
Chapter 14

An Interface to Python

14.1 R and Python

The XRPython package implements an interface to Python according to the XR

interface structure described in Chapter 13. This chapter describes the use of
the interface in an application extending R. The application will likely implement
an R package using the interface to carry out some computations in Python and
incorporating those computations into software for the users of the application.
The XRPython package, the XR package it imports and the shakespeare package
example are available from github.com/johnmchambers.

Python computations consist mainly of function calls and the use of methods
and fields in objects from Python classes. These are available directly through
methods for an interface evaluator or equivalent function calls (Section 14.2).

Extending R using the interface to Python usually includes providing functions
in an application package in R. These can incorporate such direct computations in
Python.

Additional methods and function calls provide interfaces to other Python pro-
gramming that is likely to be needed, such as importing modules (Section 14.3)

If specific functions or classes in Python are useful, proxy functions and classes
in R (Sections 14.4 and 14.5) make a much simpler interface. Calls to the function
and computations on the objects appear to the user as ordinary R expressions, but
carry out the corresponding computation in Python.

The XR interface structure creates and manages proxy objects for the results of
computations in Python, avoiding conversion of data between the languages when
not required. Data conversion facilities are available when needed, including the
representation of arbitrary R objects in Python and the return of arbitrary Python

objects to R (Section 14.6).

303

© 2016 by Taylor & Francis Group, LLC

304 CHAPTER 14. AN INTERFACE TO PYTHON

Python is a valuable resource for interface programming. It is a popular lan-
guage for implementing a wide range of computational techniques. Its design
emphasizes readability and simplicity. From our perspective, it has many modules
covering all sorts of techniques. Programming in Python, particularly to extend
existing software, is convenient and much of the programming structure meshes
smoothly with R and with the XR structure for interfaces.

Applications using the interface typically will do some Python programming of
their own to supplement or specialize existing software. The R package structure
facilitates this by having a directory of Python code installed in the R library. The
code will typically consist of one or more Python modules that are imported by
the package. When changing and testing the modules, it may be more convenient
to work directly in Python, through an interactive environment such as supplied
by the Jupyter application1.

The XRPython package is designed for computing with R, with help from an
interface to Python as a server language. Projects starting from Python could do
the opposite. There is a widely used interface from Python to R, rpy2.2 If you’re
working from a Python project, take a look at that. However, our target is to
contribute to a project with some substantial programming and interaction in R;
programming in the large, in the sense of Chapter 8. The INTERFACE principle
encourages such projects to reach out to helpful computations, in this case written
in Python.

14.2 Python Computations

Computations in Python using the XRPython interface are carried out by a Python

interface evaluator, an object from class "PythonInterface". The current Python
evaluator is obtained by:

ev <- RPython()

If there is no such evaluator, one will be created, starting the embedded version of
Python. Although it is possible to have multiple active evaluator objects, there is
usually no reason to do so with an embedded interface.

All the interface computations use methods and fields of an evaluator object.
R programmers may feel more comfortable with a functional computation rather
than methods. All the methods have functional equivalents as we will describe
below. There is no operational difference for the computations in this section, but
some differences for the programming operations of Section 14.3.

1http://jupyter.org
2rpy.sourceforge.net

14.2. PYTHON COMPUTATIONS 305

The computations in this section are the base for all other computations such
as those using proxy functions and classes. They provide maximum flexibility for
implementing interface calculations, but the proxy techniques are simpler when
they apply. For the user of the application package, in particular, computations
are expected to appear as regular R with no need to refer explicitly to the in-
terface. An application package can hide the interface through any combination
of functions in R using direct interface computations and proxies to software in
Python incorporated into the package.

The main interface methods for direct computation are $Eval() for expressions
returning a value and $Command() for other Python statements and directives:

ev$Eval(expr, ...)

ev$Command(expr, ...)

with functional equivalents:

pythonEval(expr, ...)

pythonCommand(expr, ...)

These and the other functional equivalents for computations obtain the current
evaluator object and call the corresponding method.

In these computations expr is a character string to be parsed and evaluated
in Python. Remaining arguments are objects, either proxy objects from previous
expressions or R objects to be converted to Python. The objects are inserted into
expr to replace C-style "%s" fields in the string.

