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1. A Personal Summary of 50+ Years of “Shrinkage in Regression” 
 
As som eone who has been fascinated with the po ssibility that shrunken regression coefficient 
estimates can reduce MSE risk via variance-bias trade-offs and who has conducted and published 
research in this area starting in the 1970s, I m ust say that I am absolutely delighted by the recen t 
wide-spread tolerance for (if not outright accep tance of) shrinkage m ethods.  Anyway, I wish  to 
summarize here some personal perspectives on why and how professional statisticians m ay have 
become somewhat enlightened about shrinkage over the last 50+ years …since ~1955. 
 
Early optimism  about a theoretical  basis for and the practical a dvantages of shrinkage alm ost 
surely started with the work of Stein(1955) and Jam es and Stei n(1961).  Unfortunately this 
shrinkage was always “uniform ,” thus really doing nothing to adjust the relative m agnitudes of 
correlated regression coefficient estimates for ill-conditioning.  Furthermore, although an overall 
improvement in the scalar va lue of “summ ed MSE risk” was guaranteed, there was no way to 
know “where,” in an X-space of 3 o r more dimensions, risk was actually being reduced.  In fact, 
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researchers on normal-theory minimax estimation in regression [such as Strawderman(1978) and 
Casella(1980,1985)] found that, when a desired “location” for improved risk was specified, their 
estimates succeeded only by concentrating shrinkage somewhere else!  Actually, the earlier work 
of Brown (1975) and Bunke(1975a, 1975b), was rea lly the beginning of the end for m inimax 
research.  A fter all, only OLS estim ation can be  minimax when one’s risk m easures are trul y 
multivariate (matrix rather th an scalar valued.)   I personally would like to think that m odern 
researchers and regression practi tioners view shrinkage estim ators as attractive, practical 
alternatives to OLS estim ation in ill-conditione d models even though ther e cannot be any truly 
meaningful way to “dominate” OLS on MSE risk. 
 
On the other hand, the real gold-ru sh of interest in (non-unifor m) shrinkage in regression is 
undoubtedly due to the pioneering “ridge” work of Hoerl (1962) and Hoerl and Kennard (1970a, 
1970b.)  Som e of their term inology was m isleading (e.g. their “too longness” argum ent was 
actually based upon a sim ple m easure of coefficient vari ability), and their co njectures that it 
should be “easy” to pick shrunken estimators from a graphical trace display that would dominate 
OLS in MSE risk were, in fact, unquestionably naïve. 
 
Meanwhile, a major frustration for me, personally, was that my shrinkage work at Bell Labs lead 
to open conflict with John Tukey.  This unfortunate  turn of events started when m y management 
learned that Tukey had been consistently di sparaging shrinkage m ethods at professional 
meetings in the 1970s and culminated when we were asked to formally comment on each other’s 
papers and on my Bell Labs internal “regression training” materials. 
 
The most widely accepted for ms of shrinkage in regression today ar e undoubtedly the random  
coefficient BLUP estimates from  Henderson’s m ixed model equations, as im plemented in SAS  
proc m ixed and the lme( ) an d nlm e( ) R functions.  See R obinson (1991), Littel, Milliken, 
Stroup and Wolfinger(1996) and Pinheiro and Bates(1996). 
 
Looking back upon m y personal contri butions to the literature on shrinkage in regression, I can 
only lament that my writings lacked focus and simp licity.  I clearly love details, m yself, and my 
papers have always been chuc k-full of m any-too-many alternative concepts.  For exam ple, my 
1975 invited paper in Technometrics might have had more positive impact if I had only picked a 
better title !  W ith som e m inor changes in empha sis, that paper could have easily been, say, 
“Maximum Likelihood Shrinkage in Regressio n.”  Instead , this work becam e identified with  
both “ridge analys is” (as averse  the ridge regression) and “pre liminary-test estim ation” …and 
rightfully remains obscure today.  I guess practitioners do not really want (or need) an extrem ely 
powerful statistical test for ill-c onditioning!  After all, in practical applications of regression, the 
presence of at least some ill-conditioning tends to be more of a rule than an exception. 
 
Next, I becam e sufficiently frustrated by the Technometrics refereeing process on a second 
shrinkage paper (delayed until 1977) that I decided to submit a th ird manuscript (with important 
implications f or practica l applic ations of  shrinkage) to Annals of Statistics.  Some agonizing 
delays again occurred, and that  publication was delayed until 1978.  This anna ls paper presented 
the “ridge function theorem ,” the “excess m ean squared error m atrix,” the “infer ior direction,” 
and the “2/P-ths ru le of  thum b” f or lim iting shrinkage …plus thei r individual Maxim um 
Likelihood (ML) estimators for display in TRACE plots.   
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Unfortunately, while m y basic shrinkage equati ons and theorem s were published, I had m uch 
less success publishing de scriptions of practical shrinkage applications, including “how-to” 
information about interpretations for my five types of TRACE plot s.  In fact, only three of my 
papers on s hrinkage ap plicants o r softwa re, Obenchain (1984, 1991, 1 995), were ultim ately 
accepted for publication.  As illustrated in Section §3 of this vignette, shrinkage TRACE displays 
reveal “where” MSE risk can be reduced by shrinkage. 
 
