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Abstract

The R package SAEforest promotes the use of Mixed Effects Random Forests (MERF's)
for applications of Small Area Estimation. The package effectively combines functions
for the estimation of spatially disaggregated linear and non-linear indicators using sur-
vey sample data. Models increase the precision of direct estimates from survey data,
combining unit-level or aggregated covariate information from auxiliary data. Included
procedures facilitate the estimation of domain-level economic and inequality metrics and
assess associated uncertainty. The package provides procedures to simplify the analy-
sis of model performance of MERFs and enables the visualization of predictive relations
from covariates. Additionally, the package includes a function for fine-tuning of required
hyper-parameters. General emphasis lies on straightforward interpretation and mapping
of results.

Keywords: official statistics, mixed effects random forests, small area estimation, poverty
mapping.

1. Introduction

Reliably measurable metrics are imperative to monitor demographic, economic and social de-
velopment. Typically national statistical offices produce and administer elaborate statistical
indicators based on survey data. With increasing availability of (alternative) data sources,
research institutes and multilateral organizations aim to quantify precise information at a
finer geographical resolution. The terms ‘domain’ or ‘area’ define separate entities within a
joint population, such as (but not limited to) districts within a country. Many surveys are
designed to produce accurate estimates at national (or sub-national levels). With deliberated
disaggregation of domains, the accuracy of direct estimates decreases with domain-specific
sample sizes and model-based small area estimation (SAE) offers promising tools. By com-
bining auxiliary data sources via models with survey data, SAE methods implicitly increase
the effective precision of domain-specific indicators of target variable y;;. Overviews of exist-
ing methods for SAE are found in Pfeffermann (2013), Rao and Molina (2015) or Tzavidis
et al. (2018).

Predominant models for SAE are conceptualized within the regression-setting and the major-
ity relies on linear mixed models (LMM) to account for the hierarchical structure of survey
data (Rao and Molina 2015). The predictive performance of parametric models relies on the
fulfilment of (Gaussian) model-assumptions, but economic and inequality data is often highly
skewed and characterized by deviations from the normal distribution. Jiang and Rao (2020)
maintain that methodological improvements in SAE must focus on robustification of models
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against model-failure (e.g. providing insurances against model-misspecification, valid vari-
able selection and the effective handling of outliers). Optimality results of parametric LMMs
depend on the validity of model-assumptions, which becomes challenging for applications
dealing with social and economic inequality data. Existing strategies to cope with deviations
from (Gaussian) assumptions are, for instance, (data-driven) transformation strategies of the
dependent variable (Molina and Martin 2018; Sugasawa and Kubokawa 2019; Rojas-Perilla
et al. 2020) or less restrictive assumptions on unit-level models (Diallo and Rao 2018; Graf
et al. 2019). In the presence of outliers, means can be determined using robustified LMMs
(Sinha and Rao 2009) or M-quantile approaches (Chambers and Tzavidis 2006), which esti-
mate non-linear indicators without a formal specification of random effects (Tzavidis et al.
2010; Marchetti and Tzavidis 2021). Opsomer et al. (2008) use penalized splines regression for
the estimation of are-level means, dealing with non-linearities by treating spline coefficients
as additional random effects.

Machine learning methods offer non-linear and nonparametric alternatives, combining excel-
lent predictive performance and a reduced risk of model-misspecification. Krennmair and
Schmid (2022) introduce mixed effects random forests (MERF) as versatile tools for appli-
cations in model-based SAE. MERFs combine advantages of regression forests (e.g. implicit
model-selection and robust predictive performance in the presence of outliers) with the abil-
ity to model hierarchical dependencies. Package SAEforest provides a coherent user-friendly
framework facilitating the use of MERFs for the estimation of spatially disaggregated (non-
)linear indicators and their respective uncertainty, measured by reliable mean squared errors
(MSE).

In recent years, ongoing methodological contributions in (model-based) SAE are increasingly
complemented by the development of open-source R-packages. I aim to give a comprehensive
overview of existing SAE related packages on the Comprehensive R Archive Network (CRAN)
focussing on unit-level models. Moreover, I aim to discuss existing packages dealing with
random forests under dependent data sources, to motivate the functionality of the SAEforest
package:

The package sae (Molina and Marhuenda 2015) offers a suitable collection of SAE methods for
point and uncertainty estimates for area and unit-level models. Package emdi (Kreutzmann
et al. 2019) focusses on the estimation of disaggregated economic and inequality indicators
(and respective uncertainty) and insures against model-misspecification implementing an EBP
under data-driven transformations (Rojas-Perilla et al. 2020). The package treats the EBP
by Molina and Rao (2010) as a special case and combines computationally efficient methods
with a genuine workflow on data processing and presentation of results. Additional packages
for unit-level survey data are package JoOSAE (Breidenbach 2018), which focuses on models
coping with heteroskedasticity. From a Bayesian perspective, the package hbsae (Boonstra
2012) combines functions for various unit- and area-level models, bridging frequentist and
Bayesian perspectives. A complete Bayesian workflow for the estimation demographic and
health indicators is found in package SUMMER (Li et al. 2021). Outlier-robust estimators
from a Bayesian perspective are provided by package robustsae (Ghosh et al. 2016) and from
a more frequentist perspective by saeRobust (Warnholz 2018) or the rsae package Schoch
(2014).

Existing packages for dependent data and tree-based machine learning methods are not con-
cerned with topics of SAE and hardly focus on inference. The package LongituRF (Capitaine
2020), bundles functions that allow for time-invariant covariance structures and rely on a
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semi-parametric unit-level mixed model for regression trees and forests. Although the pri-
mary focus of package MixRF (Wang and Chen 2016) is the imputation of clustered and
incomplete data, the package comprises a genuine function, with which MERFs can be esti-
mated. Functions from package RandomForestGLS (Saha et al. 2021) model spatial random
effects as Gaussian processes by developing dependency adjusted split-criteria handling de-
pendent error processes similarly to generalized least squares. Package splinetree (Neufeld
and Heggeseth 2019), builds regression trees and random forests for longitudinal or dependent
data using a spline projection method.

