KernelPop

Allan E. Strand

Department of Biology

College of Charleston

Charleston, SC 29424
stranda@cofc.edu

January 21, 2007

1 Introduction

KernelPopis a software environment for simulating population genetics in a explicitly spatial
manner. It is a discrete-time and individual-based. This software provides flexibility at
several levels of organization. From general to narrow these include: Landscapes, habitats,
populations, individuals, and loci. KernelPopimplements this structure for a single species
using a single list-based data structure in R. The vast majority of functions either help create
or modify this structure or to extract information from it.

Using the set of tools provided with KernelPop along with R, it is possible to define and
execute almost any demographic scenario that can be implemented in discrete-time. The
actual simulations are carried out in C++ to increase speed.

2 Landscape object

Figure 1 illustrates the high-level organization of a landscape object. The following subsec-

tions will document the different sub-components.
Each will:

e describe the sub-object

e describe the function(s) used to create it
The first step in creating a landscape object is to create a skeleton landscape

> land <- landscape.new.empty ()
> names (land)

[1] "intparam" "switchparam" "floatparam" "demography" "loci'
[6] "expression" "individuals"

[Landscape obje%t

(Integer parameters | [Demography)
Number of habitats, Stage-transition matrice
number of loci, number population sizes, extincti
of demographic stages |.. rates...

- J -

(Floating point parameters " Loci]
Selfing rate, dispersal Inheritance, mutation rate
kernel parameters mutation model, allele

- // lookup table)

.

(Boolean parameters
Multiple paternity,

random choice of local individual locati .
ndividual locations, sta
| demography g

g age, and genotypes

™ \

a - -
Individuals

m

- J

Figure 1: Schematic of the high-level organization of the landscape object

2.1 intparam

The intparam element of the landscape object describes integer values, they include:

habitats (h) This parameter provides the number of rectangular habitats within a land-
scape. These habitats may or may not be populated.

stages (s) The number of demographic stages present in a single habitat.
locusnum The number of genetic loci to be simulated (not changeable directly)

numepochs It is possible to have multiple epochs during the course of a simulation. This
can be implemented either in R by the investigator (recommended) or in C++ by
specifying multiple epochs sub-objects. numepochs specifies the number of these to be
used in C++. (not changeable directly)

currentgen (cg) Current generation (year) of a simulation (best to leave unchanged)
currentepoch (ce) Current epoch (leave unchanged)
totalgens (totgen) Total number of generations that can be simulated

numdemos The number of different within-habitat demographies. These can vary across a
landscape. (not changeable directly)

maxlandsize (maxland) Total number of individuals that can be simulated

nphen (np) not used yet.

The args () provides the default values for this function!.
> args(landscape.new.intparam)
function (rland, h =1

maxland = 2e+05, np
NULL

1, cg =0, ce =0, totgen = 1000,

N«

0)

> land <- landscape.new.intparam(land, h = 4, s = 6)

Note that this function takes a landscape object (in this case, skeleton) as one of its
parameters. It returns the modified landscape. This is typical for the landscape creation
and modification functions

2.2 floatparams

These are parameters describe selfing rate (s) and then a set of dispersal characteristics that
will apply to all stages in the simulation

selfing (s) Selfing rate in a mixed-mating model

seedmu Scale of first seed dispersal distribution

seedshape Shape of first seed dispersal distribution

pollenmu Scale of first pollen dispersal distribution

pollenshape Shape of first pollen dispersal distribution

seedmu?2 Scale of second seed dispersal distribution

seedshape2 Shape of second seed dispersal distribution

seedmix mixture parameter between the two seed distributions (1=all dist 1, 0=all dist 2)

aspect Factor that reduces the y-dimension of dispersal. A value of 1 is equal x and y
dispersal. This does not change the dispersal distances, however, just their direction

pollenmu?2 Scale of second pollen dispersal distribution

pollenshape2 Shape of second pollen dispersal distribution

LAll code in this document should be available in annotated form in the file kernelPop-intro.R distributed
with this pdf. If you source it into R it will execute the code and produce similar results. If you set
'par (ask=T)’ before ’sourcing’, the graphs (and subsequent steps!) will wait for you to hit return

pollenmix mixture parameter between the two pollen distributions (1=all dist 1, 0=all dist
2)

> args(landscape.new.floatparam)

function (rland, s = 0, seedscale c(10, 10), seedshape = c(10,
10), seedmix = 1, pollenscale c(2, 10), pollenshape = c(2,
6), pollenmix = 1, asp = 1, mindens = le-25)

NULL

> land <- landscape.new.floatparam(land)

2.3 switchparam

These are boolean parameters that make choices about a landscape

randepoch If 0, choose different epochs in the order they are specified. If 1 choose epochs
at random (again multiple epochs are kind of obsolete, but are built into the basic
C++ engine) (don’t change)

randdemo If there are multiple local demographies for different habitats, choose among
them at random for each habitat if 1; if 0, assign them in the same order as the
habitats are defined.

multp If 1 each zygote potentially has a different father (slower). If 0 all offspring for a
mother in a particular year are full-sibs

> args(landscape.new.switchparam)

function (rland, re = 0, rd = 0, mp = 1)
NULL

> land <- landscape.new.switchparam(land)

2.4 demography

This sub-object basically defines all of the vital rates that determine survival and reproduc-
tion. It also contains functions that define metapopulation characteristics like extinction
rate per habitat, carrying capacity per habitat and dispersal parameters.