All expressions evaluated by the interface are computed by Python function
value for R(). If the type of the result is one of the standard scalar types (nu-
meric, logical, string or None), the value is converted to a string that R will evaluate
to get the equivalent R object. Otherwise, the result is assigned in Python. The
string returned will be interpreted in R as a proxy object containing the name used
for the assignment and a description of the result (the Python class, the length and
optional module). The proxy object will turn into its name when used in a sub-
sequent calculation. Thus the result of any interface computation can always be
passed back to Python for further use.

To force a computed result to be converted, the $Eval() method and all proxy
functions take an optional argument .get=; supply .get = TRUE to force conver-
sion.

Objects may also be converted explicitly. The $Send() method converts its
argument to Python and returns a proxy object for the result. The $Get() method
converts a proxy object to the equivalent R object, as far as possible. Both methods
will do something for arbitrary objects; see Section 14.6.

To illustrate these methods, first we create a Python list of 3 numbers:

306 CHAPTER 14. AN INTERFACE TO PYTHON

> xx <- ev$Eval("[1, %s, 5]", pi)

> xx

R Object of class "list_Python", for Python proxy object

Server Class: list; size: 3

The value returned is a proxy for the list. The first line of the example could
equally have been:

xx <- ev$Send(c(1, pi, 5))

We can print any result in Python:

> ev$Command("print %s", xx)

[1, 3.14159265358979, 5]

In Python, unlike in R, printing is not an expression.
Python lists are one of the built-in proxy classes, as the first example showed.

The proxy object xx has all the usual list methods:

> xx$append(4.5)

NULL

To get the Python list as an R object:

> as.numeric(ev$Get(xx))

[1] 1.000000 3.141593 5.000000 4.500000

Python has no typed arrays, so we convert the list of numbers to a numeric vector
on the R side. An alternative is to construct a special vector object in Python and
convert that:

> ev$Call("vectorR",xx, "numeric",.get = TRUE)

[1] 1.000000 3.141593 5.000000 4.500000

(See Section 14.6, page 319, for the technique and another example).
Objects in the interface evaluator are valid only while that evaluator is running;

similarly, R proxy objects will no longer be valid afterwards. To preserve proxy
objects over sessions, serialize them to a file:

> ev$Serialize(xx, "./xxPython.txt")

Then, at some later time, the $Unserialize() method will bring the object back,
to a new evaluator:

14.3. PYTHON PROGRAMMING 307

> xxx <- ev$Unserialize("./xxPython.txt")

> xxx

Python proxy object

Server Class: list; size: 4

> as.numeric(ev$Get(xxx))

[1] 1.000000 3.141593 5.000000 4.500000

The serialization is done Python-style, with pickle(), so issues of conversion do
not arise. The methods have optional arguments as described in Section 13.6, page
278.

All these have functional equivalents with the same arguments as the methods:

pythonGet(object); pythonSend(object)

pythonSerialize(object, file); pythonUnserialize(file)

14.3 Python Programming

In addition to the general methods in the previous section and to the proxy objects,
functions and classes, the XRPython interface provides some methods to assist in
using Python software and in extending the software. The software available can be
extended by adding to the search path for Python modules and importing modules.
Python source can be included directly from source. An interactive Python shell
can access the objects computed in the interface.

Python’s modules are files of source, possibly compiled. The Python evaluator
looks for these in a system path list of directories, similar to R’s .libPaths().
XRPython has two functions for appending a directory to the system path and for
importing from modules found on the path.

To add a directory to the system path in Python:

pythonAddToPath()

The expected use of the call is to make a directory of Python code in an appli-
cation package available. Application packages will usually need to write some of
their own functions, classes and other computations in Python. The XR structure
for interfaces has a convention that the Python code in an application is in the
"python" subdirectory of the installed package,

The call with no arguments, as above, from the R source in an application
package adds the directory named "python" in the installed version of the package
from which the call originates.

If the application wants to use a different source directory, perhaps in order
to have different versions or optional additional code, supply the directory as an
argument; for example, "pythonA" for source directory "inst/pythonA".

308 CHAPTER 14. AN INTERFACE TO PYTHON

The package= argument should be given explicitly if the code to be added is
from a different R package:

pythonAddToPath("plays", package = "shakespeare")

This would add directory "plays" in the R package shakespeare, which would
correspond to directory "inst/plays" in the source for that package. To add
a directory that is not part of any R package, give an empty string, "", as the
package argument. For more details on the XR structure for path management
see Section 13.4, page 270.