The major aim of package SAEforest is the provision of a complete and coherent use of
MERFs for SAE. Current packages with a focus on random forests for dependent data are
not intended to estimate SAE indicators and associated measures of uncertainty. On the other
hand, existing unit-level SAE packages neglect tree-based methods. The use of MERF's in
SAE promotes general flexibility for domain-level predictions and package SAEforest combines
methods on the estimation of point and MSE estimates for various indicators.

Implemented estimators rely on the empirical and methodological contributions introducing
MERFs for SAE of means by Krennmair and Schmid (2022), for non-linear indicators by
Krennmair et al. (2022a) as well as in the case of aggregated auxiliary information by (Kren-
nmair et al. 2022b). The flexibility of the package does not only stem from methodological
aspects, but from the provision of a genuine workflow for practitioners of SAE. SAEforest puts
emphasis on the integration of methods and generic functions that facilitate the summary and
visualization of results. Additionally, predefined tools for diagnostics and the tuning of MERF
hyper-parameters are available, such as the number of trees (num.trees) or the number of
randomized split-candidates at each node (mtry). Implemented functions for MERFs are
easily adaptable and allow for potential extensions to advanced patterns of correlation and
multilevel structures.

The paper is organized as follows: Section 2 provides an overview of the statistical method-
ology used in the package. This includes a formal introduction to MERFSs, details on the
estimation of domain-level means with unit-level and aggregated covariates, as well as the
estimation of non-linear indicators and corresponding MSEs. Section 3 describes data sources
used as examples in the package. The core functionality of the package and its features are
explained in Section 4. Section 5 summarizes methods and results and raises ideas for further
research.

2. Statistical Methodology

This section introduces a general mixed model enabling a simultaneous discussion of tradi-
tional LMM-based models in SAE, such as the nested error regression model of Battese et al.
(1988) and semi-parametric interpretations, such as the model of Krennmair and Schmid
(2022) using MERFs. Machine learning methods are popular alternatives for predictive mod-
elling in various scientific disciplines (Varian 2014; Efron 2020). Tree-based, data-driven
prediction algorithms (such as random forests (Breiman 2001)) combine flexible modelling
properties without explicit model assumption. Moreover, they identify complex higher-order
relations in covariates and show robustness properties in the presences of outliers (Hastie et al.
2009; Biau and Scornet 2016). Thus, random forests contribute to the robustification of mod-
els against model-failure (Jiang and Rao 2020). In order to become a genuine tool for SAE,
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predictive data-driven procedures must meet basic premises of survey and inference theory,
such as the handling of hierarchically dependent data structures and measures of uncertainty
for produced indicators.

In the following subsections, we will discuss the estimation of reliable domain-specific statisti-
cal indicators from survey data using MERFs and focus on their respective MSEs. Additional
emphasis lies on the estimation of area-level means without population micro-data. The
methods introduced are illustrated as part of an example on synthetic Austrian income data
in Section 4 and rely on the theoretical and empirical methods provided by Krennmair and
Schmid (2022) and Krennmair et al. (2022b) for means and Krennmair et al. (2022a) for
non-linear indicators.

2.1. A general mixed effects model for SAE and MERFs

We assume a finite population U of size N consisting of D domains Ui, Us,...,Up with
N1, Na, ..., Np units, where index ¢ = 1,..., D denotes respective areas. For every individ-
ual observation j in area i in the sample, we observe the continuous target variable y;;. We
draw sample s of size n from population U and sampled observations are assigned to D re-
spective areas resulting in sample sizes ny,ns, ...,np. A sub-sample from area ¢ is denoted by
s; and corresponding non-sampled observations are denoted by r;. The p predictive covariates
X;j = (x1,22,...,2p)T are assumed to be available for every unit within the sample s. The
following general mixed effects regression model describes the relationship between x;; and
Yij:

yi; = f(xij) +u; +e;; with w; ~ N(0,02) and e;; ~ N(0,02). (1)
Function f(x;;) models the conditional mean of y;; given x;;. The hierarchical structure of
observations is captured by area-specific random intercepts u; and we assume independence
between u; and unit-level errors e;;.

For instance, defining f(x;;) = XZ-T]ﬂ with 8 = (b1, ..., 8p)7 resembles the definition of the
nested error regression model by Battese et al. (1988), which serves as basis for a majority
of unit-level SAE-models. Well known examples are the EBP by Molina and Rao (2010)
or the EBP under data-driven transformations by Rojas-Perilla et al. (2020). Under known
optimality results of LMMs, optimal estimates of fixed effects 3 and variance components
62,62 are obtained by maximum likelihood (ML) or restricted maximum likelihood (REML)
(Rao and Molina 2015).

We combine predictive advantages of random forests with the ability to model hierarchical
structures of survey data with random effects by defining f in Model 1 to be a random forest
(Breiman 2001). Resulting MERFSs rely on a procedure reminiscent of the EM-algorithm
(Hajjem et al. 2014) to obtain optimal estimates on model-components f, U, 65, and &3.
The proposed MERF algorithm fits parameters for Model 1 (where f is a random forest) by
iteratively estimating a) the forest function, assuming the random effects term to be correct
and b) the random effects part, assuming the Out-of-Bag-predictions (OOB-predictions) from
the forest to be correct. OOB-predictions correspond to the unused observations in the
internal bootstrap step prior to the construction of each forest’s sub-tree (Breiman 2001;
Biau and Scornet 2016). We estimate variance components 62 and &2 by implicitly taking
the expectation of ML estimators given the data. Computationally, the MERF algorithm is
implemented in the function MERFranger of SAEforest. Note that step a) is realized using
package ranger (Wright and Ziegler 2017), while the estimation of variance components and
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random effects builds on package Ime4 (Bates et al. 2015). The convergence of the algorithm
is monitored by marginal changes of log-likelihood of the composite semi-parametric model.
For further methodological details, we refer to Krennmair and Schmid (2022). The proposed
estimator for model-based predictions is given by:

2

MERF L g o 1 ;00B
Fij = f(xij) + i =f(xi5) + 575‘1‘7;3/7% " j%;(yij — 7 (xi) | (2)

2.2. Flexible Domain prediction of Means under unit-level and aggregated level
covariates

The predictions ,uMERF (2) depend on auxiliary unit-level information to estimate unit-level

conditional means for the continuous dependent variable. In the context of SAE, however,
researchers are mainly interested in estimating and mapping indicators such as area-level
means or metrics measuring income deprivation and inequality (Rao and Molina 2015). For
now, we will focus on the construction of area-level means depending on the availability of
unit-level or aggregated auxiliary covariate information. The construction of domain-specific
cumulative distribution functions (CDFs) from which non-linear indicators can be obtained
will be discussed in Section 2.3.