It is divided into two subcomponents, each of which is further divided.

2.4.1 localdem

This is a description of the sub-matrices that define demography in each habitat. It is a list
of any length between 1 and the number of habitats. Depending on the value of randdemo
in the switch subcomponent, each habitat is either: 1) randomly assigned an element from
this list with probabilities that can be defined in the epochs sub object (sec. 2.4.2) or 2)
assigned demographies by cycling through this list.

Each element is composed of three matrices that describe a stage based demography.
Figure

S <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, O, 0.18, 0, O,
o, o, o, 0, 0.14, 0, 0.26, 0, 0, 0, 0, 0.7, 0, 0.09, 0, O,
0, 0, 0.2, 0, 0.18), byrow = T, nrow = 6)

R <- matrix(c(0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 8.5, 0, 0, 0, O,
o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, O, 0, O, O,
0, 0), byrow = T, nrow = 6)

M <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, O, 0, 0, O,
o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0.25, 0, 0.75, 0, 0, O,
0, 0, 0), byrow = T, nrow = 6)

args (landscape.new.local.demo)

V+ 4+ V++V o+ otV

function (rland, S, R, M)
NULL

> land <- landscape.new.local.demo(land, S, R, M)
> print("add a new local demography with different Reproduction")

[1] "add a new local demography with different Reproduction"

> R2 <- matrix(c(0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 5.5, 0, 0, 0, O,
+ o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0O, O, O,
+ 0, 0), byrow = T, nrow = 6)

> land <- landscape.new.local.demo(land, S, R2, M)

The previous code block installed two local demographies into the localdem list.

2.4.2 epochs

This is a list of elements each of which define landscape-level characteristics. Currently my
recommendation is to declare only 1 and modify it in R to change simulations through time.

T - 0.07 From
L7 AN 1
2 oas 0 T R 2 3 4 5 6
Female ———= —_—= 1 10
) 2 55
5.5,/ :
7 : 3
025 S 0.75 2
E 4
L 0.25 017 '
0.1 A 0.2 S
Mae —= — = 5
Seed/ Juvenile/ Adult
Zygote Subadult
From From
S 1 2 3 4 5 6 M 1 2 3 4 5 6
1 1
2 2
3/ 0.15 3
= =
4 0.1 0.25 4
5 0.7 0.07 5 0.25 0.75
6 0.2 0.17 6

Figure 2: Stage-based demography within habitats. This life-cycle has six stages, essentially
three male and three female stages. The rates of male and female survival are different (for
example, intermediate sized females (stage 3) have high probabilities of growing into adults
in the next season). Females produce a mean of 10 and 5.5 male and female juveniles per
generation, respectively. These are means of Poisson distributions. Both stage 4 and stage
5 can produce pollen though stage 6 produces three times the pollen on average.

From
O m @ Sding. Juv. Veg. R

r.Dorm.

stng—(aw) (Ve =) - s
O F Veg
Repr.
Dorm.
C
M M
M M
M M
M M
u u
M M
M M
| |
| | | |

Figure 3: Schematic of landscape matrix metaphor

Landscape demographic characteristics The matrices defined in section 2.4.1 com-
prise sub-matrices of 3 larger matrices that are (number of habitats)*(number of stages) in
dimension This is similar to a multi regional model. Figure may help illustrate this concept,
though it has the reproduction and survival matrices summed into a single matrix.

These matrices can implement dispersal among populations independent of the dispersal
kernels defined in the next paragraphs. I wanted to maintain this ability because it provides
a convenientt way to model management efforts like transplants, introductions, and stocking
efforts.

For most uses of KernelPop, these matrices can be set to zero in each cell. They still need
to be defined, however. The matrix zeromat will be used for each of the three landscape
matrices

> zeromat <- matrix(0, nrow = 4 * 6, ncol = 4 * 6)

Vectors describing habitats within a landscape Vectors with length equal to the
number of habitats are defined in this sub-element to characterize:

extinction the yearly rate of extinction of each habitat

carrying capacity the largest number of individuals supported in each habitat

> extnct <- c¢(0, 0.1, 0, 0.1)
> k <- ¢(1000, 600, 600, 1000)

Vectors with length equal to the length of the local demography describe the probability
of picking a local demography from the localdem list. Always defined, but only used if
randdemo (section 2.3) is set appropriately.