Once the necessary directories are on the system search path, Python has a
variety of commands to import modules (files) and make their contents available.
These are expressed with an R-style syntax through pythonImport(). The first
argument in the call is a module name, the remaining arguments are the names of
objects to be explicitly imported from the module. If "getPlays.py" is a file of
Python code in a directory that has been added to the path, then

pythonImport("getPlays", "byTitle")

will import the object byTitle created by the code in that file. For those familiar
with Python, this is in the style of the Python command

from module import ...

All the arguments should be character strings, but the "..." arguments can be
vectors with multiple object names. The evaluator keeps track of imports, so
repeated calls for the same imports only go to Python once. The call can be used
to import any objects, not just functions.

Giving only the module argument is equivalent to the Python import directive.
This is different from a simple import call in an R namespace, in that it does not
make the simple object names available. So

pythonImport("getPlays")

would not make "byTitle" available by simple name, but would recognize the
fully qualified version, "getPlays.byTitle". The Python convention to import
all objects is invoked by providing the second argument as "*".

If functions are handled by defining proxy functions in R as described in Section
14.4, there is no need to import them or their module explicitly; the proxy function
takes care of that.

The functions pythonAddToPath() and pythonImport() have corresponding
evaluator methods. These differ in that they only affect the particular evaluator
on which they are invoked. The function versions will apply to any evaluator, and

14.3. PYTHON PROGRAMMING 309

therefore can be called before an evaluator exists. An application package can call
them from its source code: the actions will take place when the package is loaded.
For any likely situation, the function version is more appropriate.

The remaining programming methods to be described can be called equiva-
lently as method or function, with identical results.

To evaluate a file of Python source, use pythonSource() or the method:

ev$Source(filename)

The file can contain arbitrary expressions and commands. They will be evaluated
in the same namespace as other evaluator expressions, so assignments will become
available for later computations. To refer to an explicitly assigned object as an
argument in an interface expression, the name should be supplied as an R object
of class "name", not as a character string. So, if our source file had the line

pi = 3.14159

then the object assigned as pi should be referred to by as.name("pi"):

> ev$Eval("%s/2", as.name("pi"))

[1] 1.570795

Proxy objects are nearly always a simpler form of reference, however.
For the definition of a single function XRPython also has a $Define() method

which can take as an argument text containing a Python function definition. It
sends the function definition to Python as a command and returns a proxy for the
newly defined function. For a trivial example, consider the function definition:

def repx(x):

return [x, x]

For the $Define() method this is equivalent to a character vector with the lines
of the definition as elements:

> text <- c("def repx(x):", " return [x, x]")

> repxP <- ev$Define(text)

This creates the R proxy function, assigned as repxP:

> twice <- repxP(1:3)

> unlist(pythonGet(twice))

[1] 1 2 3 1 2 3

The definition can also be taken from a file, via the file= argument.

310 CHAPTER 14. AN INTERFACE TO PYTHON

>repxP <- ev$Define(file = "./repx.py")

The effect is to read all the lines from the file and collapse them into a string,
separated by new lines. If one does not need to create the proxy function in the
same call, $Source() is more efficient.

To do some interactive computations in the same workspace used by the eval-
uator, through the $Shell() method or the function version:

pythonShell()

This runs a simple interaction, reading expressions and evaluating them through
the command method. To see results, you need to use the Python print directive,
or call some other output-generating function. To exit the evaluator, give the usual
Python command, "exit".

> pythonShell()

Py>: print repx([1,2,3])

[[1, 2, 3], [1, 2, 3]]

Py>: exit

The interactive environment is definitely not competitive for Python programming;
in particular, to continue an expression over multiple lines, you need to end all the
lines except the last with an unescaped backslash. The advantage of $Shell()
is that expressions use the same working environment as other interface methods.
Another way to define a Python function directly would be to enter the definition
to the shell, escaping all but the last line (and being careful to follow Python’s use
of spaces to define blocks of code).

