
Tutorial 1: Finding Coefficients for a Polynomial Function

Problem Statement

In this example, we shall use ROptimus to find the coefficients of the polynomial function that is known to
represent the observations y the best. This, of course, is a simple task that can be addressed more robustly
by least-squares linear model fitting. However, by starting with this example, we shall focus our attention on
the organisation of the ROptimus input, rather than the complexity of the task.

First of all, let us create some data for the example.
set.seed(845)
x <- runif(1000, min=-15, max=10)
y <- -1.0*x - 0.3*xˆ2 + 0.2*xˆ3 + 0.01*xˆ4 + rnorm(length(x), mean=0, sd=30)

The good side of this noisy data generation is that we know the original function that describes it: y =
−1.0x− 0.3x2 + 0.2x3 + 0.01x4. Hence, we can check how well ROptimus performs at finding the correct
coefficients. The synthetic “real world” noisy data that we generated looks like this:

−15 −10 −5 0 5 10

−
30

0
−

10
0

0
10

0
30

0

Synthetic Example Dataset

x

y

Before we turn to ROptimus, let us see how the proper linear model fitting will perform using this data.
lm.model <- lm(y ~ x + I(xˆ2) + I(xˆ3) + I(xˆ4) + 0)
lm.model

##
Call:
lm(formula = y ~ x + I(x^2) + I(x^3) + I(x^4) + 0)
##
Coefficients:
x I(x^2) I(x^3) I(x^4)
-0.74056 -0.30735 0.19777 0.00991

8

The least-squares linear model fitting for the coefficients to the known functional form is, not surprisingly,
rather close to the original equation y = −0.741x− 0.307x2 + 0.198x3 + 0.010x4:

−15 −10 −5 0 5 10

−
30

0
−

10
0

0
10

0
30

0
Least−Squares Linear Model Fitting

x

y

The root mean squared deviation (RMSD) between the observed data y and the linear model fitting outcome
is:
y.pred <- predict(newdata=data.frame(x=x), object=lm.model)
sqrt(mean((y-y.pred)ˆ2))

[1] 28.82655

which is even slightly better in describing the noisy data, as compared to the maximum possible RMSD based
on the de-noised data:
y.realdep <- -1.0*x - 0.3*xˆ2 + 0.2*xˆ3 + 0.01*xˆ4
sqrt(mean((y-y.realdep)ˆ2))

[1] 28.85858

Defining ROptimus Inputs

Now we can set up the inputs for the ROptimus run. We shall use the model k1x+ k2x
2 + k3x

3 + k4x
4 to

fit the y observables based on the values for x. The dependent functions that are needed for setting up an
ROptimus run, are given as inputs in the Optimus() call.

First, we need to create the essential object K, which stores the initial values for the parameter(s) to be
optimised. K can be an object of any type. From a single numeric or character value to a vector of values
or a data frame holding, say, Cartesian coordinates of a molecule to be optimised. The only ROptimus
requirement from K is that it should be something alterable (via a rule function r(), see below) and should
influence the outcome of another required model function - m() (see below). In this example, we have 4
coefficients to optimise from some random initial state. We can thus make K be a numeric vector of size 4. Let
us start from all the components being 1.0, which, as entries in K, can be both named and unnamed. Though

9

not the case here, the entry-named data for K can be essential for some models that specifically use coefficient
names, for instance when a system of ODEs is used in the model function m() in one of the tutorials.
K <- c(k1=1.0, k2=1.0, k3=1.0, k4=1.0) # entries are named as k1, k2, k3 and k4

