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Let 𝑋 , 𝑋 … be binary outcomes following Bernoulli distribution 𝑏(1, 𝑝), where 1 
stands for the case that the patient responses to the treatment and 0 otherwise. 
Consider an at-most-K-stage group sequential design with the null hypothesis 
𝐻 : 𝑝 = 𝑝   and 𝑛  samples available at analysis 𝑘, 𝑘 = 1,2, … , 𝐾. For 𝑘 ≤ 𝐾 − 1, 
the trial stops if the test statistic 𝑍  crosses the lower boundary (or the futility 
boundary), that is, 𝑍 ≤ 𝑙 . Otherwise, more samples will be collected, and the 
trial would go to the (𝑘 + 1)  analysis or finally stops at the 𝐾  analysis. To 
ensure termination at the end of trial, the lower boundary for the final analysis 𝑙  
is set to equal the corresponding upper boundary 𝑢 . At the final stage, we reject 
𝐻  if the test statistic 𝑍 ≥ 𝑢 , where the upper boundary (or the efficacy 
boundary) 𝑢  is determined by the desired overall type I error rate.  

Let 𝐼  be the Fisher information at analysis 𝑘, 𝑘 = 1,2, … , 𝐾 . For binomial 
distribution, 𝐼 =

 

( )
 which is proportional to the sample size available at that 

time point. Then the maximum Fisher information would be achieved at the final 
analysis, that is,  𝐼 = 𝐼 . Denote the information fraction at analysis 𝑘 as 𝑡 =

= . 

The rest of the document is organized as follows. Section 1 illustrates the 
procedure of designing the group-sequential trial under asymptotic test and exact 
test. More specifically, subsection 1.1 presents two algorithms for the two tests, 
respectively, and the rest two subsections show how to calculate the probabilities 
in Algorithm 1 and 2. Section 2 covers the methodology for calculating conditional 
power given some interim results. Section 3 discusses some issues encountered 
during the draft of this document. The last section provides step-by-step guidance 
to use the package. 

Section 1 Calculate sample size and boundaries for the group-
sequential test 



Section 1.1 Algorithm 1 and 2 

During the trial, the only one efficacy bound is set for the last analysis. Thus, type 
I error is spent its entirety at the last look or equally the interim upper boundaries 
are set to be ∞. The procedure to determine sample size and boundaries is 
analogous to that in East 6[1]. To make the boundaries non-binding, the lower 
boundaries are sequentially computed given the upper boundary. If the 
requirement for power is not satisfied with the current design, the maximum 
sample size 𝑛  will be increased but all the boundaries remain unchanged. Define 
a monotone beta spending function 𝛽(𝑡) with 𝛽(0) = 0 𝑎𝑛𝑑 𝛽(1) = 𝛽. The 
algorithms searching for sample size and boundary at each analysis work as 
follows: 

Algorithm 1. The searching procedure for asymptotic test. 

 Input: the maximum number of analyses 𝐾; the information fractions 𝑡 ; the 
desired overall type II error level 𝛽 with the proportions spent at each analysis; 
the desired overall type I error level 𝛼; the null hypothesis 𝑝 ;  specific alternative  
𝑝 .  

Output: the sample sizes 𝑛 ;  lower boundaries {𝑙 , 𝑙 , … , 𝑙 } ; the upper 
boundary 𝑢 ; the actual overall type I error; the actual type II error at each 
analysis; power of the group sequential test.    

Initialization. Calculate the upper boundary 𝑢  such that 𝑃 {𝑍 ≥ 𝑢 } = 𝛼. Find 
the value 𝑛  that satisfies the type II error equation 𝑃 {𝑍 < 𝑢 } = 𝛽. 

Step 1. Calculate the sample sizes 𝑛  according to 𝑛  and the information 
fractions. 

Step 2. At the first look, calculate the lower boundary 𝑙  such that 𝑃 {𝑍 ≤ 𝑙 } =

𝛽(𝑡 ).  

Step 3. For the subsequent looks 𝑘 = 2,3, … , 𝐾 − 1, having already computed the 
lower boundaries {𝑙 , 𝑙 , … , 𝑙 }, find the lower boundary 𝑙  such that 
𝑃 {𝑍 ≤ 𝑙 } + 𝑃 {𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } + ⋯ + 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 > 𝑙 , 𝑍 ≤

𝑙 } = 𝛽(𝑡 ). 

Step 4. Set 𝑙 = 𝑢  to ensure that a decision can be made at the last analysis. 
Then the power of the design is  



1 − 𝛽∗ = 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 > 𝑙 , 𝑍 ≥ 𝑢 }

= 1 − 𝑃 {𝑍 ≤ 𝑙 } − 𝑃 {𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } − ⋯

− 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 > 𝑙 , 𝑍 ≤ 𝑢 }. 

Step 5. If 1 − 𝛽∗ ≥ 1 − 𝛽, stop the algorithm and output the derived boundaries 
as well as the sample sizes. Otherwise, set 𝑛 = 𝑛 + 1 and go to Step 4.  

Note that under null hypothesis, 𝑍  follows standard normal distribution. Thus, in 
Initialization, 𝑢  is 1 − 𝛼 quantile of 𝑁(0,1), which is not relevant to the 
maximum sample size 𝑛 . Given 𝑢 , 𝑛  is determined under the alternative 
hypothesis and the resulting 𝑛  is probably not an integer. While coding, we 
round all the sample sizes up to whole numbers before calculating boundary 
crossing probabilities.   

For looks 𝑘 = 2,3, … , 𝐾 − 1, we use root finding algorithm to sequentially search 
for the lower bounds. Since 𝑢  is fixed and lower bound for the next analysis 
cannot be less than the former, it is natural to set initial search interval within 
[𝑙 , 𝑢 ]. Bisection method narrows the search interval quickly, but if may 
converge slowly if the solution falls very close to either of the two endpoints of 
the search interval. False position method speeds up the algorithm by using the 
weighted average of two endpoints as the endpoint in the next search. However, 
with wide search interval, false position method may fail to achieve convergence. 
In our package, we first use bisection method twice to narrow the search interval. 
If the actual type II error is unsatisfactory, implement false position method until 
convergence is achieved or the iteration times reached 30.  