For unit-level (i.e. x;j) supplementary data (usually census or administrative data), we cal-
culate the mean-estimator for each area i by:

~2

MERF z o 1 :00B
i fz(xw) + Gy =fi(xq5) + m mg(yzj —f (xij)) | 5 (3)

where f2 Xij) N Z f Xij).-

Jjeu;

We exploit the fact that random forest estimates of the fixed part f() express the conditional
mean on unit-level and that 4, is the BLUP for the linear part of Model 1 (Krennmair and
Schmid 2022). For non-sampled areas, the proposed estimator for the area-level mean reduces
to the fixed part from the random forest:

fii = f(xi)-

The access to auxiliary population micro-data for covariates imposes a limitation for re-
searchers and practitioners. As a direct consequence of non-linearity and non-continuity of
random forests, we observe that f(X;) # fi(x;;) and aggregated auxiliary information cannot
directly be processed into predictions on y; in Equation 2. Krennmair et al. (2022b) solve
this issue by incorporating aggregate census-level covariate information through calibration
weights w;j, balancing unit-level predictions from MERFs in Equation 2 in coherence with
the area-wise covariate means from census data. In short, the estimator for area-level means
under limited auxiliary information is given by:

AMERFagg wa[ (xi5) —le}. (4)
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The optimal estimates from survey data for required model-components f and 4; using the
MERF algorithm are similar to Equation 2. The x;; for Estimator 4 are unit-level covariates
from the survey and population-level auxiliary information is incorporated through optimal
calibration weights w;; maximizing the profile empirical likelihood (EL) function H;”:l Wi
under the following three constraints:

N (X — R ) = itori Wi ;
e > ity wij(Xij — Xpop,i) = 0, monitoring the area-wise sum of distances between survey
data and the population-level mean, denoted as Xqp i, for auxiliary covariates;

e w;; > 0, preventing the cancellation of weights;
. 2?1:1 w;; = 1, ensuring the normalization of weights.

The Lagrange multiplier method is suitable to find optimal weights (Owen 1990, 2001) and
Krennmair et al. (2022b) discuss technical conditions for the feasibility of solutions in the
context of SAE and propose a best practice strategy that is implemented in this package.

Irrespectively of the quality of auxiliary data sources (aggregated or unit-level), the function
SAEforest_model provides methods to asses the uncertainty of point estimates with domain-
specific MSEs. The quantification of uncertainty of domain-indicators is challenging, yet
essential for the assessment of reliability of area-level estimates. Approximating the analytical
MSE of domain-level indicators with estimated variance components remains challenging even
in the base-scenario of LMMs with block diagonal covariance matrices (Prasad and Rao 1990;
Datta and Lahiri 2000; Gonzalez-Manteiga et al. 2008; Rao and Molina 2015). Elaborate
bootstrap-schemes for the estimation of MSEs are an established alternative (Hall and Maiti
2006; Gonzalez-Manteiga et al. 2008; Chambers and Chandra 2013) and the preferred choice
under our general mixed model.

We propose a nonparametric random effect block (REB) bootstrap for estimating the MSE
of area-level means of sampled and unsampled domains. The major aim is the correct re-
production of dependence-structures of data and an incorporation of uncertainty introduced
through the estimation of the MERF. The nonparametric generation and resampling of ran-
dom components was originally introduced by Chambers and Chandra (2013). Krennmair
and Schmid (2022) postulate the importance to resample centred and scaled empirical er-
ror components by a bias-adjusted residual variance introduced by Mendez and Lohr (2011)
before constructing a bootstrap population. In short, the estimator of the residual variance
under the MERF from Equation 2, (62) is positively biased as it includes excess uncertainty
concerning the estimation of function f . Further methodological and performance details are
found in Krennmair and Schmid (2022). For cases of existing unit-level auxiliary covariates,
we imitate the sampling process by random draws from the simulated bootstrap populations.
In the presence of aggregated census-level data, we generate (pseudo-) true values by resam-
pling error components only. This idea follows methodological principles of the bootstrap for
finite populations introduced by Gonzalez-Manteiga et al. (2008). For details, model-based
simulations and examples, please see Krennmair et al. (2022b).

2.3. Non-Linear Indicators

The analysis of distributional aspects of consumption and income (in-) equality based on
statistical indicators build on a long tradition in statistical research (Atkinson 1987; Cowell
2011). In contrast to the estimation of domain-specific means, the model-based estimation of
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quantiles and (non-linear) poverty indicators requires information on the area-specific CDF of
;5. Chambers and Dunstan (1986)(CD) combine a model for a finite-population CDF of y;;
with a smearing-argument (Duan 1983) to develop a model-consistent estimator for a finite-
population CDF from survey-sample data. Tzavidis et al. (2010) introduce the CD-method
within a general unit-level framework for SAE with a focus on the estimation of SAE means
and quantiles in the context of a bias-adjusted alternative to the EBLUP and outlier-robust
M-quantile estimators. Extensions towards poverty (Marchetti et al. 2012) and inequality
indicators (Marchetti and Tzavidis 2021) were investigated.

