
R2HTML PACKAGE

R2HTML package
Formatting HTML Output on the Fly or by Using a
Template Scheme

Eric Lecoutre

Statistics is not only theory and methodology, but
also computing and communication. Applied statis-
ticians are aware that they have to pay particular at-
tention to the last step of an analysis: the report. A
very elegant way to handle the final report with R
is to use the wonderful Sweave system [1] in pack-
age tools: not only does it allow professional quality
reports by using LATEX, but it also stores used code
within the document, which is very useful when re-
turning to the analysis later on. This solution, how-
ever, is not always applicable, as the user may not
be familiar with LATEX or may need another format
to communicate with a client, who, in many cases,
will expect a report that he can edit or to which he
can add some details. RTF format is ideal for this
type of communication, as it can be opened on many
systems and allows some formatting enhancements
(bold, tables, ...). Nevertheless, it is not easy to pro-
duce and does not enable the user to embed graphs.
Another universal format which can achieve our goal
is HTML: it is light, readable on any platform, ed-
itable, and allows graphs. Moreover, it can easily be
exported to other formats.

This documents describes the R2HTML package
which provides some support for writing formatted
HTML output. Although some knowledge of HTML is
preferable to personalize outputs, the user may use
this package successfully without such knowledge.
We will create different web pages, which the reader
can find at the following address:
http://www.stat.ucl.ac.be/R2HTML/.

Introduction to HTML and
R2HTML package

According to the W3 Consortium, HTML is the lin-
gua franca for publishing hypertext on the World
Wide Web. It is a non-proprietary format based upon
SGML, and can be created and processed by a wide
range of tools, from simple plain text editors to so-
phisticated WYSIWYG authoring tools. HTML uses
so-called tags to structure text into headings, para-
graphs, lists, hypertext links and to apply a format.
For example the tag is used to start bold text, and
the tag to stop bold text. The tag with the slash
(/) is known as the closing tag. Many opening tags
need to be followed by a closing tag, but not all of

them do.

Consequently, the only required knowledge in order
to write basic HTML documents is the list of existing
tags and their functionality. By way of illustration,
here is the structure of a (rather basic) HTML docu-
ment:

<html>

<h1>My first HTML page </h1>

<p>This is some basic text with a

bold word.</p>

<p>It uses h1, and p tags which allows to create

a title and to define a paragraph</p>

</html>

Now, we have a very easy way to create our first
webpage from R: simply using the cat function to
write text into an external file. In the following ex-
ample, consider how we call the cat function sever-
all times having set the append argument to TRUE in
order to add information to the page.

> htmlfile = file.path(tempdir(),

+ "page1.html")

> cat("<html><h1>My first HTML page from R</h1>",

+ file = htmlfile)

> cat("\n
Hello Web World!",

+ append = TRUE, file = htmlfile)

> cat("\n</html>", append = TRUE,

+ file = htmlfile)

The library R2HTML is simply a list of wrapper
fonctions that call the cat function to write HTML
codes. The main functions are:

• HTML() Main generic function for which sub-
functions are defined for all classic classes (ma-
trix, lm, summary, ...).

• HTMLbr() Inserts a
 HTML tag, which re-
quires a new line to be started.

• HTMLhr() Inserts an <hr> HTML tag, a horizon-
tal rule to separate pieces of text.

• HTMLInsertGraph() Inserts an HTML tag
to add an existing graph to the report. The
graph should have been created before in a
suitable web format such as GIF, JPEG or PNG.

Basically, the R2HTML library contains a generic
HTML() function that behaves like the internal cat
function. Common arguments are append and file,
whose default value is set by the hidden variable
.HTML.file. So, it is convenient to start by setting
the value of this variable, so that we can omit the
file argument thereafter:

1

http://www.stat.ucl.ac.be/R2HTML/

R2HTML PACKAGE

> .HTML.file = file.path(tempdir(),

+ "page2.html")

> HTML(as.title("Title of my report"),

+ append = FALSE)

> HTMLhr()

> HTML("3 dimensions identity matrix")

> HTML(diag(3))

Generating an HTML output on the
fly

The first way to use the R2HTML library is to gen-
erate an automatic HTML output during an interac-
tive session. This is especially convenient for teach-
ing, as students can then keep a log of the commands
they asked for and the corresponding outputs, with
graphs incorporated. For a dynamic session to be
successfull, two commands have to be processed:

• HTMLStart()

• HTMLStop()

Here is a sketch of the way those commands work.
When calling HTMLStart(), several actions are per-
formed:

• Three HTML files are written into the tempo-
rary directory of the session (or in the directory
specified in an option). The main (index.html)
file is linked to the other two, by incorporating
them within HTML frames. It makes it possible
to have the commands on the left of the screen
and the corresponding outputs ont the right.