Similarly, I also developed a closed for m expression, Obenchain(1981), for the norm al-theory 
ML estim ator within the 2-param eter Gold stein and Sm ith (1974) shrinkage fam ily.  
Unfortunately, none of my attem pts to present th at material in a peer-reviewed publication have 
succeeded.  Closed form  expressio ns speed  sh rinkage es timation and are p articularly h elpful 
when simulating MSE risk profiles. 
 
My “botto m-line” on the topic of  norm al-theory ML shrinkage is s imply this:  The linear 
estimator identified as being most likely to be o ptimal is, in reality, a nonlinear estimator.  The 
true MSE risk of this ML shrinkage estim ator can be com puted exactly in certain s pecial cases 
and can  alw ays be accu rately s imulated.  W hile ha ving a MSE risk  p rofile that is  clearly  not 
“dominant” like that of the unknown, optimal linear estimator, achievable ML shrinkage profiles 
can nevertheless be fairly impressive: 

 
In simple rank-one cases, ML shrinkage can reduce MSE risk by about 50% in favorable 
cases (with low signal and/or high uncertainty) while inc reasing risk by at m ost 20% in 
unfavorable cases. 
 
In high-dimensional situations, a savings of more than 50%  is possible, and worst case 
situations result in an increase of less than 5% in MSE risk. 

 
As Burr and Fry(2005) have noted, the key strategy and/or tactic  in shrinkage estim ation is 
definitely to be “cautious” rather than “greedy.” 
 
Frank and F reidman(1993), Breiman (1995), Tibshirani (1996), Le Blanc and Tibshirani (1998) 
and Efron et al. (2004) are curren tly keeping the shrinkage regre ssion “home fires” burning for 
exploratory analyses of gigantic datasets. 
 
 
 
2. Introduction to Shrinkage Regression Concepts and Notation 

The following formulas define the Q “shape” and the k “extent” of shrinkage yielding 2-
parameter generalized ridge regression estimators. 

* = [ X’X + k × (X’X)Q ]1 X’y 
Our first formula, above, represents the 2-parameter family using notation like that of Goldstein 
and Smith(1974).  Here we have assumed that the response vector, y, and all p columns of the 
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(nonconstant) regressors matrix, X, have been “centered” by subtracting off the observed mean 
value from each of the n observations.  Thus Rank(X) = r can exceed neither p nor (n1). 

Insight into the form of the shrinkage path that results as k increases (from zero to infinity) for a 
fixed value of Q is provided by the “singular value decomposition” of the regressor X matrix and 
the corresponding “eigenvalue decomposition” of X’X. 
 

 
 

The H matrix above of “regressor principal coordinates” is (n by r) and semi-orthogonal (H’H = 
I.)  And the G matrix of “principal axis direction cosines” is (p by r) and semi-orthogonal (G’G 
= I.)  In the full-column-rank case (r = p), G is orthogonal; i.e. GG’ is then also an identity 
matrix. 

The (r by r) diagonal “Lambda” matrix above contains the ordered and strictly positive 
eigenvalues of X’X;  1   2  …  r > 0.  Thus our operational rule for determining the Q-th 
power of X’X (where Q may not be an integer) will simply be to raise all of the positive 
eigenvalues of X’X to the Q-th power, pre-multiply by G, and post-multiply by G’. 

Taken together, these decompositions allow us to recognize the above 2-parameter (k and Q) 
family of shrinkage estimators,  * (beta-star), as being a special case of r-dimensional 
generalized ridge regression... 
 

 
 

where the (r by r) diagonal  matrix contains the multiplicative shrinkage factors along the r 
principal axes of X. Each of these Delta(i) factors range from 0 to 1 (i = 1, 2, ..., r.) 

Note that the (r by 1) column vector, c, contains the uncorrelated components of the ordinary 
least squares estimate, beta-hat = G c = g1 c1 + g2 c2 + … + gr cr of the unknown, true regression 
coefficient   vector.  The variance matrix of c is the diagonal 1 matrix times the scalar value 
of the error sigma-square.  The P = r = 2 dimensional case is depicted below. 
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In fact, we now see that the 2-parameter family of shrinkage estimators from our first equation, 
above, is the special case of the last equation in which... 

 

 
Q = the ridge parameter that controls the “shape” (or “curvature”) of the ridge path through 

regression coefficient likelihood space. 
 