> pythonShell()

Py>: def rep3(x):\
Py+: return [x, x, x]

Py>: print rep3(pi)

Python error: Evaluation error in command "print rep3(pi)":

name ’pi’ is not defined

Py>: pi = 3.14159

Py>: print rep3(pi)

[3.14159, 3.14159, 3.14159]

Py>: exit

As the example shows, errors in Python are reported but the shell continues until
a line matches "exit". The interactive expressions are evaluated in the same
context as other interface method calls, meaning that you can query various system

14.4. PYTHON FUNCTIONS 311

parameters, such as the search path, to better understand what is happening to
your interface computations.

In order to examine proxy objects in Python, you need to get the name under
which the Python object was assigned, by calling pythonName() (outside the shell):

> pythonName(xx)

[1] "R_1_1"

> pythonShell()

Py>: print R_1_1

[1, 3.14159265358979, 5, 4.5]

Py>: exit

14.4 Python Functions

Functions are central to Python; it operates largely following its own version of
the FUNCTION principle. Low-level computations such as arithmetic are not func-
tion calls, at least not when they apply to basic objects. Other than that, pretty
much everything is, including methods in Python’s encapsulated OOP implemen-
tation. This is functional computing as opposed to functional programming, as
distinguished in Section 1.5. Objects are references and side effects from function
calls are to be expected.

Calling Python functions from R is made simpler by the use of proxy functions;
that is, functions in R, calls to which map directly to corresponding Python function
calls. For most functional computing, proxy functions eliminate the need to deal
directly with the interface evaluator.

A proxy to a Python function is created by calling PythonFunction() in the
XRPython package:

PythonFunction(name, module)

This returns a proxy function object given the name and, optionally, the module
from which the function should be imported. A call to this function object in R

evaluates a corresponding call to the named Python function, returning (usually) a
proxy object for the result of that call. PythonFunction() is actually the generator
function for the "PythonFunction" class, a subclass of "function" with extra
information describing the Python function.

An example: The "xml" module in standard Python has a function parse()

down a few levels, in module "xml.etree.ElementTree". To create a proxy func-
tion for parse():

> parseXML <- PythonFunction("parse", "xml.etree.ElementTree")

312 CHAPTER 14. AN INTERFACE TO PYTHON

A call to the R function imports the Python module if necessary and calls the
function:

> hamlet <- parseXML("./plays/hamlet.xml")

> hamlet

Python proxy object

Server Class: ElementTree; size: NA

The proxy object returned may be from any relevant Python class, in this example
"ElementTree". The Python function can also be written specially to return the
representation of a general R object as discussed in Section 13.8, page 288, in which
case the interface will construct an object from the target R class.

For extending R, proxy functions should be defined in the source of an applica-
tion package. Users of that package need not be concerned with the proxy nature
of the function: parseXML() can be treated by users as a regular R function.

Proxy functions mesh with proxy classes. If the Python methods or fields for
the "ElementTree" object are useful (as they are, in fact), the application package
will define a proxy for the Python class. As with the proxy function, users of the
application package can then invoke methods or access fields just as they would
for an R reference class, without worrying about the interface. We’ll look at this
example in the next section.

Let’s examine the actual R function generated in the example above:

> parseXML

Proxy for Python function "parse", from module "xml....

function (..., .ev = XRPython::RPython(), .get = NA)

{
nPyArgs <- nargs() - (!missing(.ev))

if (nPyArgs < 1)

stop("Python function parse() requires at least....

nPyArgs)

if (nPyArgs > 2)

stop("Python function parse() only allows 2

nPyArgs)

.ev$Import("xml.etree.ElementTree", "parse")

.ev$Call("parse", ..., .get = .get)

}

In addition to arguments that will be passed to the Python function, all proxy
functions have two optional arguments: .ev= and .get=: the first of these specifies
the evaluator to be used and the second the strategy for converting the result to

14.4. PYTHON FUNCTIONS 313

an R object. The evaluator is by default, and nearly always, the current Python

interface evaluator.
The default strategy for conversion corresponding to .get=NA is to convert

scalars and return everything else as a proxy object. To force all results to be
converted, include the argument .get = TRUE.

In constructing the proxy function, XRPython uses metadata in Python about
the function object. In this example, the Python function has two arguments, one
required and one optional. After checking for too few or too many arguments, the
body of the proxy function does two things: it ensures that the Python module is
imported in the form needed and it evaluates a call to the Python function using
the $Call() evaluator method.