Algorithm 2. The searching procedure for exact test. 

 Input: the maximum number of analyses 𝐾; the information fractions 𝑡 ; the 
desired overall type II error level 𝛽 with the proportions spent at each analysis; 
the desired overall type I error level 𝛼; the null hypothesis 𝑝 ;  specific alternative  
𝑝 ; 𝑛  derived from asymptotic test.  

Output: the sample sizes 𝑛 ;  lower boundaries {𝑙 , 𝑙 , … , 𝑙 } ; the upper 
boundary 𝑢 ; the actual type I error 𝛼∗; the actual type II error spent at each 
analysis; power of the group sequential test.    

Initialization. Use 𝑛  derived from Algorithm 1 as the starting value.  



Step 0. Given 𝑛 , find the smallest integer 𝑢  such that 𝛼∗ = 𝑃 {𝑍 ≥ 𝑢 } ≤ 𝛼. 
If 𝑃 {𝑍 < 𝑢 } ≤ 𝛽 holds, go to Step 1. Otherwise, progressively increase 𝑛  
with increment 1 until the constraints on two types of errors are both satisfied.  

Step 1. Calculate the sample sizes 𝑛  according to 𝑛  and the information 
fractions. 

Step 2. At the first look, find the largest integer 𝑙  such that 𝑃 {𝑍 ≤ 𝑙 } ≤ 𝛽(𝑡 ). 

Step 3. For the subsequent looks 𝑘 = 2,3, … , 𝐾 − 1, having already computed the 
lower boundaries {𝑙 , 𝑙 , … , 𝑙 }, find the largest integer 𝑙  such that 
𝑃 {𝑍 ≤ 𝑙 } + 𝑃 {𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } + ⋯ + 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 > 𝑙 , 𝑍 ≤

𝑙 } ≤ 𝛽(𝑡 ). 

Step 4. Set 𝑙 = 𝑢  to ensure that a decision can be made at the last analysis. 
Then the power of the design is  

1 − 𝛽∗ = 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 > 𝑙 , 𝑍 ≥ 𝑢 }

= 1 − 𝑃 {𝑍 ≤ 𝑙 } − 𝑃 {𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } − ⋯

− 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 > 𝑙 , 𝑍 < 𝑢 }. 

Step 5. If 1 − 𝛽∗ ≥ 1 − 𝛽,  stop the algorithm and output the derived boundaries 
as well as the sample sizes. 

Otherwise, set 𝑛 = 𝑛 + 1 and go to Step 0. 

Initialization follows the strategy in Section 12.1.2 of [4]. The calculation of 
boundary crossing probabilities here borrowed strength from the source code of 
function gsBinomialExact in package ‘gsDesign’[3].  
R basic function qbinom(p, size, prob, lower.tail = TRUE, log.p = 
FALSE) returns the quantile which is defined as the smallest value y such that P(Y
≤ y)≥ p. In Step 0, 𝑢  is the smallest integer such that 𝛼∗ = 𝑃 {𝑍 ≥ 𝑢 } =

1 − 𝑃 {𝑍 < 𝑢 } ≤ 𝛼. From another point of view, 𝑢  should be the smallest 
integer such that 𝑃 {𝑍 < 𝑢 } = 𝑃 {𝑍 ≤ 𝑢 − 1} ≥ 1 − 𝛼. Thus, 𝑢 =

𝑞𝑏𝑖𝑛𝑜𝑚(1 − 𝛼, 𝑛 , 𝑝 ) + 1.  Similarly, 𝑃 {𝑍 < 𝑢 } = 𝑃 {𝑍 ≤ 𝑢 − 1} =

𝑝𝑏𝑖𝑛𝑜𝑚(𝑢 − 1, 𝑛 , 𝑝 ). 

While searching for the first lower bound in Step 2, we are trying to find the 
largest integer 𝑙  such that 𝑃 {𝑍 ≤ 𝑙 } ≤ 𝛽(𝑡 ). 𝑞𝑏𝑖𝑛𝑜𝑚(𝛽(𝑡 ), 𝑛 , 𝑝 ) returns 



the smallest integer 𝑡𝑒𝑚𝑝1 that makes 𝑃 {𝑍 ≤ 𝑡𝑒𝑚𝑝1} ≥ 𝛽(𝑡 ) hold. Thus, 
integer 𝑡𝑒𝑚𝑝2 = 𝑡𝑒𝑚𝑝1 − 1 has the property that 𝑃 {𝑍 ≤ 𝑡𝑒𝑚𝑝2} < 𝛽(𝑡 ).  As 
a result, 𝑙  has a value identical to one of 𝑡𝑒𝑚𝑝2 and 𝑡𝑒𝑚𝑝1. 

Note that in Step 3, the type II error that does not spent by the first 𝑘 analyses 
will be carried over for the use of the following analysis. The reason why we carry 
over unspent type II error can be found in Section 3. 

For Algorithm 1, the boundaries can be any real value within the searching 
interval. Therefore, we combine bisection with false position method to 
accelerate the convergence. However, for exact test, 𝑙  can only be an integer 
within 𝑙  and 𝑢 . With definite number of possible solutions, bisection can 
narrow the search interval to an interval containing only two integers after a few 
iterations. For example, if the starting interval contains 16000 integers, the length 
of searching interval reaches 2 after only 13 bisections. Therefore, we adopt the 
bisection when finding the lower bounds in Algorithm 2. 

 Due to the discreteness of binomial distribution, unlike asymptotic test, the 
sequence of lower bounds is strictly increasing. To make sure 𝑙 < 𝑢 , in hidden 
function bound2 of the package, a constraint is set that 𝑙 = 𝑢  occurs only when 
𝑘 = 𝐾 − 1, otherwise, the program throws out an error message. Note that if 
𝑙 = 𝑢  holds, the last upper bound will be crossed with probability equal to 1 
after passing the analysis 𝐾 − 1. 