Rooted within the general unit-level framework of Tzavidis et al. (2010), Krennmair et al.
(2022a) propose an estimator F;*(t) for the area-specific CDF of y;; using MERFs. Essentially,
we extend the smearing method to fi;; as given by Estimator 2 using OOB-residuals e}; =

J
,u%OB where ,uOOB fOOB(xij) + 4;. OOB-residuals are a genuine choice for achieving

more robust estimates of the CDF of MERFs, ensuring that these model-residuals e;; mirror
the estimated variance properties under Model 1. The estimator for F*(¢) is given by:

Fz*(t) = Ni_l Z I(yij < t ! Z Z I fuir + yzy ,UJZO]OB) <t (5)

JEsi JjEsi ker;

*

e”

Smearing is computationally intensive and a Monte Carlo (MC) approximation to the area-
specific CDF of y;; provides an alternative. The MC-based approach draws conceptual par-
allels to the EBP (Molina and Rao 2010), however, lacks theoretical foundation (Marchetti
et al. 2012). Nevertheless, the MC approximation to Equation 5 is time-efficient and given
a sufficiently high number of iterations (e.g. B_MC = 200) no obviously identifiable differ-
ences between point estimates for various indicators are observable. SAEforest provides both
methods and recommends the use of the theoretically supported smearing approach as default.

Estimates for indicators &; are calculated from E7(t) using a known function h(). Default
indicators and corresponding functions h() are defined in Table 1. Package SAEforest includes
the (10%, 25%, 50%, 75%, 90%) quantiles as default indicators characterizing the distribution
of ;5. We additionally include common economic measures of poverty such as the head count
ratio (Her) and the poverty gap (Pgap) (Foster et al. 1984) and inequality measures such as
the Gini-coefficient (Gini 1912) and the Quintile share ratio (Qsr) (Eurostat 2004). The Her
defines the rate of being at risk of poverty, while the Pgap ratios the mean income shortfall
of the poor to its respective poverty line. Both poverty indicators require a poverty threshold
(z), which can be defined in absolute terms (e.g. numerical values of national poverty lines) or
relative terms (e.g. defining a function depending on y;;). Package SAEforest allows for both
options. Focussing on distributional aspects, the Gini is a common measure summarizing
inequality between 0 (absolute) equality and 1 (absolute inequality). While the Gini bundles
information on the whole distribution, the Qsr focusses on the relation between joint income
(or consumption) of the 80 and 20 percent quantile. Additionally, users can use a custom
function for arbitrary statistical indicators relying on input Y and threshold z. The example
in Section 4.1 will discuss customizable features in detail.

Following the work of Krennmair et al. (2022a), the package provides two bootstrap schemes
(nonparametric and wild), each applicable for the smearing and the MC-based versions.
The major difference between the two bootstrap schemes is the generation of the bootstrap
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Table 1: List of predefined population indicators in SAEforest. F; is the
empirical distribution function in domain 7.

Indicator Definition h()  Range
Z]‘\El Yij
Mean, == R
ean; 1 .
Qig F;(q) = inf{y;; 16 R Fi(yij) > q} R
Her; ¥ S Iy <2)  [0,1]
Pgap; N Zj:ﬁ( o . M(yij < 2) [0,1]
(2
N,
1 . - )
N YoM v N;
N;

Qsr, > ity Wi > Qi0.8Yi5) 0.1]

' S My > Qinayis)
custom; g(%jv z) R

population. The nonparametric bootstrap prepares and resamples random components for its
bootstrap population in the same way as described in Section 2.2 and subsequently calculates
(non-linear) indicators from the simulated data. The wild bootstrap (wild) exclusively relies
on centred OOB-residuals and a specific matching scheme between sampled and synthetic
observations building the bootstrap population. Details and performance specifics for both
procedures are found in Krennmair et al. (2022a).

3. Data set description

Typical applications of SAE comprise survey sample data on target variable y;; and predictive
variables x;;. Since, existing auxiliary data sources (census or administrative/register data)
do not include information on the target variable, auxiliary data sources strengthen estimates
on disaggregated metrics of y;; through a predictive model. As discussed in Section 2, we
provide models, which handle auxiliary covariates of domain-specific individual observations
or domain-level aggregates (e.g means). The exemplary datasets in this package include both
types of information for illustrative purpose.

In general, this package uses data examples provided by package emdi (Kreutzmann et al.
2019). In short, the datasets comprise simulated synthetic data from the European Union
Statistics on Income and Living Conditions (EU-SILC) for Austria from 2006. Although, no
conclusions regarding the official levels of inequality and poverty in Austrian districts must be
inferred, the simulated population micro-dataset eusilcA_pop exhibits realistic distributional
characteristics. Originally, the eusilcA_pop data is a modification of the eusilcP data used
in package simFrame (Alfons and Templ 2013), which reports micro-data on the nine states
as lowest geographical level. Kreutzmann et al. (2019) use publicly available sources, such
as population sizes or income rankings of districts, to assign households to one of the 94
districts. Further details on the process of data synthetization can be found in Kreutzmann
et al. (2019).



Patrick Krennmair

Focussing on social and economic inequality indicators, the target variable is the equivalized
household income (eqIncome). For the construction of eqIncome, total household dispos-
able income is divided by the equivalized household size (Hagenaars et al. 1994). Apart
from domain-level identifiers for states (state) and the districts (districts), auxiliary vari-
ables are socio-demographic characteristics, such as gender or the receipt of state benefits.
An overview of model covariates is provided in Table 4 in the Appendix. The dataset
eusilcA_popAGG comprises aggregated district-level means and is used for the illustration
of Method 4 in Section 2.2. For the production of uncertainty estimates, Method 4 requires
information on population-level domain sizes (Krennmair et al. 2022b). Synthetic population
sizes for Austrian districts are provided by popNsize.

The unit-level sample eusilcA_smp is drawn by stratified random sampling from the popu-
lation dataset, where districts are defined as stratas. The resulting dataset comprises 1945
observations with domain-specific sample sizes ranging from 14 (“Lienz”) to 200 for the Aus-
trian capital (“Wien”). About 25 percent of domains are not covered by the survey dataset,
additionally motivating the use of model-based SAE approaches. For the illustration of the
mapping function map_indicators, we use a shape file for the Austrian districts of class
SpatialPolygonDataFrame (Bivand et al. 2013), obtainable from package emdi (Kreutzmann
et al. 2019).