Python has several versions of importing, presenting options for proxy func-
tions. The call to PythonFunction() above implied that the object named "parse"
should be imported from the specified module and called as parse(). The $Import()
method call in the proxy function does this, effectively generating the Python di-
rective

from xml.etree.ElementTree import parse

The alternative is to import only the module and then to call a fully qualified
reference to the function. This would be done in the example by giving the fully
qualified reference to the function entirely in the function name:

> parse2 <- PythonFunction("xml.etree.ElementTree.parse")

The resulting function will generate similar Python calls, but to the fully qualified
version of the function, and will generate the simple import statement:

import xml.etree.ElementTree

The two versions will do the same computations but only the first will define a
local variable "parse" in the namespace. The distinction is similar to that in R

between importing a function into a package and referring to it by an expression
like shakespeare::parseXML. The tradeoff is similar too. Importing the object
explicitly leads to more readable code but could mask a relevant object of the
same name in some standard module, just as having parse() in the R application
package could in some situations mask the parse() function in base.

The argument list of the proxy function is passed directly to Python, aside
from checking the number of arguments. Python allows much of the flexibility of R
in argument calls, such as named arguments (“keyword” in Python terminology),
and missing arguments to some extent, provided the arguments have default values
(precomputed, not expressions as in R). The XRPython proxy functions pass along

314 CHAPTER 14. AN INTERFACE TO PYTHON

the pattern of positional and named arguments in the R call. The proxy calls the
Python function with the arguments supplied, including names.

In addition to regular arguments, required or optional, Python has a mechanism
(two, actually) for an arbitrary number of arguments, similar to "..." in R. A
formal argument in Python of the forms "*name" and "**name" match arbitrarily
many unnamed and named (“keyword”) arguments. If either of these patterns is
present, the interface allows arbitrarily many arguments to the Python function.

The specific list of formal arguments is available from the Python metadata,
and is retained in the proxy function for documentation as slot "pyArgs":

> parseXML@pyArgs
[1] "source" "parser ="

The trailing "=" indicates optional arguments. If the function took arbitrarily
many arguments, the last name in the list would be "...". Python functions can
have inline documentation, like reference methods in R. If they do, this is kept in
the R proxy as slot "pyDocs" (parseXML() doesn’t have any).

14.5 Python Classes

Python implements encapsulated OOP by class definitions in the language, con-
taining a set of method definitions. Evaluating the definition creates a corre-
sponding class object. The class definition also creates automatically a generator
function of the same name for instances of the class, defined by a special initial-
ization method. As in R, methods are slightly specialized Python functions stored
as members of the class object.

Typically for Python, the implementation is simple to use and relatively simple
internally. There are very few restrictions, which makes for flexibility. But the
definition says nothing about fields, preventing validation of their types, or even
identifying the fields through the class definition. With a few such limitations, an
interface from R to classes in Python is straightforward and helpful.

A call to setPythonClass() in the XRPython package produces a proxy class
definition in R for a Python class, incorporating the Python metadata for the class
within the XR structure. When the call comes from the source code for an ap-
plication package, the metadata is needed during installation. To avoid this re-
quirement, a load action or a setup step may be used to define the class when the
application package is loaded or by a separate script (see Section 13.7, page 282).

Knowing the Python class and module is enough to obtain metadata that de-
fines the methods for the R class. The module must be available from the Python

search path when setPythonClass() is called, which may require an earlier call
to pythonAddToPath().

14.5. PYTHON CLASSES 315

Because the fields are not formally defined, more effort may be required for
them. If possible, an object from the class is used as an example. If the default
object generated from the class has the necessary fields, this will be used automat-
ically. Otherwise, an appropriate example= argument in the call will be needed,
as shown below.

In the use of XML data in our shakespeare package, the object returned from
the parseXML() is of Python class "ElementTree", defined in the Python module
"xml.etree.ElementTree". A proxy R class is created by:

ElementTree <- setPythonClass("ElementTree",

module = "xml.etree.ElementTree")

The value returned by a call to setPythonClass() is a generator function for the
class, as usual. It’s more likely, however, that a suitable object is created by a call
to a Python function, such as the example on page 312. If a proxy class has been
defined for the server language class of the proxy object returned, the return value
is automatically promoted to this class, making the methods and fields available.