    Q = +1 ...yields uniform shrinkage (all Shrinkage Factors equal.) 
    Q =  0 ...yields Hoerl-Kennard “ordinary” ridge regression. 
    Q = 5 ...is usually very close, numerically, to “Principal Components Regression,” with exact 

agreement in the limit as Q approaches minus infinity. 

The display below shows a variety of shrinkage path Q-shapes for the rank(X) = p = 2 case. 
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The best known special case of a Q-shaped path is probably Q = 0 for Hoerl-Kennard(1970) 
“ordinary” ridge regression. This path has a dual “characteristic property,” illustrated in the 
figure below.  Namely, the Q = 0 path contains not only the shortest beta estimate vector of any 
given likelihood but also the most likely beta estimate of any given length. 

 

Another well known special case of a Q-shaped path is Q = +1 for uniform shrinkage. The 
coefficient trace and shrinkage factor trace for this path are both rather “dull,” but the estimated 
risk and inferior direction TRACES can still be interesting even when Q = +1. 
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Again, an extremely important limiting case is Q = minus infinity for principal components 
regression.  [Marquardt(1970) called this limit “assigned rank” regression.]  My experience is 
that the Q = 5 path is frequently quite close, numerically, to this limiting case.  Note in the 
figure at the top of page 6 that the path with Q = 1 shape is already near the limit in the p = 2 
dimensional case depicted there. 

Unfortunately, the “k” parameter is really not a very good measure of the extent of shrinkage.  
After all, the sizes of r shrinkage factors, , can depend more on one’s choice of Q than on one’s 
choice of k.  Specifically, the kvalues corresponding to two rather different choices of Q are 
usually not comparable. 

Thus my shrinkage regression algorithms use the m = MCAL = “multicollinearity allowance” 
parameter of Obenchain and Vinod(1974) to index the M-extent of Shrinkage along paths.  This 
parameter is defined as follows... 
 

MCAL  = r  1  2  …  r  = Rank( X )  Trace(  ) 
 

Note that the range of MCAL is finite; MCAL ranges from 0 to r = Rank(X), inclusive. 
Whatever may be your choice of Q-shape, the OLS solution always occurs at the beginning of 
the shrinkage path at MCAL = 0 (k = 0 and  = I) and the terminus of the shrinkage path, where 
the fitted regression hyperplane becomes “horizontal” (slope=0 in all p-directions of X-space) 
and y-hat = y-bar, always occurs at MCAL = r ( k = + and  = 0 ).  RXridge( ) uses Newtonian 
descent methods to compute the numerical value of k corresponding to given values of MCAL 
and Q-shape. 

In addition to having finite (rather than infinite) range, MCAL has a large number of other 
advantages over k when used as the scaling for the horizontal axis of ridge trace displays.  For 
example, shrunken regression coefficients with stable relative magnitudes form straight lines 
when plotted versus MCAL. 
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Similarly, the average value of all r shrinkage factors is (r  MCAL)/r, which is the Theil(1963) 
proportion of Bayesian posterior precision due to sam ple inform ation (rather than to prior 
information.)  Note that this proportion decreases linearly as MCAL increases. 

Perhaps most importantly, MCAL can frequently be interpreted as the approximate deficiency in 
the rank of X.  For example, if a regressor X’X matrix has only two relatively small eigenvalues, 
then the coefficient ridge trace for b est Q-shape typically “stabilizes” at about MCAL = 2.  This 
situation is illustrated below using the ridge coefficient trace for the path of shape Q = 1.5 for 
the original Longley(1967) data set when the response is y = Em ployed.  Com pared with the 
major initial shifts in relative magnitudes and numerical signs of coefficients between MCAL = 0 
and MCAL = 2, note th at the trace becom es relatively much more stable (som ewhat “straight”) 
between MCAL = 2 and MCAL = r = 6.  

 

As a general rule-of-thumb, paths with Q-shapes in the [1,+2] range generally tend to be fairly 
smooth ...i.e. have “rounded” corners.  Paths with Q-shapes greater that +2 or less than 1 can 
display quite “sharp” corners.  In fact, the paths with limiting shapes of ± are actually linear 
splines with join points at integer MCAL values! 

My computing algorithms provide strong, objective guidance on the choice of the Q-shape that is 
best for your data.  Specifically, they implement the methods of Obenchain(1975, 1978, 1981) to 
identify the path Q-shape (and the MCAL-extent of shrinkage along that path) which have 
maximum likelihood (under a classical, fixed coefficient, normal-theory model) of achieving 
overall minimum MSE risk in estimation of regression coefficients. 

The RXlarlso( ) and Rxuclars( ) functions in the RXshrink R-package re-interpret lar and lasso 
regression estimators as generalized ridge estimators simply by solving equations such as 
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 
lar = G lar c 

for the implied -factors.  With the ith column of G again denoted by gi  (as in the figure on page 
5), the solutions of the above r equations are 

i
lar = gilar / ci    for i = 1, 2, …, r. 