4. Core Functionality: The package

The statistical methods for point and MSE estimates from Section 2 are implemented in
the main function SAEforest_model. The functionality of the package mirrors the pro-
posed methodological flexibility of tree-based machine learning methods: firstly, depending
on the available auxiliary data sources (aggregated or unit-level covariates) and the indi-
cators of interest (means or non-linear indicators), domain-specific estimates are produced
using SAEforest_model. Users must specify corresponding scenarios with options meanOnly
= TRUE and/or aggData = TRUE. Resulting model objects can be checked by summary statis-
tics and visual model diagnostics using the generic functions summary and plot. Func-
tion tune_parameters asses potential improvements of the model by tuning model hyper-
parameters. Finally, function summarize_indicators extracts final domain-specific estimates
and function map_indicators visualizes and maps indicators upon request. Detailed exam-
ples on the functionality of proposed methods follow in the subsections below.

Generic functions of the package rely on S3 objects of class SAEforest (Chambers and Hastie
1992). The main function SAEforest_model wraps the basis function MERFranger. The im-
plementation of the MERF algorithm is done by a composite model of a random forest fitted
by the package ranger (Wright and Ziegler 2017) and random intercepts and corresponding
variance components obtained by the package lmed (Bates et al. 2015). Thus, users ben-
efit from the full functionality of both package environments including generic functions of
respective classes ranger and merMod. Moreover, users can directly pass hyper-parameters
to the function ranger or choose alternative splitrules for trees. Although the basis func-
tion MERFranger is only addressed through wrapper functions for the average package user,
we additionally provide the function to enable unit-level predictions under more advanced
correlation and dependency structures. By this, we aim to facilitate further research and
development using MERFs for SAE. For details see help (MERFranger) or the methodology
discussed in Krennmair and Schmid (2022).



10 The R Package SA Eforest

Table 2: Details on inputs for main function SAEforest_model.

Input Description meanOnly = T meanOnly = F
Y Continuous target variable. v v
X Matrix or data.frame of predictive covariates. v v
dName Character of domain identifier. v v
smp_data data.frame of survey sample data. v v
pop_data data.frame of population-level covariates X. v v
MSE Specification ~ of  uncertainty  estimates. v v
Currently available options are: none,

nonparametric and for meanOnly = F addi-
tionally wild.
importance Variable importance processed by ranger. v v

Must be one of the following: ”"impurity”, "im-
purity_corrected” or “permutation”.

initialRandomEffects Initial estimate of random effects. Defaults to v v
0.

ErrorTolerance Value monitoring MERF algorithm’s conver- v v
gence. Defaults to le-04.

MaxIterations Value specifying maximal amount of iterations v v
for MERF algorithm. Defaults to 25.

B Bootstrap replications for MSE estimation. v v
Defaults to 100.

B_adj Bootstrap replications for adjustment of resid- v v
ual variance. Defaults to 100.

na.rm Logical. Whether missing values should be re- v v
moved.
Additional parameters passed to ranger. Most v v

important parameters are mtry (number of
variables to possibly split at in each node), or
num.trees (number of trees).

aggData Logical. Whether aggregated covariate infor- v
mation is used.

popnsize Information of population size of domains. v
Only needed if aggData = TRUE and MSE is
requested.

OOsample_obs Out-of-sample observations taken from the v

closest area. Only needed if aggData = TRUE
with default set to 25.
ADDsamp_obs Out-of-sample observations taken from the v
closest area if first iteration for the calcula-
tion of calibration weights fails. Only needed
if aggData = TRUE with default set to 0.
w_min Minimal number of covariates from which in- v
formative weights are calculated. Only needed
if aggData = TRUE. Defaults to 3.
threshold Set a custom threshold for indicators. The v
threshold can be a known numeric value or
function of Y. Defaults to NULL resulting in 60%
of median of Y.
custom_indicator A list of additional functions containing the in- v
dicators to be calculated. These functions must
only depend on the target variable Y and the
threshold. Defaults to NULL.
smearing Logical input indicating whether a smearing v
based approach or a MC-based version for
point estimates is obtained. Defaults to TRUE.
B_MC Bootstrap populations to be generated for the v
MC version. Defaults to 100.
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4.1. Estimation of Domain-level indicators

The following examples use the synthetic Austrian EU-SILC data discussed in Section 3.
Firstly, we focus on the most ideal case including unit-level survey sample data and access
to unit-level covariate data from a census to estimate the area-level mean. The information
on the equivalized income is only measured in the survey data, but covariates X_covar are
measured on survey and census level.

R> #Loading data
data("eusilcA_pop")
data("eusilcA_smp")

income <- eusilcA_smp$eqlncome
X_covar <- eusilcA_smp[,-c(1,16,17,18)]

This data-scenario corresponds to Method 2. As we are only interested in the area-level mean,
we specify option meanOnly = TRUE and define target variable Y and corresponding covariates
in the sample X = X_covar. Input values for covariates X must be predictors only and we
remove columns containing area-level codes and the target variable for the assignment X =
X_covar. We explicitly denote dName to indicate separate areas for random intercepts and
assign the survey dataset smp_data and the dataset comprising population-level information
pop_data. For the current example, point estimates are sufficient and we specify MSE =
"none". As discussed in Section 2, the current implementation has an option to produce
uncertainty estimates of area-level means with option nonparametric referring to the MSE
procedures discussed in Krennmair and Schmid (2022). Dealing with unit-level population
data, we keep the default of aggData = FALSE. Note that this option must be replaced by
TRUE in the case of limited covariate information.

R> MERFmodell <- SAEforest_model(Y = income, X = X_covar, dName = '"district",
+ smp_data = eusilcA_smp, pop_data= eusilcA_pop, MSE = "none",
+ meanOnly = TRUE, aggData = FALSE)

Before we discuss model components and respective results, we focus on inputs for estimat-
ing more complex area-level indicators, such as quantiles or inequality indicators. Function
SAEforest_model with option meanOnly = FALSE corresponds to the methodology explained
in Section 2.3 and allows for further scenario-dependent inputs. The option smearing deter-
mines whether we want to construct a full smearing CDF or choose a Monte-Carlo simulated
marginal distribution of y;;. Depending on computational feasibility, we advice the general
use of smearing-based estimates due to its theoretical corroboration compared to the MC
version. For MSE estimates, we have options none, wild or nonparametric as described
in Krennmair et al. (2022a). The default indicators returned by SAEforest_model with op-
tion meanOnly = FALSE include the mean, median, quantiles (10%, 25%, 75% and 90%),
Hcr, Pgap, Gini, and the Qsr. Users specify a custom threshold by passing a known nu-
meric value or a function of Y. If the threshold is NULL, 60 % of the median of Y is taken
as threshold. Additionally, SAEforest_model allows for custom indicators. In the following
example we constructed a new indicator, defining area-level maximum incomes. The input
for custom_indicator must be a list of functions depending only on inputs Y and threshold.
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R> MERFmodel2 <- SAEforest_model(Y = income, X = X_covar, dName = '"district',