In function bound2, the iteration stops when the length of searching interval 
reaches 2, that is, the lower search bound is 1 less than the upper searching 
bound. During the iteration, the new searching bound is updated with the middle 
value between lower and upper searching bound via R basic function floor. If the 
difference between two search bounds is odd like 3, 5, 7, …, then the middle 
value is not an integer. In this case, floor(the middle value)>lower searching 
bound, so it is a valid value for a new search bound. When the difference is even, 
like 2, 4, 6, …, the middle value is already an integer and floor(the middle value) 
will not change anything. 

Section 1.2 The probabilities in Algorithm 2 based on binomial distribution  

With exact test, the test statistic at analysis 𝑘 can be 𝑍 = ∑ 𝑋  which follows 
binomial distribution 𝐵(𝑛 , 𝑝). It is easy to see 



                          𝑃 {𝑍 ≤ 𝑙 } = ∑ 𝐶 (𝑝 ) (1 − 𝑝 ) ,                                 (1) 

For 𝑘 = 2,3, … , 𝐾, the joint distribution of 𝑍 , 𝑍 , … , 𝑍  under the alternative 
hypothesis is  

 𝑃 {𝑍 = 𝑧 , ⋯ , 𝑍 = 𝑧 , 𝑍 = 𝑧 } = 𝑃 ∑ 𝑋 = 𝑧 , ⋯ , ∑ 𝑋 =

𝑧 , ∑ 𝑋 = 𝑧 = 𝑃 ∑ 𝑋 = 𝑧 , ∑ 𝑋 = 𝑧 −

𝑧 , ⋯ , ∑ 𝑋 = 𝑧 − 𝑧 = 𝑃 ∑ 𝑋 = 𝑧 ∏ 𝑃 {∑ 𝑋 =

𝑧 − 𝑧 } = 𝐶 (𝑝 ) (1 − 𝑝 ) ∏ [𝐶 (𝑝 ) (1 −

𝑝 ) ],                                                                                                         (2) 

Recall that 𝑧 ≥ 𝑙 + 1 always holds otherwise the trial would stop before 
analysis 𝑘. Therefore, the probability 

 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } =

∑ ∑ …
 { , }

 { , }
∑ 𝐶 (𝑝 ) (1 −

 { , }
 { , }

𝑝 ) ∏ [𝐶 (𝑝 ) (1 − 𝑝 ) ],                        (3) 

Define 𝑙∗ (𝑧 ) = max {𝑙 + 1, 𝑧 − 𝑛 + 𝑛 } and 𝑢∗ (𝑧 ) = min {𝑛 , 𝑧 }. 
Also, let 𝐶 (𝑧 , 𝑝) = 𝐶 (𝑝) (1 − 𝑝)  and 𝐶 (𝑧 , 𝑝) =

∑ 𝐶 (𝑧 , 𝑝)
∗ ( )

∗ ( ) [𝐶 (𝑝) (1 − 𝑝) ]. As in 

Section 12.1.2 of [4], the probability of crossing the lower boundary at stage 𝑘 is  

𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } = ∑ 𝐶 (𝑧 , 𝑝 ) =

∑ ∑ 𝐶 (𝑧 , 𝑝 )
∗ ( )

∗ ( ) [𝐶 (𝑝 ) (1 −

𝑝 ) ],                                                                                                         (4)                                                                               

In Step 0 of Algorithm 2, the probability 

                    𝑃 {𝑍 ≥ 𝑢 } = ∑ 𝐶 (𝑝 ) (1 − 𝑝 ) ,                              (5) 

The actual overall type II error is  

𝛽∗ = 𝑃 {𝑍 ≤ 𝑙 } + 𝑃 {𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } + ⋯ + 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 >

𝑙 , 𝑍 ≤ 𝑢 } = ∑ 𝐶 (𝑧 , 𝑝 ) + ∑ ∑ 𝐶 (𝑧 , 𝑝 ),                          (6) 

 



Section 1.3 The probabilities in Algorithm 1 based on normal distribution  

For a 𝑝  not close to 1 or 0, with a large sample size, the test statistic at analysis 𝑘 
can be 𝑍 = 𝜃 𝐼  which asymptoticly follows normal distribution 𝑁(𝜃 𝐼 , 1), 

where 𝜃 = 𝑝 − 𝑝  and 𝜃 = �̂� − 𝑝 = ∑ − 𝑝 . It is worth mentioning that 

𝐼  is the inverse of the variance 𝑣𝑎𝑟(𝜃 ).  

Under 𝐻 , 𝜃 = 𝑝 − 𝑝 = 0, and  

                                         𝑃 {𝑍 ≥ 𝑢 } = 1 − Φ(𝑢 ),                                               (7) 

where  Φ(∙) is the cumulative distribution function of standard normal 
distribution. In Initialization of Algorithm 1, 𝑃 {𝑍 ≥ 𝑢 } = 𝛼. Thus, 𝑢 =

Φ (1 − 𝛼). To obtain the initial maximum sample size 𝑛 , let  

𝛽 = 𝑃 {𝑍 < 𝑢 } = 𝑃 𝑍 − 𝜃 𝐼 < 𝑢 − 𝜃 𝐼

= Φ 𝑢 − (𝑝 − 𝑝 )
𝑛  

𝑝 (1 − 𝑝 )
 

Thus, 𝑛 = 𝑝 (1 − 𝑝 )[(𝑢 − Φ (𝛽))/(𝑝 − 𝑝 )] . Let the initial maximum 
sample size be 𝑛 = [𝑛 ], the sequence of sample sizes at each analysis be 
{[𝑛 𝑡 ], … , [𝑛 𝑡 ], [𝑛 ]}, where [] rounds the value up to its nearest whole 
value. 