Because these equations  clearly do not constrain th e resulting lar or las so “delta-factors” to be 
positive and less than +1, the resulting estimates may have neither of these properties.  In oth er 
words, lar and lasso estim ators can correspond to “non-standard” generalized ridge estim ators 
and, thus, can correspond to higher MSE risk than  would be possible with  a true “shrinkage” 
estimator. 
 
On the other hand, the Rxuclars() function applies lar es timation directly to the uncorre lated 
components vector , c, and this restriction yields a true ge neralized ridge (shrinkage) estim ator.  
In fact, the delta-factors from Rxuclars( ) will always then be of the following form: 
 

 i
uclars = max[ 0, ( 1 k / |i| ) ], 

 
where i is the ith “principal correlation” …i.e. the correlation between the response y-vector and 
the ith column of the H matrix of “principal coordinates” of X (page 4.)  Note that the k-factor in  
this shrinkage formulation is lim ited to a subset of [0, 1].  MCAL = 0 occurs at k = 0, while 
MCAL = r results when k is the maximum absolute principal correlation. 
 
 
3. Interpretation of ridge TRACE Displays 
 
We will use the longley2 numerical example here in Section §3 to illustrate interpretation of 
ridge TRACE displays.  These data, compiled by Art Hoerl using the 1976 “Employment and 
Training Report of the President,” are an updated version of the infamous Longley(1967) dataset 
for benchmarking accuracy of regression computations.  The longley2 data.frame contains 
some slightly different numerical values from those used by Longley(1967) within the original 
16 years (1947 through 1962) and also adds data for 13 subsequent years (1963 through 1975.) 
 
Start by loading the RXshrink package, then execute the following R-code: 
 
  data(longley2) 
  form <- GNP~GNP.deflator+Unemployed+Armed.Forces+Population+Year+Employed 
  rxrobj <- RXridge(form, data=longley2) 
  rxrobj 
 
Because rxrobj is an R-object of class RXridge, the fourth line of code prints the default 
RXridge( ) output.  This output is rather detailed and extensive, so it is abbreviated below. 
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   Principal Axis Summary Statistics of Ill-Conditioning... 
             LAMBDA         SV         COMP         RHO       TRAT 
     1 124.55432117 11.1603907  0.466590166  0.98409260 179.451944 
     2  34.04395492  5.8347198 -0.009779055 -0.01078296  -1.966301 
     3   7.97601572  2.8241841  0.228918857  0.12217872  22.279619 
     4   1.31429584  1.1464274 -0.557948473 -0.12088200 -22.043160 
     5   0.06505309  0.2550551  0.613987118  0.02959472   5.396677 
     6   0.04635925  0.2153120 -0.471410409 -0.01918176  -3.497845 
 

COMP =  6 × 1 vector of Uncorrelated Components of the OLS estimator, c = G’o. 
RHO =  6 × 1 vector of Principal Correlations between the response y and the columns of H.  In 

this example, the first RHO is huge, and the other 5 are all relatively small.  
 
Note that the ill-conditioning in this example is quite extreme.  The last three uncorrelated 
components are (numerically) the three largest.  This is the case only because the 
corresponding singular values, SV = sqrt(LAMBDA), are small.  Again, the last three principal 
correlations are all quite small relative to the only large one, the first. 
  
      Residual Mean Square for Error = 0.0008420418  
      Estimate of Residual Std. Error = 0.02901796  
 
Classical Maximum Likelihood choice of SHAPE(Q) and EXTENT(M) of 
shrinkage in the 2-parameter generalized ridge family... 
       
           Q       CRLQ        M            K    CHISQ 
     1   5.0 0.03065132 5.973237 9.992836e+06 212.2772 
     ... 
     9   1.0 0.52547213 2.111210 5.428963e-01 202.9410 
     10  0.5 0.79341430 1.816359 4.358166e-01 183.5424 
     11  0.0 0.89070908 2.678418 1.513692e+00 166.6511 
     12 -0.5 0.93599740 3.140371 7.907552e+00 151.8817 
     13 -1.0 0.95935445 3.453422 5.035840e+01 139.1481 
     ... 
     20 -4.5 0.98439456 4.586356 3.768549e+08 112.1289 
     21 -5.0 0.98446554 4.729924 4.185069e+09 112.0005 
 
Q = -5  is the path shape most likely to lead to minimum 
MSE risk because this shape maximizes CRLQ and minimizes CHISQ. 
 

RXridge: Shrinkage PATH Shape = -5  RXridge( ) choice of Q. 
 