+ smp_data = eusilcA_smp, pop_data = eusilcA_pop, smearing = FALSE,
+ meanOnly = FALSE, MSE = '"nonparametric", B = 100, mtry=5,
+ num.trees = 500, threshold = function(Y){0.5 * median(Y)},
+ custom_indicator = list(my_max = function(Y, threshold){max(Y)}))

Function SAEforest_model allows to pass arguments directly to the function ranger using
the generic three-dotted option (...). Most important inputs to specify a random forest are
the number of randomized variables for each node split decision (mtry) or the overall number
of trees (num.trees). Any option available for ranger (such as alternative split criteria)
can be directly passed to the function. For details see Wright and Ziegler (2017) and our
discussion on tuning parameters in Section 4.3. Table 2 in the Appendix summarizes and
explains the inputs for SAEforest_model.

Function SAEforest_model produces an output object of class SAEforest, which always
includes at least four elements: (i) point estimates of specified regionally disaggregated indi-
cators; (ii) a MERFmodel object including information on the model fit for fixed effects and
random effects; (iii) MSE estimates if requested and NULL otherwise; (iv) the value of the
adjusted standard deviation used in the MSE bootstrap or NULL otherwise. In the case of
domain-level means under aggregated covariate information (aggData = TRUE), the object
additionally includes an element, capturing the number of variables used in the weighting
process from aggregated covariate information. Table 3 summarizes and explains individual
components of SAEforest objects. Several generic functions are applicable and we firstly
focus on model diagnostics produced by summary and plot in the following section.

4.2. Summary function and diagnostic plots

Function summary is an important generic function to obtain essential information on a fitted
model object. An exemplary output from summary of a fitted model object of class SAEforest
is given below:

R> summary (MERFmodell)

Call:

SAEforest_model(Y = income, X = X_covar, dName = "district",
smp_data = eusilcA_smp, pop_data = eusilcA_pop, MSE = "none",
aggData = FALSE, importance = "impurity")

Domains

In-sample Out-of-sample Total
70 24 94
Totals:

Units in sample: 1945
Units in population: 25000

Min. 1st Qu. Median Mean 3rd Qu. Max.
Sample_domains 14 17.0 22.5 27.78571 29.00 200
Population_domains 5 126.5 181.5 265.95745 265.75 5857

Random forest component:
Type: Regression
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Number of trees: 500
Number of independent variables: 14
Mtry: 3
Minimal node size: 5
Variable importance mode: impurity
Splitrule: variance
Rsquared (0OB): 0.62036

Structural component of random effects:
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Target ~ -1 + (1 | district)

Data: data
Offset: forest_preds

AIC BIC loglLik deviance df.resid
39225.2 39236.3 -19610.6 39221.2 1943
Scaled residuals:

Min 1Q Median 3Q Max

-3.1425 -0.5243 -0.0577 0.4433 11.6832

Random effects:

Groups  Name Variance Std.Dev.
district (Intercept) 12132734 3483
Residual 30771664 5547

Number of obs: 1945, groups: district, 70
ICC: 0.2827853

Convergence of MERF algorithm:

Convergence achieved after 8 iterations.

A maximum of 25 iterations used and tolerance set to: le-04

Monitored Log-Likelihood:

0 -19546.21 -19572.14 -19588.23 -19592.72 -19604.67 -19599.86 -19609.86 -19610.59

The summary output provides preliminary insights into SAE characteristics such as domain-
specific sample sizes, information on sampled and unsampled domains and the total amount
of observations. In this example, we face domain-specific sample sizes with a median of 22.5
households, motivating the use of model-based SAE. Moreover, for 24 out of 94 domains,
no direct estimates are obtainable. The second essential insight from the output reports
model-specific metrics. Starting with the random forest part, we find values such as tuning
parameters and R? on fixed effects. The R? of around 0.62 substantiates the model’s predictive
capability. The information on the fit of the structural component of our MERF model
describes the variance for the area-level random intercept and the individual residuals as well
as the intra-class-correlation coefficient (ICC). The ICC of about 0.29 justifies the need for
an area-level random effect. The last block of our summary-output highlights convergence
properties of the MERF algorithm, such as the amount of needed iterations and the monitored
level of likelihood.

As discussed in Section 2, the MERF model is a composite model of a random forest and a
structural model. This structure is not only mirrored in the output of summary, but also within
each fitted model object. Thus, users can address elements directly from the fitted model
object and use the generic functions from ranger (Wright and Ziegler 2017) and lme4 (Bates
et al. 2015) respectively. Corresponding objects are stored in ForestModel and Effectmodel.

13
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Table 3: Details on an object of class SAEforest.

Object of class SAEforest

Component Short description

MERFmodel The MERFmodel object comprises information on the model fit, details on the
algorithm and variance components.

Indicators Element comprising area-level identifiers and estimates.

MSE_estimates

Includes area-level identifiers and uncertainty estimates if requested and NULL
otherwise.

AdjustedSD If MSE results are requested residual variance proposed by Mendez and Lohr
(2011) is reported and NULL otherwise.
NrCovar Exists only if meanOnly = TRUE. Set to NULL except aggData = TRUE for which it

Details on MERFmodel

includes a list of variable names of covariates used for the calculation of calibration
weights. See Krennmair et al. (2022b) for details.

Component Short description

Forest Random forest of class ranger modelling fixed effects of the model.

EffectModel Model of random effects of class merMod capturing structural components of
MERFs.

RandomEffects List element containing the values of random intercepts from EffectModel.

RanEffSD Standard deviation of random intercepts.

ErrorSD Standard deviation of unit-level errors.

VarianceCovariance VarCorr matrix from EffectModel.