In Step 1 of Algorithm 1, 

𝑃 {𝑍 ≤ 𝑙 } = 𝑃 𝑍 − 𝜃 𝐼 ≤ 𝑙 − 𝜃 𝐼 = Φ 𝑙 − (𝑝 − 𝑝 )
 

( )
,          

(8) 

Then  𝑙 = Φ 𝛽(𝑡 ) + (𝑝 − 𝑝 )
 

( )
. 

 For the sequence of test statistics {𝑍 , 𝑍 , … , 𝑍 }, 𝑘 = 1,2, … , 𝐾, it is easy to 
check that: 

(1) (𝑍 , 𝑍 , … , 𝑍 ) is multivariate normal; 
(2) 𝐸(𝑍 ) = 𝜃 𝐼 ; 
(3) 𝐶𝑂𝑉 𝑍 , 𝑍 = 𝐼 /𝐼 , 1 ≤ 𝑘 ≤ 𝑘 ≤ 𝐾. 



The joint normal distribution of  {𝑍 , 𝑍 , … , 𝑍 } has a mean vector 𝝁 =

{𝜃 𝐼 , 𝜃 𝐼 , … , 𝜃 𝐼 }  and a covariance matrix  

Σ × =

⎣
⎢
⎢
⎢
⎢
⎡ 1

𝐼 /𝐼
𝐼 /𝐼

1

𝐼 /𝐼

𝐼 /𝐼

…
…

𝐼 /𝐼

𝐼 /𝐼

𝐼 /𝐼

⋮

𝐼 /𝐼

⋮

1
⋮

…
⋱

⋮
⋮

𝐼 /𝐼 𝐼 /𝐼 𝐼 /𝐼 … 1 ⎦
⎥
⎥
⎥
⎥
⎤

 

The probability 

𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } =

∫ ⋯ ∫ ∫ 𝑓 , ,…, (𝑧 , 𝑧 , … , 𝑧 ; 𝜃)𝑑 𝑑 ⋯ 𝑑 =

∫ ⋯ ∫ ∫ ∫ … ∫ 𝑓 , ,…, (𝑧 , 𝑧 , … , 𝑧 ; 𝜃)𝑑 𝑑 ⋯ 𝑑 ,           (9) 

where  𝑓 , ,…, (𝑧 , 𝑧 , … , 𝑧 ; 𝜃) and 𝑓 , ,…, (𝑧 , 𝑧 , … , 𝑧 ; 𝜃) are joint density 
function of {𝑍 , 𝑍 , … , 𝑍 } and {𝑍 , 𝑍 , … , 𝑍 }, respectively. Given the lower 
bounds {𝑙 , 𝑙 , … , 𝑙 },  let 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } = 𝛽(𝑡 ) −

𝛽(𝑡 ), 𝑙  can be determined by search method. 

With 𝑙 = 𝑢 , the actual overall type II error is  

𝛽∗ = 𝑃 {𝑍 ≤ 𝑙 } + 𝑃 {𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } + ⋯ + 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 >

𝑙 , 𝑍 ≤ 𝑢 },                                                                                                              (10) 

Further, the actual type I error is  

𝛼∗ = 1 − 𝑃 {𝑍 ≤ 𝑙 } − 𝑃 {𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } − ⋯ − 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 >

𝑙 , 𝑍 ≤ 𝑢 }.                                                                                                              (11) 

 With formula (11), the computation of  𝛼∗ can be easily done by a procedure 
similar to that for (10).   

Section 2 Calculate conditional power 

The conditional power quantifies the conditional probability of rejecting the null 
hypothesis at the final analysis, given the current interim result. Assume 1 ≤ 𝑖 <

𝐾, having obtained the boundaries and the sample sizes, consider the conditional 



probability of crossing the upper boundary at analysis 𝐾 given information 
available up to and including analysis 𝑖. 

                      𝛼 , (𝑝|𝑧 ) = 𝑃 {𝑍 ≥ 𝑢 ,∩ {𝑙 < 𝑍 }|𝑍 = 𝑧 },                  (12) 

For single-arm group sequential design with binary endpoint, two types of test are 
available-exact test and asymptotic test. 

(1)  Exact test based on binomial distribution. The test statistic at analysis 𝑘 
can be 𝑍 = ∑ 𝑋  which follows binomial distribution 𝐵(𝑛 , 𝑝). 

For 1 ≤ 𝑖 < 𝑗 ≤ 𝐾, define increment 𝑍 , = 𝑍 − 𝑍 = ∑ 𝑋 . The 

increment statistic 𝑍 ,  follows the binomial distribution 𝐵(𝑛 − 𝑛 , 𝑝) 
independently of 𝑍 . Then 𝑍 = 𝑍 , + 𝑍 . Given interim results at analysis 𝑖, 
the conditional probability of crossing the upper boundary at analysis 𝐾 is  

𝛼 , (𝑝|𝑧 ) = 𝑃 {𝑍 ≥ 𝑢 ,∩ {𝑙 < 𝑍 }|𝑍 = 𝑧 } 

                   = 𝑃 𝑍 , + 𝑍 ≥ 𝑢 ,∩ 𝑙 < 𝑍 , + 𝑍 |𝑍 = 𝑧  

                   = 𝑃 𝑍 , ≥ 𝑢 − 𝑧 ,∩ 𝑙 − 𝑧 < 𝑍 , ,                             (13) 

Let 𝑢∗ (𝑧 ) = 𝑢 − 𝑧 , 𝑙∗ (𝑧 ) = 𝑙 − 𝑧 . Note that the definitions of 𝑙∗ (𝑧 ) 
and 𝑢∗ (𝑧 ) here are different from those in Section 1.2. Formula (13) can be 
restated as  

                      𝛼 , (𝑝|𝑧 ) = 𝑃 𝑍 , ≥ 𝑢∗ (𝑧 ),∩ 𝑙∗ (𝑧 ) < 𝑍 ,            (14)                                               

The joint density function of 𝑍 , , 𝑚 = 𝑖 + 1, 𝑖 + 2, … , 𝐾 is: 