> ldem <- ¢(0.5, 0.5)

Seed dispersal kernel matrix This is a matrix that has (number of habitats)*(number
of stages) rows and six columns. If not specified, a working matrix is constructed from the
floatparam elements

The rows correspond to stages in the landscape. The columns correspond to (in order)

1. the seed dispersal kernel. This can be 1,2, or 3 (the default). 1 and 2 are really just
special cases of the mixed pdf (kernel 3)

2. the scale parameter for kernel component 1
3. the shape parameter for kernel component 1
4. the scale parameter for kernel component 2

5. the shape parameter for kernel component 2

6. the mixing parameter. Ranges from 0 to 1. If 1 dispersal is determined solely by kernel
1. If 0, dispersal is determined solely by kernel 2. Intermediate values represent a
mixture.

sk <- matrix(0, nrow = 4 * 6, ncol = 6)
sk[, 1] <- rep(3, 4 * 6)

sk[, 2] <- rep(10, 4 * 6)

sk[, 3] <- rep(1.1, 4 * 6)

sk[, 4] <- rep(100, 4 * 6)

sk[, 5] <- rep(50, 4 * 6)

sk[, 6] <- rep(0.5, 4 * 6)

sk

V V.V V V Vv VYV

[,11 [,2] (,3] [,4] [,5] [,6]

[1,] 3 10 1.1 100 50 0.5
[2,] 3 10 1.1 100 50 0.5
[3,] 3 10 1.1 100 50 0.5
[4,] 3 10 1.1 100 50 0.5
[5,] 3 10 1.1 100 50 0.5
[6,] 3 10 1.1 100 50 0.5
[7,] 3 10 1.1 100 50 0.5
[8,] 3 10 1.1 100 50 0.5
[9,] 3 10 1.1 100 50 0.5
[10,] 3 10 1.1 100 50 0.5
[11,] 3 10 1.1 100 50 0.5
[12,] 3 10 1.1 100 50 0.5
[13,] 3 10 1.1 100 50 0.5
[14,] 3 10 1.1 100 50 0.5
[15,] 3 10 1.1 100 50 0.5
[16,] 3 10 1.1 100 50 0.5
[17,] 3 10 1.1 100 50 0.5
[18,] 3 10 1.1 100 50 0.5
[19,] 3 10 1.1 100 50 0.5
[20,] 3 10 1.1 100 50 0.5
[21,] 3 10 1.1 100 50 0.5
[22,] 3 10 1.1 100 50 0.5
[23,] 3 10 1.1 100 50 0.5
[24,] 3 10 1.1 100 50 0.5

Pollen dispersal kernel matrix This is a matrix that has (number of habitats)*(number
of stages) rows and six columns. If not specified, a working matrix is constructed from the
floatparam elements

The rows correspond to stages in the landscape. The columns correspond to (in order)

9

pk

V V.V V V Vv VYV

pk

[1,]
[2,]
[3,]
[(4,]
[5,]
(6,1
[7,]
[8,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]

. the pollen dispersal kernel. This can be 1,2, or 3 (the default). 1 and 2 are really just

special cases of the mixed pdf (kernel 3)

. the scale parameter for kernel component 1
. the shape parameter for kernel component 1
. the scale parameter for kernel component 2
. the shape parameter for kernel component 2

. the mixing parameter. Ranges from 0 to 1. If 1 dispersal is determined solely by kernel

1. If 0, dispersal is determined solely by kernel 2. Intermediate values represent a
mixture.

<- matrix(0, nrow = 4 * 6, ncol = 6)

pkl, 1] <- rep(3, 4 * 6)
pkl, 2] <- rep(5, 4 * 6)
pkl[, 3] <- rep(2, 4 * 6)
pk[, 4] <- rep(100, 4 * 6)
pk[, 5] <- rep(50, 4 * 6)
pkl, 6] <- rep(1, 4 * 6)

[,11 [,2] [,3] [,4] [,5] [,6]

3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1
3 5 2 100 50 1

10

[21,] 3 5 2 100 50 1
[22,] 3 5 2 100 50 1
[23,] 3 5 2 100 50 1
[24,] 3 5 2 100 50 1

This pollen kernel specifies a Weibull with shape parameter 2 and scale parameter 5. The
mixing parameter is set to 1 so the other distribution component values are actually unim-
portant.