LogLik Vector of log-likelihood of the MERF algorithm.

IterationsUsed Iterations used until convergence of the MERF algorithm is reached.

00Bresiduals Vector of OOB-residuals.

Random Character specifying the random intercept in the random effects model.

ErrorTolerance Value monitoring the MERF algorithm’s convergence.

initialRandomEffects Vector of initial specification of random effects.

MaxIterations Value specifying the maximal amount of iterations for the MERF algorithm.

call The summarized function call for the object.

data_specs

data

Data characteristics such as domain-specific sample sizes or number of out-of-
sample areas.
The survey sample data.

Especially for objects of class merMod, there exist advantageous generics to extract model
components. The following functions are directly applicable: getData, VarCorr, sigma,
residuals, ranef, fixef. Forinstance, ranef obtains random effects and VarCorr directly
accesses the variance-covariance matrix:

R> ranef (MERFmodell)
R> VarCorr (MERFmodell)

An major complement of summaries and descriptive statistics are diagnostic plots. The generic
plot function in the package SAEforest, produces random forest specific diagnostic tools, like
variable importance plots (vip) and partial dependence plots (dpd). A variable importance
plot ranks the importance of predictive covariates in the estimation process of the model.
Figure 1 reports the mean decrease in impurity (variance) calculated for each predictor as
the sum over the number of splits across all trees that include the predictor. For the variable
importance plot, arguments are passed internally to the function vip (Greenwell et al. 2020).
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The additional partial dependence plot (pdp) depicts the estimated marginal effect for a given
number of influential covariates on the target variable. The pdp plot is produced using the
package pdp (Greenwell 2017).

The function plot offers several options of customization: most importantly, users can decide
whether they want both plots or just the vip plot by specifying pdp_plot = FALSE. The
plotting engine is ggplot2 (Wickham 2011) and several graphical arguments, such as colours
or themes can be directly specified. Additionally, the generic function plot provides the
possibility to export a list including requested plots, which allows for modifications based on
the additivity of layers for ggplot-objects.

R> plot(MERFmodell, num_features = 6, col = "darkgreen",

+ fill = "darkgreen", alpha = 0.8,horizontal = TRUE,
gg_theme = theme_minimal(), lsize = 1.5, 1ty = "solid",
grid_row = 2, out_list = FALSE,

pdp_plot = TRUE)

+ + +

Figure 1 shows the first plot on the fitted object MERFmodell. Most influential variables
in the estimation process of fixed effects are net cash income (cash), age-related benefits
(age_ben), whether a person is self-employed (self_empl), obtains income from rent (rent),
profits from capital investment (cap_inv) or receives family related allowances (fam_allow).
Importance plots do not allow for inferences on predictive relations between our target variable
of equivalized household income and the covariates. A scrutiny of the pdp plot in Figure 1
highlights potential non-linear relations for instance for cash, where the average marginal
effect flattens with cash values over 50000. A similar pattern is observable for self-employed
income. Another non-linear peculiarity is the discontinuity for fam_allow around 20000.

4.3. Model-tuning and important parameters

Random forests are nonparametric procedures, which performance depend on tuning param-
eters. Function tune_parameters assists in fine-tuning of parameters for the implemented
MERF method. Essentially, this function is a modified wrapper for train from the package
caret (Kuhn 2022), treating MERFs as a custom method. Tuning can be performed on the
following four parameters: num.trees (the number of trees for a forest), mtry (number of
variables as split candidates at in each node), min.node.size (minimal individual node size)
and splitrule (general splitting rule of individual trees).

Necessary inputs for tune_parameters are control parameters for function train from the
package caret (Kuhn 2022), such as the type of cross validation (method = "repeatedcv"),
the numner of folds (number = 5), and corresponding repetitions (repeats = 1). Moreover,
the input of potential tuning parameters must be defined by a grid of parametrization can-
didates. Data-specific inputs, such as the defined target variable, covariates and the survey
dataset resemble the input for the wrapper function SAEforest_model discussed in Section
4.1.

R> fitControl <- caret::trainControl (method = "repeatedcv", number = 5,
+ repeats = 3)

# Define a tuning-grid

15
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R> merfGrid <- expand.grid(num.trees = 500, mtry = c(3,7,9),
+ min.node.size = c(10), splitrule = "variance")

R> tune_parameters(Y = income, X = X_covar, data = eusilcA_smp, dName =
+ "district", trControl = fitControl, tuneGrid = merfGrid. plot_res =
+ FALSE)

1945 samples

15 predictor

No pre-processing

Resampling: Cross-Validated (5 fold, repeated 3 times)
Summary of sample sizes: 1557, 1557, 1556, 1556, 1554, 1556,
Resampling results across tuning parameters:

mtry RMSE Rsquared MAE

3 5769.200 0.7126250 3832.716
7 5496.742 0.7333739 3565.051
9 5514.225 0.7306313 3556.285

Tuning parameter 'num.trees' was held constant at a value of 500
Tuning parameter 'min.node.size' was held constant at a value of 10
Tuning parameter 'splitrule' was held constant at a value of variance
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were num.trees = 500, mtry =7,
min.node.size = 10 and splitrule = variance.

The output of tune_parameters coincides with output from train in the package caret
(Kuhn 2022). Users can specify whether the summarized information should be accompanied
by visualized diagnostics based on ggplot2 (Wickham 2011). Most important metrics for
fine-tuning decisions are cross-validated results of the RMSE, MAE or the conditional RZ.
Following the default specifcation using RMSE as most important criterion for regression, the
optimal tuning parameter on the number of randomized split candidates at each node (mtry)
is 7.

4.4. Mapping of results and presentation of indicators

The previous functions focussed on the estimation of indicators and the diagnosis of model
quality as well as improvements using optimized tuning parameters. Equally important to
the package SAEforest, however, is the clear and intuitive presentation of results. Function
summarize_indicators reports point and MSE estimates as well as calculated coefficients of
variation (CV) from a fitted SAEforest object. The CV is an established indicator for national
statistical offices to assess associated uncertainty and quality of estimates and is defined as:

) MSE(6;)
V() = F———.