Second, we should create the function m() for the model. The function m() should be designed to operate
on the whole set of parameter snapshot K and return the corresponding observable object O. Please note
that the size and shape of K and O are not necessarily to match, depending on the nature of the model used.
Operating on K is one of the hard conditions on m(), which can optionally operate on other data as well.
In our situation, the function m() should operate on the provided instance of four coefficients (in the object
K), and, additionally on the values x. It should then return a vector of observations O (to be compared with
y target observations) of the same size as vector x. Any additional data required by the model, in our case
an object with the set of 1000 x values, must be provided to the function in an input variable DATA, a list
holding the additional data that must be accessed by m() and u() (see below). The variable DATA must be
provided to Optimus(), and m() must take it as an input. In the case that neither m() nor u() require
additional data, the two functions should still be created such that they take a variable DATA as an input,
and the variable DATA passed to Optimus() will be set to NULL).
Generating an object that is then to be passed to DATA argument of Optimus().
No need to call it DATA, as soon as it is passed to the DATA argument of Optimus().
DATA <- NULL
DATA$x <- x
DATA$y <- y

Generating the m() function
m <- function(K, DATA){
x <- DATA$x
O <- K["k1"]*x + K["k2"]*xˆ2 + K["k3"]*xˆ3 + K["k4"]*xˆ4
return(O)

}

At this point, calling m(K=K, DATA=DATA) from within Optimus() will return the predicted O set from the
initial, non-optimal values for K, hence rather far from the target Otrg = y.

In this example, the optimisation goal is for the O model outcomes to come as close as possible to the target
observations y, to be achieved by optimising the coefficients K. The object y holding the target values therefore
also needs to be specified and given as an input to the main Optimus() function (as a constituent entry in
the DATA argument), just like x was supplied, as required, in this example, by the function m().

Now, we need to define how the performance of a given snapshot of coefficients K is to be evaluated. For
ROptimus, this is done by specifying a function u(), which should necessarily take as inputs O (the output
of m()) and the variable DATA. The output should have two components, Q holding a single number of the
quality of the K coefficients, and E holding a (pseudo) energy for the given snapshot K. It is important that
the returned (pseudo) energy value must be lower for better performance/version of K, never vice
versa. The Q component of the u() function output is only used for plotting the optimisation process, and, if
desired, can just repeat the value of the E component.

For our example, the u() function will assess the agreement between the snapshot of predictions O and the
complete set of real observables (target) y. Here, we can use RMSD between O and y as a measure of K
snapshot quality (Q). Since better agreement means better RMSD, it can be directly used as a pseudo energy
(E), without putting a negative sign or performing some other mathematical operation on Q.
u <- function(O, DATA){
y <- DATA$y
Q <- sqrt(mean((O-y)ˆ2))
E <- Q # For RMSD, <-> negative sign or other mathematical operation

is not needed.

10

RESULT <- NULL
RESULT$Q <- Q
RESULT$E <- E
return(RESULT)

}

And finally, we need to define the rule, by which the K coefficient vector is to be altered from one step to
another. This is done by defining a rule function r() that must take K, and return an object analogous
to K, but with some alteration(s). In this example, for each snapshot of K, we shall randomly select one of its
four coefficients, then either increment or decrement (chosen randomly) it by 0.0005, returning the altered set
of coefficients.
r <- function(K){
K.new <- K
move.step <- 0.0005

Randomly selecting a coefficient to alter:
K.ind.toalter <- sample(size=1, x=1:length(K.new))

Creating a potentially new set of coefficients where one entry is altered
by either +move.step or -move.step, also randomly selected:
K.new[K.ind.toalter] <- K.new[K.ind.toalter] +

sample(size=1, x=c(-move.step, move.step))

return(K.new)
}

All the constructed objects (K) and functions (m, u, r), as well as the data required by m() and u() (stored
in the variable to be passed to DATA) should be defined in an R session and given to Optimus() as inputs.
The users are free to define some dependencies as additional files (for example: initial protein geometry for a
Monte-Carlo optimisation), which should be called from within the function definitions.