𝑃 𝑋 = 𝑧 , , 𝑋 = 𝑧 , , … , 𝑋 = 𝑧 , , 𝑋

= 𝑧 ,

= 𝑃 𝑋 = 𝑧 , − 𝑧 , , 𝑋

= 𝑧 , − 𝑧 , , … , 𝑋 = 𝑧 , − 𝑧 , , 𝑋

= 𝑧 ,

= 𝑃 𝑋 = 𝑧 , 𝑃 𝑋 = 𝑧 , − 𝑧 ,  

                                                                                                                                       (15) 

Define 𝑙∗∗ 𝑧 , = max {𝑙∗ (𝑧 ) + 1, 𝑧 , − 𝑛 + 𝑛 } and 𝑢∗∗ 𝑧 , =

min {𝑛 − 𝑛 , 𝑧 , }, 𝑚 = 𝑖 + 2, 𝑖 + 3, . . . , 𝐾. Besides, let 𝐶 𝑧 , , 𝑝 =

𝐶 , (𝑝) , (1 − 𝑝) ,  and 𝐶 𝑧 , , 𝑝 =

∑ 𝐶 𝑧 , , 𝑝
∗∗

,

,
∗∗

,
[𝐶 , , (𝑝) , , (1 −

𝑝) , , ]. Combine (14) and (15), we have, 

𝛼 , (𝑝|𝑧 ) = 𝑃 ∑ 𝑋 ≥ 𝑢∗ (𝑧 ), 𝑙∗ (𝑧 ) < ∑ 𝑋 , … , 𝑙∗ (𝑧 ) <

∑ 𝑋 , 𝑙∗ (𝑧 ) < ∑ 𝑋 = ∑ 𝐶 𝑧 , , 𝑝
,

∗ ( ) ,                       (16) 

Given (16), 𝛼 , (𝑝|𝑧 ) can be calculated using the same process as the 
unconditional type I error of the design. 

(2) Asymptotic test based on normal distribution. The test statistic at analysis 𝑘 
can be 𝑍 = 𝜃 𝐼  which asymptoticly follows normal distribution 

𝑁(𝜃 𝐼 , 1), with 𝜃 = 𝑝 − 𝑝  and 𝜃 = �̂� − 𝑝 = ∑ − 𝑝 . Following 



P8892 of [2], in practice, 𝐼  in 𝑍  can be derived by the estimated sample 
proportion �̂� . 

Given interim results at analysis 𝑖, the conditional probability of crossing the 
upper boundary at the final analysis is  

𝛼 , (𝑝|𝑧 ) = 𝑃 {𝑍 ≥ 𝑢 ,∩ {𝑙 < 𝑍 }|𝑍 = 𝑧 } 

= 𝑃 {𝑍 ≥ 𝑢 , 𝑙 < 𝑍 , … , 𝑙 < 𝑍 |𝑍 = 𝑧 },                                      (17) 

Recall Section 1.3, with prespecified information sequence {𝐼 , 𝐼 , … , 𝐼 }, 𝑍 𝐼 −

𝑍 𝐼  follows the normal distribution 𝑁(𝜃∆ , ∆ ) independently of 
{𝑍 , 𝑍 , … , 𝑍 }, where ∆ = 𝐼 − 𝐼  for 𝑘 = 2, … , 𝐾. Analogously, for 𝑗 > 𝑘, 

𝑍 , = 𝑍 𝐼 − 𝑍 𝐼 = ∑ − 𝑝
( )

− ∑ − 𝑝
( )

 

=
∑ 𝑋 − 𝑛 𝑝

𝑝(1 − 𝑝)
−

∑ 𝑋 − 𝑛 𝑝

𝑝(1 − 𝑝)
=

∑ 𝑋 − 𝑛 − 𝑛 𝑝

𝑝(1 − 𝑝)

=
∑ 𝑋

𝑛 − 𝑛
− 𝑝

𝑛 − 𝑛

𝑝(1 − 𝑝)
=

∑ 𝑋

𝑛 − 𝑛
− 𝑝 (𝐼 − 𝐼 ) 

𝑍 ,  follows the normal distribution 𝑁 𝜃(𝐼 − 𝐼 ), (𝐼 − 𝐼 )  independently of 

{𝑍 , 𝑍 , … , 𝑍 }. 𝑍  can be rewritten as  𝑍 =
, . For 𝑗 > 𝑘 > 𝑖,  

𝐶𝑂𝑉 𝑍 , , 𝑍 , =
𝐼 − 𝐼 (𝐼 − 𝐼 )

𝑛 − 𝑛 (𝑛 − 𝑛 )
𝐶𝑂𝑉 𝑋 , 𝑋

=
1

𝑝 (1 − 𝑝)
𝐷 𝑋 =

(𝑛 − 𝑛 )

𝑝(1 − 𝑝)
= (𝐼 − 𝐼 ) 

Thus, 



𝛼 , (𝑝|𝑧 ) = 𝑃 {𝑍 ≥ 𝑢 , 𝑙 < 𝑍 , … , 𝑙 < 𝑍 |𝑍 = 𝑧 }

= 𝑃
𝑍 , + 𝑍 𝐼

𝐼
≥ 𝑢 , 𝑙 <

𝑍 , + 𝑍 𝐼

𝐼
, … , 𝑙

<
𝑍 , + 𝑍 𝐼

𝐼
|𝑍 = 𝑧

= 𝑃 𝑍 , ≥ 𝑢 𝐼 − 𝑍 𝐼 , 𝑍 ,

> 𝑙 𝐼 − 𝑍 𝐼 , … , 𝑍 , > 𝑙 𝐼 − 𝑍 𝐼 |𝑍 = 𝑧

= 𝑃 𝑍 , ≥ 𝑢𝐾 𝐼𝐾 − 𝑧𝑖 𝐼𝑖, 𝑍 , > 𝑙 𝐼 − 𝑧 𝐼 , … , 𝑍 ,

> 𝑙 𝐼 − 𝑧 𝐼  

Let 𝑢∗ (𝑧 ) = 𝑢 𝐼 − 𝑧 𝐼 , 𝑙∗ (𝑧 ) = 𝑙 𝐼 − 𝑧 𝐼 , 𝑚 = 1, … , 𝐾 − 1. 
Then,  

𝛼 , (𝑝|𝑧 ) = 𝑃 𝑍 , ≥ 𝑢∗ (𝑧 ), 𝑍 , > 𝑙∗ (𝑧 ), … , 𝑍 , > 𝑙∗ (𝑧 ) , 

where 𝑍 , , … , 𝑍 ,  jointly follow multivariate normal distribution with mean 
vector 𝝁 = {𝜃(𝐼 − 𝐼 ), 𝜃(𝐼 − 𝐼 ), … , 𝜃(𝐼 − 𝐼 )}  and a covariance matrix  