The extent of shrinkage (M value) most likely to be optimal 
in the Q-shape = -5  two-parameter ridge family can depend 
upon whether one uses the Classical, Empirical Bayes, or Random 
Coefficient criterion.  In each case, the objective is to 
minimize the minus-two-log-likelihood statistics listed below: 
 
            M            K         CLIK       EBAY     RCOF 
 
     0  0.000 0.000000e+00          Inf        Inf      Inf 
     1  0.125 1.216886e-09 1.756397e+12   113.2484 113.7283 
     2  0.250 2.723817e-09 1.759946e+12   112.8258 113.6267 
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     3  0.375 4.619196e-09 1.761921e+12   113.3184 114.2927 
     .. 
     37 4.625 2.588153e+09 1.157462e+02  1056.0587 120.4012 
     38 4.750 4.641076e+09 1.121409e+02  1073.4679 120.1243 
     39 4.875 1.062368e+10 1.206503e+02  1124.3692 120.4956 
     .. 
     47 5.875 2.615094e+13 2.083713e+02 29207.1835 208.6979 
     48 6.000          Inf 2.123044e+02 33230.5079 212.3044 
 
Before abbreviation, the above listing described 49 choices for the M-extent of shrinkage (m = 
0.0 to m = 6.0 in steps of 0.125.)  The search over this lattice suggests that m = 4.750 minimizes 
the CLIK criterion; the earlier output using the normal-theory closed form expression suggested 
m = 4.7299, which is not on the lattice.  No closed form expressions exist for the EBAY or 
RCOF criteria, but the lattice search suggests that m = 0.250 is best for these criteria, which is 
MUCH less shrinkage than suggested by the CLIK criterion! 
 
Applying the “(2/P)ths Rule-of-Thumb” of Obenchain (1978) with P = 6, it follows that the most 
shrinkage likely to produce a “good” ridge estimator (better than OLS in every MSE sense) 
along the Q = 5 path for the longley2 data is m = 1.58. 
 
With all of the above background information in mind, it is now high time to 
examine and interpret ridge trace displays! 
 

Plot(rxrobj)  Default display of all 5 TRACEs. 
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3.1:   Shrinkage Coefficient Trace  
 
The COEFFICIENT trace display shows how point estimates of -coefficients change as shrinkage 
progresses along a path of shape Q.  Coefficient estimates that are numerically “stable” will tend to plot 
close to the straight line from their (left-hand end) least-squares estimates at MCAL=0 to zero at 
MCAL=P (right-hand end.)  Relatively unstable coefficient estimates will change non-linearly, possibly 
switching numerical sign, as MCAL increases.  Super-stable estimates will display traces that initially 
change very little (remaining almost horizontal), finally approaching zero only as MCAL approaches P.  
 

plot(rxrobj, trace = “coef”, trkey = TRUE) 

 
Note tha t most of  the  clea rly un desirable f eatures of  th e OLS estim ates in th is longley2 
example have been m itigated once the shrink age extent reaches at least m  = 3.  From  that point 
on, four of the six estimates have become essentially equal. 
 

“Wrong Sign” Problem(s): 
 
A theoretical basis for detecting “sign probl ems” by com paring the num erical signs of 
fitted coef ficients with  their m arginal co rrelations is p rovided by Rem ark (d ) on p age 
1118 of Obenchain (1978).  W hen the  vector in m y Theorem  2 is parallel to the 
unknown, true , the corresponding optimal generalized ridge estimator is KNOWN to be 
proportional to X’y, a vector that clearly h as elements with the sam e numerical signs as 
the vector of marginal correlations of y with X. 
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Because the vecto r of OLS estim ates is of the f orm X+y, its elem ents can have different 
signs from  t hose of X’y when the data ar e ill- conditioned. W hen this does occur, it’ s 
relatively bad news!  

 
Rxrobj$coef[1,]   OLS regression coefficient estimates 
 
          0.50356   -0.02370     -0.00258    0.82122  -0.47560   0.16119 
 
(cor(longley2))[1:6,7]   marginal correlations between y = GNP 
                                                       and 6 Xs. 
 
     GNP.deflator Unemployed Armed.Forces Population      Year  Employed  
           0.9936     0.6967       0.0735     0.9838    0.9479    0.9841 
 

Note that th e OLS coefficien t for Y ear is la rge and negative here.  This signa ls a major 
“wrong sign” problem because the m arginal correlation between GNP and Year is quite 
strongly pos itive (+0.94 79.)  The p roblem clearly disappears once Q = 5 shrinkage 
reaches m = 3. 
 
Similar (but m inor) problems exist due to negative OLS estim ates for Une mployed and 
Armed.Forces.  However, these OLS coe fficients are already relatively s mall 
numerically, and the corresponding m arginal correlations with GNP are m uch less 
positive. 

 
 
3.2.   Shrinkage Pattern Trace  
 
The SHRINKAGE PATTERN trace shows how the gene ralized ridge “Delta Shrinkage-Factors” 
applied to the ordered “uncor related components” vector, c, decrease as shrinkage of shape Q 
occurs.  All such delta factors start out as 1 at M=0 (the OLS solution.)  As M increas es, a ll 
deltas remain equal when Q = 1; th e tr ailing deltas ar e smallest when Q < 1; and the leading 
deltas are smallest when Q > 1. 
 