• A new environment, called HTMLenv is cre-
ated, where some internal variables are stored.
Those variables make it possible to store the
path of the output files, and to know which ac-
tion has been performed with the latest submit-
ted command.

• A new fix function is assigned to the global
environment, masking the internal one. When
calling the "new" fix, a boolean is set to TRUE

in the HTMLenv environment, so that we know
that the latest action was to edit a function.

• addTaskCallback is called, adding a task to
each submitted command. This task, handled
by the function ToHTML (not visible to the user)
is the core of the process, as it exports the last
manipulated object. This function also tests
whether a stored boolean indicates that a func-
tion has been edited and, if so, exports the
edited function. When doing so, a new file is
created, so that at the end of the process, one
can keep tracks of all the versions of the func-
tion at the different stages of the work.

• Finally, as a side effect, the prompt is changed
to HTML> so as a signal that outputs are cur-
rently beeing redirected.

From this moment on, every command is treated
twice: first it is evaluated and then the result goes
through the ToHTML function which writes it into the
HTML output.

As there is no convenient way to know when a
graph has been performed (or modified, think of
lines}, \verbpoints+,...) and as it is not desirable
to export every graph, the user has to explicitely ask
for the insertion of the current active graph to the
output, by calling the HTMLplot() function.

When necessary, a call to the HTMLStop() function
stops the process and removes all the temporary
variables created.

The following example only works in an interac-
tive session with the RGUI. Simply use the following
code:

> HTMLStart(filename = "dynamic",

+ echo = TRUE)

*** Output redirected to directory: C:\tmp

*** Use HTMLStop() to end redirection.[1] TRUE

HTML> sqrt(pi)

[1] 1.772454

HTML> x = rnorm(10)

HTML> x^2

[1] 2.91248574 0.21033662

[3] 0.16120327 1.56429808

[5] 0.02863139 3.47605227

[7] 1.36348399 0.30152315

[9] 0.73402896 0.77886722

HTML> myfunction = function(x)

+ return(summary(x))

try to fix the function

HTML> myfunction(x)

Min. 1st Qu. Median Mean

-1.7070 -0.3017 0.6291 0.3878

3rd Qu. Max.

1.0960 1.8640

HTML> plot(x)

HTML> HTMLplot()

[1] TRUE

HTML> HTMLStop()

[1] "C:\\.../dynamic_main.html"

Creating personalized reports

Let us start with a simple analysis

For anyone who knows the basics of HTML, the
R2HTML package offers all the necessary material

2

R2HTML PACKAGE

to developp fast routines in order to create one’s own
reports. But even users who have no knwoledge of
HTML codes can still easily create such reports. What
we propose here is a so-called template approach.
Let us imagine that we have to perform a daily anal-
ysis whose output consists in some summary tables
and graphs.

First, we gather all the material necessary in order to
write the report in a list object. An easy way to do so
is to create a user function MyAnalysis that returns
this list. Moreover, we assign a user-defined class for
this object.

> MyAnalysis = function(data) {

+ table1 = summary(data[,1])

+ table2 = mean(data[, 2])

+ dataforgraph1 = data[,1]

+ output = list(tables =

+ list(t1 = table1, t2 = table2),

+ graphs = list(d1 = dataforgraph1))

+ class(output) = "MyAnalysisClass"

+ return(output)

+ }

We then provide a new HTML function, based on the
structure of our output object and corresponding to
its class:

> HTML.MyAnalysisClass = function(x,

+ file = "report.html", append = TRUE,

+ directory = getwd(), ...) {

+ file = file.path(directory, file)

+ cat("\n", file = file,

+ append = append)

+ HTML.title("Table 1: summary for

+ first variable",file = file)

+ HTML(x$tables$t1, file = file)

+ HTML.title("Second variable",

+ file = file)

+ HTML(paste("Mean for second",

+ "variable is: ",

+ round(x$tables$t2,3),

+ sep = ""),file = file)

+ HTMLhr(file = file)

+ png(file.path(directory,

+ "graph1.png"))

+ hist(x$graphs$d1,

+ main = "Histogram for 1st variable")

+ dev.off()

+ HTMLInsertGraph("graph1.png",

+ Caption = "Graph 1 - Histogram",

+ file = file)

+ cat(paste("Report written: ",

+ file, sep = ""))

+ }

If we want to write the report, we simply have to do
the following:

> data = matrix(rnorm(100), ncol = 2)

> out = MyAnalysis(data)

> setwd(tempdir())

> HTML(out, file = "page3.html")

Report written: C:/.../page3.html

The advantage of this approach is that we store all
the raw material of the analysis within an object, and
that we dissociate it from the process that creates the
report. If we keep all our objects, it is easy to modify
the HTML.MyAnalysisClass function and generate all
the reports again.