Users can optionally include a character vector specifying indicators to be reported, re-
ferring to all calculated indicators (all); each default indicator’s name (Mean, Quanti10,
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Quant25, Median, Quant75, Quant90, Gini, Hcr, Pgap, Qsr or the function name/s of
custom_indicator/s) or a vector of multiple indicator names. If the object is estimated by
SAEforest_model under option meanOnly = TRUE, all indicator arguments are ignored and
only the Mean is returned.

The output object of class summarize_indicators.SAEforest allows for generic functions
for data.frames such as head, tail, as.matrix, as.data.frame and subset. In the fol-
lowing example, we provide a summary on the Mean, Gini and our customized indicator,
identifying the area-level maximum income and respective CVs.

R> head(summarize_indicators (MERFmodel2, MSE = FALSE, CV =TRUE, indicator =
+ c("Mean", "Gini", "my_max")))

district Mean Mean_CV Gini Gini_CV  my_max my_max_CV
Amstetten 14249.76 0.05492730 0.2476006 0.07018764 56579.45 0.3340302
Baden 22648.20 0.02940555 0.1767620 0.06594121 69621.40 0.2957758

Bludenz 12411.98 0.09589232 0.2772565 0.09071811 45723.53 0.4555028
Braunau am Inn 12046.12 0.06895787 0.2770546 0.06957077 53530.96 0.3863748
Bregenz 32554.19 0.03074062 0.1559062 0.11456712 77513.46 0.2358645

Revealing spatial patterns of inequality and poverty, necessitates the presentation of results
with maps. Function map_indicators visualizes estimates from a fitted model object of
class SAEforest on a specified map. Essential inputs for map_indicators are the fitted
model object, the map_object of class SpatialPolygonsDataFrame (Bivand et al. 2013) and
the domain-level identifier from the map_object. In case of differing area-level identifiers
between the model object of class SAEforest and the SpatialPolygonsDataFrame object,
map_tab provides a possibility to enter a data.frame linking areas effectively. Comparably to
summarize_indicators, users can choose specific indicators and whether MSE or CV results
should be mapped. For further details we refer to the help page of function map_indicators
or Bivand et al. (2013) for a concise overview on the handling of spatial data in R.

Emphasis lies on the flexibility to customize and adapt produced maps. Users can choose
colours and themes of the plot based on the plot engine ggplot2 (Wickham 2011) and export
a list of ggplot-elements for further customization if return_plot = TRUE. Additionally,
users can export a fortified data frame comprising map data and the chosen indicators to
produce customized maps using preferred alternative mapping and plotting procedures.

Continuing on our example, we load the shape file on 94 Austrian districts and map results
from the fitted object MERFmodel2 for the Mean and the Gini. The map of mean equivalized
household income shown by Figure 2 indicates differences across Austrian districts, where
“Modling” reports the highest value, which is in accordance to official statistics of income
in Austria (Statistik Austria 2021). Also inequality measured by the Gini is not equally
distributed ranging from 0.141 (“Urfahr-Umgebung”) to a maximum of 0.301 (“Zell am See”).
The majority of CVs for domain-specific values of mean and Gini estimates lies below the
20% threshold, which meets the reliability criterion of Eurostat (2019).

R> data("shape_Aut")

R> map_indicators(object = MERFmodel2, MSE = FALSE, CV = TRUE,
+ map_obj = shape_Aut, indicator = c("Mean", "Gini"),
+ map_dom_id = "PB")

17
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Figure 1: Output from function plot.
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function map_indicators.

00002

0000€

0000¥%

ueaN

N\D Uea|\

19



20 The R Package SA Eforest

5. Discussion and Outlook

This package aims to bridge concepts of machine learning methods and ‘traditional’” perspec-
tives of SAE. From a methodological perspective, the estimation of point and uncertainty
estimates for domain-level indicators is performed under unit-level and aggregated covariates
and dependency structures of observations are modelled using a semi-parametric framework
of MERFs. Benefits of random forests align with the proclaimed focus on robustification of
SAE models against model-failure (e.g. providing insurances against model-misspecification,
valid variable selection including complex and potentially non-linear interactions between co-
variates and the effective handling of outliers) (Jiang and Rao 2020). Moreover, random
forests handle high-dimensional (p > n) datasets enabling additional perspectives on research
concerning Big Data sources (Marchetti et al. 2015; Schmid et al. 2017).

The package SAEforest adds valuable insights and advantages to the existing repertoire of SAE
methods and yet remains within the methodological tradition of SAE. This includes efforts
to provide solutions within the context of domain-level indicators, dependent data structures
and in the broader context of survey methodology. We acknowledge that compared to LMMs,
benefits of flexibility serve at cost of explainability and attribution, however, this is mitigated
by the package’s emphasis on informative summary diagnostics and plots (e.g. vip and pdp
plots). In addition, the package functionality is characterized by an intuitive workflow and
functions to facilitate the visualization of geospatial data. Future versions of the package will
ideally include a generalization of our framework to binary and count data. Additionally,
the extension towards other machine learning approaches, such as Support Vector Machines,
Gradient Boosting and Bayesian Additive Regression Trees is a thought-provoking goal for
further research.
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6. Appendix

Table 4: Details on the predictive covariates in the survey and
population-level datasets.

Variable Explanation

eqIncome numeric; a simplified version of the equivalized household income. Only available in the
survey sample.

eqgsize numeric; the equivalized household size according to the modified OECD scale.

gender factor; the person’s gender (levels: male and female).

cash numeric; employee cash or near cash income (net).

self_empl numeric; cash benefits or losses from self-employment (net).

unempl_ben numeric; unemployment benefits (net).

age_ben numeric; old-age benefits (net).

surv_ben numeric; survivor’s benefits (net).

sick_ben numeric; sickness benefits (net).

dis_ben numeric; disability benefits (net).

rent numeric; income from rental of a property or land (net).

fam_allow numeric; family/children related allowances (net).

house_allow numeric; housing allowances (net).

cap_inv numeric; interest, dividends, profit from capital investments in unincorporated business
(net).

tax_adj numeric; repayments/receipts for tax adjustment (net).

state factor; state (nine levels).

district factor; districts (94 levels).

weight numeric; constant weight.
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