In the example, the value returned is from Python class "ElementTree", which
has a method findtext(), among others. Once the proxy class is defined, the
object returned can use all these methods directly:

> hamlet$findtext("TITLE")

[1] "The Tragedy of Hamlet, Prince of Denmark"

As it happens, this class has no interesting fields.
Because Python has no formal definition of the fields in a class (as with S3

classes in R), objects from the class will have fields with whatever name has been
used in assigning them, usually via the `.` operator in Python. Fields must be
inferred from an object or specified explicitly; there are some options in the call
to setPythonClass() to handle different cases.

The assumption when only class and module are specified is that the default
object from the Python class has the appropriate fields. The interface generates
that object, by calling the Python generator function for the class with no argu-
ments, and examines its fields. This works in the example since there are no useful
fields anyway. It would also work if the class was specially designed for the R

interface, as is the "Speech" class discussed later in the section.
More typical of Python programming is to generate a default object with few

or no fields, and have various methods add the fields. In this case the applica-
tion package should compute an object from the class that does have suitable
fields, if possible, and supply a proxy for this object as the argument example= to
setPythonClass().

316 CHAPTER 14. AN INTERFACE TO PYTHON

The elements of the parse tree in our example have Python class "Element".
A suitable object from this class is returned by the getroot() method for class
"ElementTree". A computation to define the "Element" proxy class could be:

> hamlet <- parse("./plays/hamlet.xml")

> Element <- setPythonClass("Element",

+ module = "xml.etree.ElementTree",

+ example = hamlet$getroot())

The output of

Element$fields()

will show the fields; a few of these are special fields for the interface; the rest,
with class "activeBindingFunction", are proxies for the Python field of the same
name. In this case, the object has proxy field "tag", among others. Once the
proxy class for "Element" has been defined the fields are available:

> hamlet$getroot()$tag

[1] "PLAY"

Applications will often find it convenient to add their own Python code, inclu-
dine class definitions. These can be designed for use by proxy and be valuable in
structuring the data conveniently for an interface from R.

In this example, the XML structure is very hierarchical, suitable for tree-
walking logic and recursive computations. In the Shakespeare data, plays are
organized into subtrees by ACT and these in turn into subtrees by SCENE. Within
a scene there will be multiple speeches, a third level of subtree, along with other
nodes for stage directions, etc.

Both R and Python tend to prefer a more linearized organization; in R to be
natural for vectorized computation, in Python to simplify iteration. The Python

software in shakespeare includes functions and corresponding classes to “flatten”
the structure. In particular, one would often like to analyze the contents of indi-
vidual speeches; for example, to compare speakers within a play or across plays.

Package shakespeare defines proxy Python classes for each level of the hierarchy
and corresponding methods that flatten the tree into the form of a list of all acts, all
scenes or all speeches. In particular, the Python function getSpeeches() returns
a list of all the speeches in the tree supplied as its argument. Each element is an
object of class "Speech".

All the objects of this class have fields "play", "act", "scene", "speaker"
and "lines". The first four fields are character strings. The last is a list of the
lines of text in speech, extracted from the corresponding XML nodes.

14.5. PYTHON CLASSES 317

The idea of the class is that objects are normally created from corresponding
XML nodes of tag SPEECH. The initialization method expects to get such an object
as its argument. It’s a good rule, however, to make initialization methods (whether
in Python or R) work sensibly when no argument is given. In this case, the class
was designed to work with the R interface, so its initialization method in Python

deliberately creates all the relevant fields:

def init (self, obj = None,

act = ’<Unspecified>’, scene = ’<Unspecified>’):

self.act = act

self.scene = scene

to be a well-behaved class, we always set the 4 fields

if obj is None:

self.speaker = ’<Unspecified>’

self.lines = []

else:

self.speaker = obj.findtext(’SPEAKER’)

lines = obj.findall(’.//LINE’)

linetext = []

for line in lines:

linetext.append(line.text)

self.lines = linetext

To set up some analysis of speeches, the user calls the R proxy for the function
getSpeeches() with the XML tree previously parsed from the file for the play:

> speeches <- getSpeeches(hamlet)

> speeches

R Object of class "list_Python", for Python proxy object

Server Class: list; size: 1138

The speeches object is a proxy for a standard Python list, whose elements are
objects of class "Speech". Proxy classes for Python lists and dictionaries are
built into the XRPython interface, so the methods for them can be used in R as
they would be in Python. The shakespeare package has created a proxy class for
"Speech".