Colors have som ewhat different interpretations  in SHRINKAGE P ATTERN traces than in the  
COEFFICIENT trace.  In both cases, co lors are ord ered: FIRST, SECOND, THIRD, 
FOUTRH, FIFTH, SIXTH, etc.  In a COEFFICIENT trace, colo rs represent the X-variables in 
the order that they were specified in the regression formula: Y ~ X1 + X2 + X3 + X4 + X5 + X6.  
But in a SHRINKAGE PATTERN trace, these same colors represent the regressor principal axes 
in the decreasing order of their eigenvalues of X’X: 1   2  3  …  r > 0.     
 
Since we are following an extreme shrinkage path shape of Q = 5 for the longley2 dataset, we 
see in the S HRINKAGE PATTERN trace d isplayed below that essentially on ly the last two out 
of six shrin kage factors , 5 and 6, change between M=0 and M=2.  Af ter all, th e las t two 
singular values (square roots of eigenvalues of X’X) are nearly equal and are much smaller than 
the other four singular values.  In fact, the las t two shrin kage factors have essentially been 
reduced to zero at M=2.                                            
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Plot(rxrobj, trace = “spat”) 

 
As shrinkage then continues from M=2 to M=3, the fourth shrinkage factor, 4 , essentially 
decreases from 1 to 0  …while 1, 2 and 3 all remain near 1.  As was clear from the 
COEFFICIENT trace displayed above, the majority of the severe ill-conditioning in the longley2 
dataset (i.e. switches in -coefficient signs and drastic changes in their relative magnitudes) is 
confined to the last three out six total principal components of X-space. 
 
 
3.3.  Relative (or “Scaled”) MSE Risk Trace  
 
The RELATIVE MSE trace displays norm al distribution theory, “m odified” m aximum 
likelihood estim ates of “scaled” MSE risk in indi vidual–coefficient estim ates as shrinkage of  
shape Q occurs. 
 

Risks are “s caled” by b eing divid ed by the usual estim ate of the erro r (dis turbance term ) 
variance.  In other words, scaled risk expresses imprecision in fitted coefficients as a multiple 
of the variance of a single observation.  Furthe rmore, when regression disturbance term s are 
assumed to be uncorrelated and homoskedastic , the “scaled” MSE risks of the unbiased OLS 
estimates (at the ex treme left of the trace where  = I) a re known quantities, being the 
diagonal elements of the (X’X)-1 matrix. 
 
When shrinkage    fa ctors are less than 1, maxim um likelihood scaled risk estim ates are 
“modified,” first of all, so as to be unbiased  under norm al theory.  Then they are adjusted 
upward, if necessary, to have correct range re lative to a known lower bound on scaled risk, 
which may re-introduce some bias.  
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As in the COEFFICIENT trace, colors in the RELATIVE MSE trace represent the X-variables in 
the order that they were specified in the regression formula: Y ~ X1 + X2 + X3 + X4 + X5 + X6.   
 
In the Relative MSE trace (below) for the longley2 data, shrinkage appears to be injecting 
considerable bias into the 4th (Population) and 5th (Year) -coefficient estimates. 
 

Plot(rxrobj, trace = “rmse”) 

 
Changes in the 6th (Employment) -coefficient estimate between M=0 and M=3 first increase 
but then decrease MSE risk.  Initial increases in the 1st (GNP.deflator) -coefficient estimate 
between M=0 and M=2 are relatively unimportant, but subsequent shrinkage increases MSE risk 
at M=3 and beyond.  Increases in the 2nd (Unemployment) -coefficient estimate between 
M=3.5 and M=4.5 also increase MSE risk somewhat. 

 
3.4.  Excess Eigenvalues Trace   
 
The EXCESS EIGENVALUES trace plots the eigenva lues of the estim ated difference in Mean 
Squared Error matrices, ordinary least squares (OLS) minus ridge.  As long as all eigenvalues are 
non-negative, there is reason to hope that th e corresponding shrunken estim ators yield sm aller 
MSE risk than OLS in a ll directions of the r-dimensional space spanned by X-predictors (i.e. all 
possible linear com binations.)  As shrinkage continues, at most one negative eigenvalue will 
appear.  
 
The colors in the EXCESS EIGENVALUE trace represent only the observed order (smallest to 
largest) of these eigenvalues.   Specifically, the SMALLEST (possibly negative) is drawn in 
black, while the SECOND SMALLEST (never negative) is red.  At the top end when the X 
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matrix has rank 6, the LARGEST eigenvalue is magenta, while the SECOND LARGEST is 
shown in cyan.   
 