Σ( )×( ) =

⎣
⎢
⎢
⎢
⎡
(𝐼 − 𝐼 )

(𝐼 − 𝐼 )

(𝐼 − 𝐼 )

(𝐼 − 𝐼 )

(𝐼 − 𝐼 )

(𝐼 − 𝐼 )

…
…

(𝐼 − 𝐼 )

(𝐼 − 𝐼 )
(𝐼 − 𝐼 )

⋮
(𝐼 − 𝐼 )

⋮
(𝐼 − 𝐼 )

⋮

…
⋱

(𝐼 − 𝐼 )
⋮

(𝐼 − 𝐼 ) (𝐼 − 𝐼 ) (𝐼 − 𝐼 ) … (𝐼 − 𝐼 ) ⎦
⎥
⎥
⎥
⎤

 

𝛼 , (𝑝|𝑧 ) can be calculated by the function ‘pmvnorm’ from R package 
‘mvtnorm’ [5]. 

Section 3 Remarks 

(1) Calculate multiple integrals 

The integrands of the multiple integrals in Section 1.3 and (2) of Section 2 are 
complex functions related to normal density functions which are not so 
straightforward to be integrated. For some software, multiple integrals are 
approximated by numeric integration carried out via Simpson’s rule, a special 
case of Newton-Cotes formulas. R package “mvtnorm” provides function 
“pmvnorm” to compute the distribution function of the multivariate normal 
distribution with arbitrary limits and correlation matrices. pmvnorm performs 



certain transformations on integral variables after which the multiple integral 
is restated as the product of several univariate integrals. With the function 
pmvnorm, the computation of asymptotic test in this package can be 
implemented efficiently. 

(2) Binding boundaries vs non-binding boundaries 

With simultaneously generated upper and lower boundaries, the trial must be 
terminated once the test statistic crosses the latter so as not to inflate the type 
I error. In this circumstance, the lower boundaries are strictly binding, which 
may not be favorable for the purpose of monitoring. Thus, making the lower 
boundaries non-binding seems to be a better answer. To construct the non-
binding lower boundaries, upper boundaries are first generated as if there is 
no lower boundary, and later, fixed while searching for the lower boundaries. 
The whole procedure is iterated until requirements for two types of errors are 
strictly met (for asymptotic test) or asymptotically satisfied (for exact test). 

(3) Carry over the unspent type II error when generating boundaries 

Due to the discreteness of binomial distribution, in exact test, the type I and 
type II error actually spent at analysis 𝑗 may not approximate the designated 
amount 𝛼 𝑡 − 𝛼 𝑡  and 𝛽 𝑡 − 𝛽 𝑡 , respectively. It is natural to 
consider carrying over the unused portion of errors at any stage to the 
subsequent stages when generating boundaries. Since we only have one upper 
boundary 𝑢  for the last look, there is no need to carry over type I error.  

In Step 3 of Algorithm 2, for 𝑘 = 2, … , 𝐾 − 1, 𝑃 {𝑍 ≤ 𝑙 } + 𝑃 {𝑍 > 𝑙 , 𝑍 ≤

𝑙 } + ⋯ + 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } ≤ 𝛽(𝑡 ), where the unused 
portion of type II error at earlier stages can be accumulated and spent at stage 
𝑘. In contrast, if the type II error is not carried over to the subsequent looks, 
the formula becomes 𝑃 {𝑍 > 𝑙 , ⋯ , 𝑍 > 𝑙 , 𝑍 ≤ 𝑙 } ≤ 𝛽(𝑡 ) −

𝛽(𝑡 ). Due to the lower tolerance of type II error, the new formula can 
result in smaller futility boundaries before the last look, making it less likely to 
reject the alternative hypothesis even when 𝐻  is not that advantageous. 
Remember that, in this document, the lower boundaries are non-binding, so 
the overall type I error would not be influenced by not carrying over the type II 
error.  



To probe into the impact of not carrying over the type II error on the lower 
boundaries, we set up a simulation study which mimics a three-stage group 
sequential design. For simplicity, only futility boundary is considered. Let the 
overall type II error 𝛽 = 0.2 and the sequence of information fractions 
{𝑡 , 𝑡 , 𝑡 } = {0.3,0.6,1}. Consider two beta spending functions, that is, 

{𝛽(𝑡 ), 𝛽(𝑡 ), 𝛽(𝑡 )} = { , , 𝛽} and {𝛽(𝑡 ), 𝛽(𝑡 ), 𝛽(𝑡 )} = {0.3𝛽, 0.5𝛽, 𝛽}. 

Lower boundaries are derived with and without carrying over unspent type II 
error, with the maximum sample size 𝑛  varying from 30 to 190 by 20 and the 
alternative 𝑝  varying from 0.35 to 0.75 by 0.05. As there is no unspent type II 
error before the first analysis, the lower boundary for the first look will stay 
unchanged with or without carrying over type II error. When carrying over 
type II error, about half of the lower boundaries at the second stage are one 
larger than those obtained without carrying over type II error. At the third 
stage, 66% of the lower boundaries obtained with carrying over type II error 
are one or two greater than their competitors. Since the gap is not too wide, it 
won’t hurt to generate the lower boundaries with carried-over type II error 
while to some extent reducing the possibility of getting false positive results. 