For example, if we’re curious about the last speech in the play:

> last <- speeches$pop() # the last speech

> speeches$append(last) # put it back

NULL

> last

318 CHAPTER 14. AN INTERFACE TO PYTHON

R Object of class "Speech_Python", for Python proxy object

Server Class: Speech; size: NA

> last$speaker

[1] "PRINCE FORTINBRAS"

> last$lines

R Object of class "list_Python", for Python proxy object

Server Class: list; size: 9

We’ll come back to this example in discussing data conversion, the next topic.

14.6 Data Conversion

Python objects come in a range of built-in and user-defined classes (or “types”,
both terms being used in Python). For applications, as opposed to programming,
the important built-in types include a variety of scalars: numeric of several flavors,
character string and boolean. Other than scalars, the built-in container types are
"list" for (unnamed) list objects and "dict" for dictionaries.

The default XR strategy sends named lists and environments to Python as
"dict" objects; all other R vectors (of any type) are sent as "list", except that
by default vectors of length 1 are sent as scalars. Some examples, in which the
"Server Class" of the proxy object shows what was sent:

> pythonSend(1:3)

R Object of class "list_Python", for Python proxy object

Server Class: list; size: 3

> pythonSend(1)

Python proxy object

Server Class: float; size: NA

> pythonSend(1L)

Python proxy object

Server Class: int; size: NA

> pythonSend(list(first = 1, second = 2))

R Object of class "dict_Python", for Python proxy object

Server Class: dict; size: 2

As the first and last examples show, lists and dictionaries have proxy classes in R.
All their usual Python methods should be available.

> a <- pythonSend(1:3)

> a$reverse()

NULL

14.6. DATA CONVERSION 319

> as.integer(pythonGet(a))

[1] 3 2 1

> b <- pythonSend(list(first = 1, second = 2))

> b$has_key("first")

[1] TRUE

We don’t create proxy classes for the scalar types; they have few useful methods
and will normally not be retained as proxy objects.

Vectors of length 1 by default will be sent as scalars. The noScalar() function
turns off the scalar option (the contents of the object are unchanged otherwise):

> pythonSend("testing")

Python proxy object

Server Class: str; size: 7

> pythonSend(noScalar("testing"))

R Object of class "list_Python", for Python proxy object

Server Class: list; size: 1

Python has no typed arrays, unlike R or Julia. When an application needs to
indicate the type of a vector in R, either when the object is being sent to Python or
is being returned in the value of an expression, the technique is to use the R class,
"vector R" (Section 13.8, page 300). This class has a slot "data" containing a
vector, but the type of the vector is explicitly provided as slot "type", so that the
intended type of the vector remains clear when the object is translated in JSON

and also when it is sent to a language such as Python that will treat all basic R

vectors as list objects.
When an object being converted is explicitly of class "vector R", a method

for asRObject() will coerce it to the declared vector type. This can be used in
Python functions to customize list objects when returned to R. The Python side of
the XRPython interface has a function vectorR() with arguments

vectorR(obj, type, missing)

The last two arguments are optional, specifying the R class to which the converted
vector should belong and a list of elements that should be interpreted as missing.

In our previous example with Python class "Speech", the list in field "lines"

is known to have only character strings as elements. The class has a method:

def getText(self):

return RPython.vectorR(self.lines, "character")

that returns a character vector to R:

320 CHAPTER 14. AN INTERFACE TO PYTHON

> pythonGet(last$getText())

[1] "Let four captains"

[2] "Bear Hamlet, like a soldier, to the stage;"

[3] "For he was likely, had he been put on,"

[4] "To have proved most royally: and, for his passage,"

[5] "The soldiers’ music and the rites of war"

[6] "Speak loudly for him."

[7] "Take up the bodies: such a sight as this"

[8] "Becomes the field, but here shows much amiss."

[9] "Go, bid the soldiers shoot."

There are frequently a number of options in these situations. Computations on
the R side could coerce the list to a specific type, if the desired type was known.
The field in the Python object could itself have class "vector R", but this would
be a complication for Python computations on the field.