In the EXCESS EIGENVALUE trace (below) for the longley2 data, the smallest eigenvalue 
becomes negative at the 3rd computational step of M = 0.250, which also happens to be the extent 
of shrinkage suggested by the EBAY and RCOF likelihood criteria.  The negative eigenvalue at 
M = 0.250 is 3.26 while the corresponding largest eigenvalue is only +2.00.  In other words, 
more MSE “harm” is already being done in the “inferior direction,” Obenchain(1978), 
corresponding to M = 0.250 along the path of shape Q = 5 that in the (unspecified) direction of 
greatest MSE decrease due to shrinkage. 
 

Plot(rxrobj, trace = “exev”) 

 
The negative eigenvalue at the M = 4.750 extent of shrinkage suggested by the CLIK criterion is 
1017 while the corresponding two largest eigenvalues are +13.9 and +39.1.  In other words, the 
longley2 datase t is r ather cle arly very h ighly ill-conditioned.  In f act, ill- conditioning is 
sufficiently bad that the am ount of shrinkage needed to stabilize coefficient relative magnitudes 
(including correction of a “wrong sign” problem in the Year coefficient) cannot be justified from 
a MSE reduction perspective.  
 
 
3.5.  Inferior Direction-Cosine Trace   
 
The INFERIOR DIRECTION trace displays  the direction cosines (elements of the norm alized 
eigenvector) corresponding to any negative eigenvalue of the difference in MSE matrices, OLS  
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ridge.  This direction gives that single linear combination of ridge regression coefficients that not 
only fails to benefit from ridge shrinkage of shape Q but probably actually suffers increased risk 
due to shrinkage. 
 
Because the rows and colum ns of t hese MSE m atrices are in the order specified on the right-
hand-side of the regression for mula Y ~ X1 + X2 + X3 + X4 + X5 + X6, the direction cosines 
relative to these given X axes are colored in this same order.  
   

Plot(rxrobj, trace = “infd”) 

 
Interpretation of direction cosines in 6-dimensions can be problematic, to say the least.  Thus we 
will focus here on only relatively simple things that can be seen in an I NFERIOR DIRECTION 
trace.  Note that all values in the plot could be multiplied my 1 (turning it upside-down) without 
changing its basic interpretation. 
 
First of all, all fitted reg ression coefficients have been shrunken to (0, 0, …, 0) at the right-hand 
extreme of all TRACE displays, M = rank( X).  This is usually m uch-too-much shrinkage, so the  
inferior direction typically points backwards from  (0, 0, …, 0) essentiall y towards the or iginal 
±OLS coefficient vector at M =  0.  In the abov e plot for th e longley2 dataset, the displayed 
direction cosines at M = 6 clearly point to the negative of the original OLS vector.  
 
When two curves on an INFERIOR DIRECTION tr ace cross, their direction cos ines are clearly 
equal at that value of M.  This happens with the cosines for the 1st (GNP.deflator) and 2nd 
(Unemployed) regressors at M = 1.295, where the comm on cosine value is +0.041.  Thus, at M  
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= 1.295, the shrunken estim ate of t he SUM of the 1st and  2nd -coefficients (0.512) can have 
higher MSE risk than its OLS esti mate(0.480); after all, the vector (1,1,0,0,0,0) is clearly NOT 
orthogonal to the inferior direction at M = 1.295.  In sharp contrast, the vector (+1,1,0,0,0,0) IS 
orthogonal to the inferior direction at M = 1.295, and thus the DIF FERENCE between the 
shrunken estimates of the 1st and 2nd -coefficients (0.513) should have the sam e or lower MSE 
risk than the corresponding difference in OLS estimates (0.527.) 
 
A similar crossing of cosines for th e 5th (Year) and 6th (Employed) regressors occurs at M =  
1.535, where the common cosine value is +0.373.  Thus, at M = 1.535, the shrunken estim ate of 
the SUM of the 5th and 6th -coefficients ( 0.119) can have higher MSE risk than its OLS 
estimate(0.314.)  Meanwhile, the D IFFERENCE between the shrunken estim ates of the 5th and 
6th -coefficients ( 0.656) should have the sam e or lowe r MSE risk than the corresponding 
difference in OLS estimates (0.637.) 
 
M-extents o f shrinkage such that two regresso rs have inf erior direction cosines with equal 
magnitudes but opposite numerical signs have the opposite effects on the MSE risks of sums and 
differences.  The SUM of the corresponding shrunken coefficients then has the sam e or reduced 
MSE risk, while the corresponding DIFFERENCE has increased MSE risk.  This happens for the 
1st (GNP.deflator) and 6th (Employed) regressors at M = 2.67, wher e the direction cosines are 
±0.164.  Unfortunately, shrinkag e to M = 2.67 has inappropria tely reduced the difference 
between coefficient estimates (from 0.34 to 0.06)  while leaving the sum mostly unchanged (0.68 
rather than 0.66.) 
 