Acceptance Ratio Simulated Annealing ROptimus Run

Having constructed K, dependent data for DATA argument of Optimus(), m(), u() and r(), we are now ready
to call Optimus(). Let us first investigate the Acceptance Ratio Annealing (SA) version of ROptimus on 4
CPUs (the vast majority of personal computers currently have at least 4 CPUs), which can be executed as
follows:
Optimus(NCPU=4, OPTNAME="poly_4_SA", LONG=FALSE,

OPT.TYPE="SA",
K.INITIAL=K, rDEF=r, mDEF=m, uDEF=u, DATA=DATA)

Note that the field LONG=FALSE is included in the function call so that all data from the optimsation process is
saved. Calling Optimus() with LONG=TRUE will result in a memory saving optimisation process (more details
in the Advanced Usage section in this document). Of the 4 optimisation replicas, the second and fourth
CPUs found the best parameter configuration (lowest RMSD) in our trial:

11

−15 −10 −5 0 5 10

−
30

0
−

10
0

0
10

0
30

0

Acceptance Ratio Simulated Annealing ROptimus Fitting (4 Cores)

x

y

Table 1: 4-core Acceptance Ratio Simulated Annealing run results
from ROptimus.

E (RMSD) K1 K2 K3 K4
CPU 1 28.857 -0.1560 -0.2850 0.1905 0.0095
CPU 2 28.841 -0.3760 -0.2825 0.1920 0.0095
CPU 3 28.864 -0.1045 -0.2820 0.1905 0.0095
CPU 4 28.841 -0.3760 -0.2825 0.1920 0.0095

The equation recovered by CPU 2 (and 4) is y = −0.3760x− 0.2825x2 + 0.1920x3 + 0.0095x4.

Notice that although the RMSD of this solution, 28.841, is greater than the RMSD of the least squares
solution, 28.827, it is less than the RMSD of the de-noised data found above, 28.859.

The two graphs below illustrate i) the evolution of the system pseudo temperature, in response to alterations
made by the Temperature Control Unit (TCU), as a function of the optimsation step; and ii) the observed
acceptance ratio as a function of the optimisation step, respectively. The graphs show data from the last 20
000 steps of the optimisation executed by CPU 2.

12

980000 985000 990000 995000 1000000

0.
0e

+
00

1.
0e

−
06

2.
0e

−
06

3.
0e

−
06

System pseudo temperature (CPU 2)

Step

Te
m

pe
ra

tu
re

980000 985000 990000 995000 1000000

0
20

40
60

80
10

0

Observed acceptance ratio evolution (CPU 2)

Step

A
cc

ep
ta

nc
e

ra
tio

s
(%

)

In the first plot, the solid red line tracks the observed acceptance ratios calculated by ROptimus at the end
of each STATWINDOW and the dashed black line tracks the target acceptance ratio based on the annealing
schedule. From the above two graphs, notice that while the observed acceptance ratio tracks the target
acceptance ratio closely, the system pseudo temperature changes significantly and non-monotonically. This
illustrates that the adaptive thermoregulation allows ROptimus to effectively anneal the system acceptance
ratio.

Acceptance Ratio Replica Exchange ROptimus Run

Let us now consider the Replica Exchange version of ROptimus on 12 CPUs. The purpose here is to illustrate
how to run an optimisation using the Replica Exchange version of ROptimus; this method is of course an
overkill for solving this simple task.

In addition to the arguments specified above, the Replica Exchange version of ROptimus also requires an
input variable ACCRATIO, which is a vector that defines the acceptance ratios to be used for each of the
replicas initiated, 12 in this case. Note that the length of ACCRATIO must always be equal to the argument
NCPU.

13

ACCRATIO <- c(90, 82, 74, 66, 58, 50, 42, 34, 26, 18, 10, 2)

Having defined the acceptance ratios for each level, the optimisation can be executed as follows:
Optimus(NCPU=12, OPTNAME="poly_12_RE", LONG=FALSE,

OPT.TYPE="RE", ACCRATIO=ACCRATIO,
K.INITIAL=K, rDEF=r, mDEF=m, uDEF=u, DATA=DATA)

Of the 12 optimisation replicas, replica 8 finds the best parameter configuration (lowest RMSD) in this trial:

−15 −10 −5 0 5 10

−
30

0
−

10
0

0
10

0
30

0

Acceptance Ratio Replica Exchange ROptimus run (12 cores)

x

y

Table 2: 12-core Replica Exchange run results from ROptimus.

