSymmetricMob(Mob, env)

IsMeasureKmaxitive(v, env) (returns k);
IsMeasureKmaxitiveMob(Mob, env) (returns k).

4.3 Description of fuzzy measure fitting routines

The package contains six functions taking taking the empirical data, some options,
and returning the (k-additive) fuzzy measure

fm.fitting([emprical data], [env], [k-additive])

Returns fuzzy measure fitted to data in standard representation.
fm.fittingMob([emprical data], [env], [k-additive])

Returns fuzzy measure fitted to data in Möbius representation.
fm.FuzzyMeasureFitLP([emprical data], [env], [k-additive], [other options])

Returns fuzzy measure fitted to data in standard representation, with optional
constraints on the orness measure and the upper and lower values of Shapley values
and interaction indices.

fm.FuzzyMeasureFitLPMob([emprical data], [env], [k-additive], [other options])
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Returns fuzzy measure in Möbius representation fitted to data in standard repre-
sentation, with optional constraints on the orness measure and the upper and lower
values of Shapley values and interaction indices.

fm.fittingKtolerant([emprical data], [env], [k-tolerant])

Returns k-tolerant fuzzy measure fitted to data in standard representation, with
no optional constraints.

fm.fittingKmaxitive([emprical data], [env], [k-maxitive])

Returns k-maxitive fuzzy measure fitted to data in standard representation, with
no optional constraints.

fm.fittingOWA([emprical data], [env])

Returns symmetric fuzzy measure fitted to data. The vector of OWA weights is
returned as in this case the Choquet integral becomes the OWA function.

fm.fittingWAM([emprical data], [env])

Returns additive fuzzy measure fitted to data. The vector of WAM weights is
returned as in this case the Choquet integral becomes the WAM function.

List of parameters and options of the FuzzyMeasureFitLP function.
fm.FuzzyMeasureFitLP(data, env, kadd, indexlo, indexhigh, options, option1,

orness)

data - an array of size K× (n+1), where each row is the pair (xk, yk), xk ∈ [0, 1]n,
yk ∈ [0, 1], K data altogether.
Kadd - k in k-additive fuzzy measures, 1 < Kadd < n + 1, if Kdd = n - f.m. is
unrestricted.

options (default value is 0)

• 1 - lower bounds on Shapley values supplied in indexlow

• 2 - upper bounds on Shapley values supplied in indexhigh

• 3 - lower and upper bounds on Shapley values supplied in indexlow and
indexhigh

• 4 - lower bounds on all interaction indices supplied in indexlow

• 5 - upper bounds on all interaction indices supplied in indexhigh

• 6 - lower and upper bounds on all interaction indices supplied in indexlow
and indexhigh.

all these value will be treated as additional constraints in the LP.

indexlow, indexhigh - array of size n (options =1,2,3) or m (options=4,5,6) con-
taining the lower and upper bounds on the Shapley values or interaction indices

options1 (default 0) is a flag whose bits indicate which additional properties are
needed. If the first bit is set then the desired interval of orness values specified in
array orness will be used. If the second bit is set, then the f.m. will be forced to
be balanced (currently not implemented). If the third bit is set, then in addition
to fitting the data, the order of output values will be preserved.

If the fourth bit is set, the fuzzy measure will be forced to be sub-modular.
This option is new in version 1.2.
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Note that this constraint may lead to inconsistent set of conditions, in which case the
problem will have no solution (and no output vector returned).

orness - array of size 2 which contains the lower and the upper bounds on the
orness value. These values should be from [0,1], and could coincide if an exact
orness value is needed. If the bounds are 0 and 1 respectively they are ignored.
Only used if the first bit of options1 is set.

Notes: 1. arrays indexlow and indexhigh are 0-based if they contain Shapley values
(i.e., the bound on Shapley value of the first input is in indexlow[0], etc. but when
these arrays contain interaction indices, these are 1-based (since there is a non-zero
value of the interaction index corresponding to empty set). In this case the bounds
are arranged in cardinality order, i.e., the bounds correspond to the sets in this
ordering (for n=3) ∅{1}{2}{3}{12}{13}{23}{123}.
2. If an exact value of some index or Shapley value is needed, use indexlow[i] =
indexhigh[i] = thisvalue if no value for some index is required, use indexlow[i] =
−1, indexhigh[i] = 1.
3. Note that Shapley values have range [0,1], whereas interaction indices have range
[-1,1].
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4.4 Examples

library("Rfmtool")

#initialisation for dimension 3

env<-fm.Init(3)

#prepare some data

dcol<-3

drow<-10

mydata<-matrix(runif(dcol*drow,0,1),drow,dcol)

#generate some lambda fuzzy measure

mymeasure<-fm.ConstructLambdaMeasure(c(0.1,0.1,0.9),env)

# calculate choquet integrals of the data

mych<-apply(mydata,1,function(x) fm.Choquet(x, mymeasure$measure, env))

datafit<-cbind(mydata,mych)

# now fit the measure to the data (we should get back the same

# fuzzy measure we used as a model)

fittedm<-fm.fitting(datafit,env);

mymeasure

fittedm

#check some properties of fuzzy measures

fm.IsMeasureAdditive(fittedm,env);

fm.IsMeasureSubadditive(fittedm,env);

# alternative fitting calls

fittedowa<-fm.fittingOWA(datafit,env);

fittedkmax<-fm.fittingKmaxitive(datafit,env,2);

fittedktol<-fm.fittingKtolerant(datafit,env,2);



38 CHAPTER 4. DESCRIPTION OF THE LIBRARY

4.5 Where to get help

The software library rfmtool and its components, are distributed by G.Beliakov
AS IS, with no warranty, explicit or implied, of merchantability or fitness for
a particular purpose. G.Beliakov, at his sole discretion, may provide advice
to registered users on the proper use of rfmtool and its components.

Any queries regarding technical information, sales and licensing should
be directed to gleb@deakin.edu.au. I am interested to learn about your
experiences using fmtool, bugs, suggestions, its usefulness, applying it in
practice and so on.

If you want to cite Rfmtool package, use references [2–4].
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