Template scheme to complete the report

What we wrote before is not a real HTML file, as
it does not even contain standard headers such
as <html><head> and </head><body>. As we see
it, there are two differents ways to handle this,
each with its pros and cons. For this personaliza-
tion, it is indispensable to have some knowledge of
acronymHTML.

First, we could have a pure R approach, by adding
two functions to our report, such as:

> MyReportBegin = function(file = "report.html",

+ title = "My Report Title") {

+ cat(paste("<html><head><title>",

+ title, "</title></head>",

+ "<body bgcolor=#D0D0D0>",

+ "<img=logo.gif>", sep = ""),

+ file = file, append = FALSE)

+ }

> MyReportEnd = function(file = "report.html") {

+ cat("<hr size=1></body></html>",

+ file = file, append = TRUE)

+ }

> MyReport = function(x, file = "report.html") {

+ MyReportBegin(file)

+ HTML(x, file = file)

+ MyReportEnd(file)

+ }

Then, instead of calling the HTML function directly,
we would consider it as an internal function and, in-
stead, call the MyReport function.

> out = MyAnalysis(data)

> MyReport(out, file = "page4.html")

Report written: C:/.../page4.html

The advantage is that we can even personalize the
head and the footer of our report on the basis of some
R variables such as the date, the name of the data or
anything else.

If we do not need to go further than that and only
need hard coded contents, we can build the report
on the basis of two existing files, header.html and

3

REFERENCES REFERENCES

footer.html, which can be modified to suit our
needs. To work properly, the following piece of code
supposes that those two files do exist in the working
directory:

> MyReport = function(x, file = "report.html",

+ headerfile = "header.html",

+ bottomfile = "footer.html") {

+ header = readLines(headerfile)

+ cat(paste(header, collapse = "\n"),

+ file = file, append = FALSE)

+ HTML(x, file = file, append = TRUE)

+ bottom = readLines(bottomfile)

+ cat(paste(bottom, collapse = "\n"),

+ file = file, append = TRUE)

+ }

Going one step further with CSS

Cascading Style Sheets (CSS) compensates for some of
the deficiencies of HTML language. CSS adds to each
standard HTML element its own style, which is de-
fined in an external file. Thus, when the house-style
book of the report has to be changed, one need only
modify the definition of the classes in a single place
to change the look of all the reports - past or to come
- that rely on the defined classes.

The use of cascading style sheets makes it possible
to:

• give a homogeneous look to all generated re-
ports

• change the look of a bunch of reports at one
time

• produce lighter reports, as formatting instruc-
tions are kept separate

• download and view reports more rapidly

All the details about CSS specification can be found
on the World Wide Web consortium: http://www.

w3.org/Style/CSS/.

All the functions of the package R2HTML rely on
CSS and a given sample CSS file, R2HTML.CSS. This
file is used by HTMLStart. In order to work properly,
the CSS file has to be lcoated in the same directory
as the report and one simply has to add the follow-
ing line to it <link rel=stylesheet type=text/css

href=R2HTML.css>. This job is performed byt the
HTMLCSS() function. It is a good idea to systemati-
cally start a report with this function, as CSS files are
very powerfull. So, in its last version, our reporting
function yields:

> MyReport = function(x, file = "report.html",

+ CSSfile = "R2HTML") {

+ MyReportBegin(file)

+ HTMLCSS(file = file, CSSfile = CSSfile)

+ HTML(x, file = file)

+ MyReportEnd(file)

+ }

Summary

The R2HTML package provides functions to export
all base R objects to HTML. Here, we describe here a
simple mechanism to use these functions in order to
write HTML reports for statistical analysis performed
with R. The mechanism is flexible and allows cus-
tomizations in many ways, mainly by using a tem-
plate approach (separating the body of the report
from the wrapper - header and footer) and by using
an external CSS file.

Availability

The R2HTML package is available from CRAN (e.g.,
http://cran.us.r-project.org).

References

[1] Friedrish Leisch. Sweave: Dynamic generation
of statistical reports using litterate data analysis.
Compstat 2002 Proceedings in Computational Statis-
tics, pages 575–580, 2002.

Eric Lecoutre
Institut de statistique, UCL, Belgium
lecoutre@stat.ucl.ac.be

4

http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/
mailto:lecoutre@stat.ucl.ac.be

	R2HTML package