 
4.  Interpretation of least angle regression TRACE displays  
 
xlong2 <- as.matrix(longley2[,1:6]) 
ylong2 <- as.matrix(longley2[,7]) 
larsobj <- lars(xlong2,ylong2,type=”lar”) 
plot(larsobj) 

 
   rxlobj <- RXlarlso(form,data=longley2) 
   plot(rxlobj, trace = “coef”) 
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The first thing to note about the coefficient TR ACE displays from the RXlarlso() and Rxuclars() 
functions within the RXshrink package is that they are essen tially “backwards” relative to th e 
default coef ficient d isplays from  the lars R-package.  This point is  illustrated above.  Close 
examination of this pair of graphs also shows that, besides being backwards relative to each 
other, there are som e additional, rather minor differences between the |beta|/max|beta| scaling 
used along the horizontal axis by lars and the m = Multicollinearity Allowance scaling used by 
RXshrink.  
 
Least angle regression (lar) may yield an initial solution vector that is longer that the OLS vector.  
As explained at the end of S ection §2, this m eans the one or more of the shrinkage “delta” 
factors im plied by the lars() estimate starts  out being  g reater than one.  Sim ilarly, as lar 
shrinkage occurs, one or m ore of these im plied delta-factors may eventually becom e negative.  
These points are illustrated in the graph below. 
 

Plot(rxlobj, trace = “spat”) 

 
Reductions in MSE risk rela tive to OLS usually occur only when all of the delta-factors im plied 
by lars() estimates are non-negative and strictly less than +1.  Exceptions can occur when the 
unknown true “gamm a” com ponent co rresponding to an “out of ra nge” delta-factor is nearly 
zero. 
 
The Q-shape shrinkage paths typically used in “generalized ridge” regression depend upon the 
eigenvalue spectrum o f the centered X’X m atrix as well as upon the principal correlations 
with the centered respo nse vecto r, y.  In sharp contrast, the shrinkage paths im plied by “least 
angle” regression methods typically depend only upon correlations (marginal or principal) with 
the response y-vector.  As a direc t result, the relative sizes of the shrinkage delta-factors implied 
by lars() estimates are not ordered in a predetermined way. 
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Use of implied delta-shrinkage factors outside of the us ual range of [0, 1) can be avoided by use 
of the Rxuclars() function rathe r than the  RXlarlso() function illustrated above.  In this 
special case, the principal correlations with the response y-vector determine the implied d elta-
shrinkage factors.  Specifically, the general expression i

uclars = max[ 0, ( 1 k / |i| ) ] then shows 
that the sm allest delta-factor will always corr espond to the sm allest principal correlation.  The  
RXridge() output listed at the top of  page 10 s hows that the 2nd principal coordinates of X-
predictors have the sm allest absolute correlation (0.01078) with the response y-vector for the 
longley2 dataset.  This is also clear in the graph below. 

 
Rxuobj <- Rxuclars(form,data=longley2) 

plot(rxuobj, trace = “spat”) 

 
Note that, because the 3rd and 4th principal coordinates of X-predictors have nearly equal 
absolute correlations (0.1222 and 0.1209) with the response y-vector, the 3rd and 4th shrinkage 
delta-factors in the above graph are essentially equal. 
 

 
5.   Final Remarks 
 
The RXshrink package for R is fully documented with *.Rd, *.tex, *.html and *.chm files.  The  
additional information provided here is supplemental. 
 
Traditional visualizations of shrink age regression computations use "trace" p lots.  In a trace,  P 
quantities (s everal es timated coefficients,  risks,  shrinkage factors, etc. ) are plotted vertically 

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SHRINKAGE PATTERN: LAR

m = Multicollinearity Allowance

u
cl

a
rs

 D
e

lta
 F

a
ct

o
rs



softRX Shrinkage in Regression  Page 21 

against a ho rizontal indicator of  the extent of shrinkage.  Trad itional “ridge” traces display th e 
Ordinary-Least-Squares (OLS) solution at the ir le ft-hand extrem e and cove r the full range of 
shrinkage that culminates in "total" shrinkage at their right-hand extrem e (where all “centered” 
regression coefficient es timates becom e zero.)  Here, P denotes the num ber of non-constant 
predictor variables in the regression model.   RXshrink functions require P to be at least 2. 
 
RXshrink functions attempt to iden tify shrunken coefficient estim ates that are either "good" in 
the sense that they dominate least squares estimates in every (multivariate) Mean Squared Error 
sense or are "optim al" in one well-defined (univa riate) MSE sense.  Definition s for "good" o r 
"optimal" ridge shrinkage factors are based upon ri sk (expected loss) calcu lations that app ly to 
all forms of statistical distributions.  But the ML  inferences for the P-parameter and 2-parameter 
shrinkage paths explored by RXshrink functions  are based upon standard norm al-distribution-
theory. 
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