Replica Acceptance Ratio E (RMSD) K1 K2 K3 K4
CPU 1 90 29.71934 -3.2760 -0.5760 0.2395 0.0135
CPU 2 82 29.51819 -3.4445 -0.3755 0.2300 0.0115
CPU 3 74 28.88707 -0.0340 -0.2375 0.1870 0.0090
CPU 4 66 30.10499 -3.8095 -0.6630 0.2435 0.0140
CPU 5 58 29.06293 -2.3575 -0.4180 0.2200 0.0115
CPU 6 50 29.70906 -3.7360 -0.3785 0.2320 0.0115
CPU 7 42 28.85095 -1.1370 -0.3515 0.2045 0.0105
CPU 8 34 28.82721 -0.8175 -0.3130 0.1990 0.0100
CPU 9 26 28.84057 -0.5760 -0.2740 0.1940 0.0095
CPU 10 18 29.48785 -2.7805 -0.5420 0.2325 0.0130
CPU 11 10 28.85095 -1.1370 -0.3515 0.2045 0.0105
CPU 12 2 29.41377 1.2255 -0.0895 0.1645 0.0070

The equation recovered by CPU 8 is y = −0.8175x− 0.313x2 + 0.199x3 + 0.01x4.

Notice that the RMSD of this solution, 28.8272, is less than the RMSD of the Acceptance Ratio Simulated
Annealing solution, 28.841, and only slightly greater than the RMSD of the least squares solution, 28.8266.

14

Let us now briefly examine the evolution of the system pseudo temperature and acceptance ratio compliance
in response to the adaptive thermoregulation. The following two graphs represent data from the last 20 000
steps of optimisation replica running on CPU 8 (fixed 34% target acceptance ratio).

985000 990000 995000 1000000

3.
4e

−
05

3.
6e

−
05

3.
8e

−
05

System pseudo temperature (CPU 8 − 34% acceptance ratio)

Step

Te
m

pe
ra

tu
re

985000 990000 995000 1000000

0
20

40
60

80
10

0

Observed acceptance ratio (CPU 8 − 34% acceptance ratio)

Step

A
cc

ep
ta

nc
e

ra
tio

s
(%

)

Notice that in the observed acceptance ratio graph, the dashed line indicating the target acceptance ratio is
constant (as opposed to linearly changing as in acceptance ratio annealing). This is because each processor in
the replica exchange mode has a single target acceptance ratio, as described above. Here again, adaptive
decisions on the pseudo temperature to maintain the desired acceptance ratio result in non-monotonic, and
non-uniform pseudo temperature adjustments, while the observed acceptance ratios fluctuate relatively closely
around the set target value.

Summary

We now understand the input requirements to interface with the Acceptance Ratio Simulated Annealing and
Replica Exchange versions of ROptimus. In this example, both versions retrieved solutions having a lower
RMSD than the de-noised data, and only a slightly greater RMSD than the optimal least squares solution.

15

Replica Exchange resulted in a better solution than Simulated Annealing, at the cost of greater computing
resources.

Table 3: Summary of solutions.

E (RMSD) K1 K2 K3 K4
De-noised Function 28.85858 -1.0000 -0.3000 0.2000 0.0100
ROptimus (AR Simulated Annealing) 28.84100 -0.3760 -0.2825 0.1920 0.0095
ROptimus (AR Replica Exchange) 28.82721 -0.8175 -0.3130 0.1990 0.0100
Least Squares 28.82655 -0.7406 -0.3074 0.1978 0.0099

16

	Tutorial 1: Finding Coefficients for a Polynomial Function
	Problem Statement
	Defining ROptimus Inputs
	Acceptance Ratio Simulated Annealing ROptimus Run
	Acceptance Ratio Replica Exchange ROptimus Run
	Summary