(4) Increase the maximum sample size to enhance power 

Remember that the lower boundaries are generated with the upper boundary 
fixed to make them non-binding. However, having controlled the overall type I 
error, the actual power achieved in Step 4 of both Algorithm 1 and 2 may be 
lower than the required level 1 − 𝛽. Other things being equal, larger sample 
size generally yields higher power. Here, we choose to increase the maximum 
sample size to enhance the level of power. 

(5) Adopt the maximum sample size obtained from Algorithm 1 for 
initialization of Algorithm 2 

As suggested by [4], when generating boundaries for exact test, it is useful to 
start with the results from asymptotic test. In Step 0 of Algorithm 2, the two 
probabilities implicitly use the maximum sample size 𝑛 . If 𝑛  is not specified 
beforehand, we must solve two inequations with respect to both the upper 
boundary 𝑢  and 𝑛 , which requires massive computation. In fact, the sample 
sizes obtained from asymptotic test ought to be close to those from exact test. 



Thus, it makes sense to adopt the 𝑛  obtained from asymptotic test as an 
initial value for exact test. 

(6) Asymptotic test vs exact test 

Taking advantage of the smoothness of normal distribution, the overall two 
types of errors as well as type II error spent at each analysis can be exactly 
achieved by implementing the asymptotic test. However, with a small sample 
size, the asymptotic normal distribution may not be a good representative of 
the actual distribution of binary population. The way to estimate the sample 
variance 𝑣𝑎𝑟(𝜃 ) is another source of imprecision. 

Due to the discreteness of binomial distribution, the type II error spent at each 
analysis can only approximate the desired amount, where the strategy of 
carrying over the unspent type II error may be necessary. The saw-toothed 
power function also results in more than one possible choice of sample sizes. 
Nevertheless, the associated test statistic is essentially the count of responses, 
which is not influenced by the estimation of sample variance. Further, exact 
test precisely depicts the actual distribution of binary population even with a 
very small sample size. 

     Having weighed the pros and cons of the two tests, we decided to provide 
functions for both strategies. 

Section 4 Quick start 

Let’s start with the calculation of sample sizes and boundaries under the 
asymptotic test.  

If not otherwise restated, the setup of the trial is as follows: sequence of 
information fractions 𝐼 = {0.2,0.4,0.6,0.8,0.99}; desired overall type II error rate 
𝛽 = 0.2; the sequence of portions of type II error spent at each analysis 
{0.1,0.2,0.3,0.3,0.2} or equally the values of beta spending function at the timing 
for each analysis 𝛽(𝑡 ) = {0.1,0.3,0.6,0.9,1.1}; desired overall type I error rate 
𝛼 = 0.05; response rate under null hypothesis 𝑝 = 0.3; response rate under 
alternative hypothesis 𝑝 = 0.5; number of planned analyses 𝐾 = 4.6; the 
maximum acceptable difference between the desired type II error spending and 
the actual type II error spending while computing lower bounds under asymptotic 
test 𝑡𝑜𝑙 = 10 , hereafter, we refer to 𝑡𝑜𝑙 as tolerance level.  



Firstly, user should define some variables to set up the design as follows: 

> library(BinGSD) 
> I=c(0.2,0.4,0.6,0.8,0.99) 
> beta=0.2 
> betaspend=c(0.1,0.2,0.3,0.3,0.2) 
> alpha=0.05 
> p_0=0.3 
> p_1=0.5 
> K=4.6 
> tol=1e-6 
 

To obtain the sample sizes and associated boundaries under asymptotic test, call t
-he function asymdesign: 
 
> tt1=asymdesign(I,beta,betaspend,alpha,p_0,p_1,K,tol)    
Warning messages: 
1: In check.asymdesign(I, beta, betaspend, alpha, p_0, p_1, K, tol) : 
  I will be standardized so that the last element is 1. 
2: In check.asymdesign(I, beta, betaspend, alpha, p_0, p_1, K, tol) : 
  betaspend will be standardized so that the total is 1. 
 

Note that the last element of 𝐼 is 0.99 but not 1. In this case, function 
asymdesign will automatically divide 𝐼 by 0.99 to make its last element equal 1. 
Since the sum of desired type II error spending proportions exceeds 1, 
asymdesign will also standardize the vector {0.1,0.2,0.3,0.3,0.2}. While executing 
the R commands,  𝐾 = 4.6 will also be rounded up to 5. 

tt1 is an object of class asymdesign. It is of interest to find some important 
outputs such as sample sizes, boundaries, actual type I and type II error spending: 

> tt1$n.I     #sample sizes required for each analysis 
[1]  9 18 27 36 44 
> tt1$lowerbounds    #lower bounds for each analysis 
[1] -0.96146695 -0.08607206  0.61570293  1.12238155  1.64485363 
> tt1$u_K        #the last and only upper bound 
[1] 1.644854 
> tt1$probhi    #the actual type I error 
[1] 0.04290043 
> tt1$problow       #the actual type II error for each analysis 
[1] 0.01532964 0.02969010 0.04437652 0.04436548 0.06041841 
> tt1$power    #the power for the group sequential test 
[1] 0.8058198 

 

For design under exact test, call the function exactdesign. The only input for 
exactdesign is the output from asymptotic. 

> tt2=exactdesign(tt1) #design based on exact test 

tt2 is an object of class exactdesign. User could also find some important 
numbers via the commands below: 



> tt2$n.I      #sample sizes required for each analysis 
[1]  9 18 27 36 44 
> tt2$lowerbounds   #lower bounds for each analysis 
[1]  0  5  9 14 19 
> tt2$u_K       #the last and only upper bound 
[1] 19 
> tt2$probhi     #the actual type I error 
[1] 0.0360286 
> tt2$problow    #the actual type II error for each analysis 
[1] 0.001953125 0.046669006 0.032415666 0.063932401 0.044413624 
> tt2$power    #the power for the group sequential test 
[1] 0.8106162 

Given a design, whether by inputting from keyboard or calling functions in 
BinGSD, our package enables the calculation of boundary crossing probabilities. 
There are two functions tailored for two kinds of tests: asymprob; exactprob. 

Obtain boundary crossing probabilities of the user-defined designs: 

> tt3=asymprob(K=5,p_0=0.4,p_1=c(0.5,0.6,0.7,0.8),n.I=c(15,20,25,30,3 
+ 5),u_K=1.65, lowerbounds=c(-1.2,-0.5,0.2,0.8,1.65)) 
               
> tt4=exactprob(K=5,p_0=0.4,p_1=c(0.5,0.6,0.7,0.8),n.I=c(15,20,25,30,3
+ 5),u_K=15, lowerbounds=c(3,5,10,12,15)) 
                

For asymprob and exactprob, p_1 is a mandatory input. User is assumed to 
input all other arguments except for d to define a design. The resulting tt3 and 
tt4 are two objects of class asymprob and exactprob, respectively. The 
probabilities of crossing the lower bounds under p_0 and p_1 are contained in a 
matrix named problow. probhi contains the upper bound crossing 
probabilities.  
> tt3$problow 
       p            1            2            3            4            5        Total 
[1,] 0.4 1.150697e-01 1.993602e-01 2.710091e-01 2.087000e-01 1.569305e-01 9.510694e-01 
[2,] 0.5 2.415697e-02 6.058913e-02 1.327723e-01 1.760468e-01 2.884341e-01 6.819993e-01 
[3,] 0.6 2.708428e-03 8.042296e-03 2.391436e-02 4.550975e-02 1.442661e-01 2.244409e-01 
[4,] 0.7 9.368515e-05 2.570261e-04 8.447077e-04 1.878732e-03 1.041188e-02 1.348603e-02 
[5,] 0.8 1.958134e-07 2.899753e-07 6.711291e-07 1.127068e-06 8.741561e-06 1.102555e-05 
> tt3$probhi 
       p 1 2 3 4          5 
[1,] 0.4 0 0 0 0 0.04893055 
[2,] 0.5 0 0 0 0 0.31800074 
[3,] 0.6 0 0 0 0 0.77555909 
[4,] 0.7 0 0 0 0 0.98651397 
[5,] 0.8 0 0 0 0 0.99998897 
 

Obtain boundary crossing probabilities of the design defined by tt1 or tt2: 

> tt3=asymprob(p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),d=tt1) 
> tt4=exactprob(p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),d=tt2) 
> tt4$problow 
       p           1            2            3            4            5        Total 
[1,] 0.3 0.040353607 4.950472e-01 2.171319e-01 1.641748e-01 4.726390e-02 9.639714e-01 
[2,] 0.4 0.010077696 1.996819e-01 1.368397e-01 2.006824e-01 1.110455e-01 6.583272e-01 
[3,] 0.5 0.001953125 4.666901e-02 3.241567e-02 6.393240e-02 4.441362e-02 1.893838e-01 



[4,] 0.6 0.000262144 5.614867e-03 2.698102e-03 5.130427e-03 3.144015e-03 1.684955e-02 
[5,] 0.7 0.000019683 2.637614e-04 5.633442e-05 7.061388e-05 2.598474e-05 4.363774e-04 
[6,] 0.8 0.000000512 2.475811e-06 1.196444e-07 5.629186e-08 7.094995e-09 3.170842e-06 
[7,] 0.9 0.000000001 5.182848e-10 1.259926e-12 6.552126e-14 8.363796e-16 1.519611e-09 
> tt4$probhi 
       p 1 2 3 4         5 
[1,] 0.3 0 0 0 0 0.0360286 
[2,] 0.4 0 0 0 0 0.3416728 
[3,] 0.5 0 0 0 0 0.8106162 
[4,] 0.6 0 0 0 0 0.9831504 
[5,] 0.7 0 0 0 0 0.9995636 
[6,] 0.8 0 0 0 0 0.9999968 
[7,] 0.9 0 0 0 0 1.0000000 

For group-sequential test with K planned analyses, at most K − 1 interim analyses 
can be done. Once collected some data, user is able to know the conditional 
probability that reject the null hypothesis at the final stage given the value of 
testing statistic at interim analysis.  For function asymcp, argument d can be an 
object from either class asymdesign or class asymprob. For function exactcp, 
argument d can be an object from either class exactdesign or class exactprob.  

Get the conditional power under asymptotic test: 

> asymcp(tt1,p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),1,2)$cp 
       p        cp 
[1,] 0.3 0.1947882 
[2,] 0.4 0.6322987 
[3,] 0.5 0.9304883 
[4,] 0.6 0.9969857 
[5,] 0.7 0.9999910 
[6,] 0.8 1.0000000 
[7,] 0.9 1.0000000 
> asymcp(tt3,p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),3,2.2) $cp 
       p        cp 
[1,] 0.3 0.5482361 
[2,] 0.4 0.8318049 
[3,] 0.5 0.9613503 
[4,] 0.6 0.9958245 
[5,] 0.7 0.9998914 
[6,] 0.8 0.9999999 
[7,] 0.9 1.0000000 

To know the conditional power under exact test: 

> exactcp(tt2,p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),1,2) $cp 
       p          cp 
[1,] 0.3 0.009793508 
[2,] 0.4 0.130988862 
[3,] 0.5 0.487896752 
[4,] 0.6 0.833918068 
[5,] 0.7 0.969182514 
[6,] 0.8 0.996833912 
[7,] 0.9 0.999935684 
> exactcp(tt4,p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),3,10) $cp 
       p         cp 
[1,] 0.3 0.02696603 
[2,] 0.4 0.14146984 



[3,] 0.5 0.38434601 
[4,] 0.6 0.67596567 
[5,] 0.7 0.88788043 
[6,] 0.8 0.97948791 
[7,] 0.9 0.99910469 

We hope this document is helpful for user to get started with ‘BinGSD’. Please 
reach Lei at slimewanglei@163.com to report bugs and share your experience 
using our package. 
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