Habitat locations The habitat locations are encoded as a set of 4 vectors giving the left
and right x coordinates and bottom and top y coordinates for each habitat. Here the two
habitats are defined as 0,600,0,600 and 800,1400,800,1400

> 1x <- ¢(0, 0, 800, 800)
> rx <- ¢(600, 600, 1400, 1400)
> bty <- c(0, 800, 0, 800)
> ty <- c(600, 1400, 600, 1400)

Put it all in an epoch The different epoch elements are added to the landscape:
> args(landscape.new.epoch)

function (rland, S = NULL, R = NULL, M = NULL, epochprob = 1,
startgen = 0, extinct = NULL, carry = NULL, localprob = NULL,
pollen.kernels = NULL, seed.kernels = NULL, leftx = NULL,
rightx = NULL, boty = NULL, topy = NULL, maxland = c(0, O,

10000, 10000))

NULL

> land <- landscape.new.epoch(land, S = zeromat, R = zeromat, M = zeromat,

+ extinct = extnct, carry = k, localprob = ldem, pollen.kernels = pk,
+ seed.kernels = sk, leftx = 1x, rightx = rx, boty = bty, topy = ty)
2.5 Loci

This section describes the genetic loci These loci are unlinked, though those with maternal
inheritance are effectively linked as there is no segregation among them.

This element is a list of loci. Each locus has some characteristics and then a list of all
the alleles at the locus

11

2.5.1 Locus characteristics

The locus characteristics include

type The type of locus, infinite allele, stepwise mutation, or sequence.
ploidy haploid or diploid
trans transmission mode (biparental versus maternal)

rate locus-wide per meiosis mutation rate

Alleles Each locus has a list of alleles with the following elements. The elements aren’t
typically modified directly, just in the definition of a locus and the course of a simulation

aindex the allele index, this is used to create lookup tables between individuals genotypes
and the allele states

birth year of allele arising from mutation

prop the proportion of the allele at that locus across the entire landscape (never really used
though)

state the actual allele state (microsatellite repeat number, infinite allele designation, actual
sequence)

Each locus is added in turn by a call to lanscape.new.locus Here I add three loci:

1. haploid maternally inherited infinite allele model (5 alleles)
2. diploid biparentally inherited stepwise mutation model (3 alleles)

3. diploid biparentally inherited finite sequence model (3 alleles, 125 bases)

Each will be initialized with 3 alleles. Sequences are generated at random with base frequen-
cies equal to 0.25 per residue.

> args(landscape.new.locus)

function (rland, type = O, ploidy = 1, mutationrate = 0, transmission = 1,
numalleles = 2, allelesize = 50, frequencies = NULL)

NULL

> land <- landscape.new.locus(land, type = 0, ploidy = 1, transmission = 1,
+ numalleles = 5)

> land <- landscape.new.locus(land, type = 1, ploidy = 2, transmission = O,
+ numalleles = 3)

> land <- landscape.new.locus(land, type = 2, ploidy = 2, transmission = O,
+ numalleles = 3, allelesize = 125)

> length(land$loci)

[1] 3

12

2.6 Individuals

Along with the loci defined in the section below (both colored red in figure 1) the individuals
section changes through the course of a simulation. Each landscape object describes a land-
scape state at a point in time. The individuals that are alive are represented in this section
by a matrix. This matrix has as many rows as individuals in the landscape. The number
of columns includes (currently 9) demographic columns followed by genetics columns that
are determined by the locus object. This works out as 1 column for every haploid locus
and 2 columns for the diploid loci. landscape.ploidy(land) returns the ploidy for each
locus in order they were appended to the landscape. Because the number of demographic
columns could change the function landscape.democol () returns the highest number of the
deomgraphic columns (currently 9)

> landscape.ploidy(land)
[1] 1 22

> landscape.democol ()
(11 9

The function landscape.new.individuals(land) automatically populates a landscape
with no individuals. It allows you to specify the population sizes in each demographic
stage in the landscape. Therefore the vector length is (number habitats)*(number of local
stages) in length. One thing to keep in mind is that if you used the standard function
landscape.simulate(land,x) to simulate, it will first apply the rules encoded in the S
matrices before the R matrices. This means if you should probably define at least some
offspring/juvenile individuals initially to mature into reproductive individuals.

Also be careful, it is easy to define huge numbers of reproductive individuals that produce
huge numbers of offspring in the next generation. This can overwhelm some computers
depending on RAM and chip speed. Simulating a total of 10,000-20,000 individuals are
tolerable, but not for large numbers of reps on a mac g4 laptop running at 1.4Ghz with
1Gb RAM. Reproduction is the slow step, so life-cycles that have high over survival and low
reproduction run faster than low survival- high reproduction life-cycles.

> vlen <- land$intparam$habitats * land$intparam$stages

> vec <- rep(100, vlen)
> land <- landscape.new.individuals(land, vec)

3 Operations on landscapes

3.1 Simulation

To simulate ecology and genetics use landscape.simulate ()

13

> 11 <- landscape.simulate(land, 10)
> 12 <- landscape.simulate(land, 10)
> 13 <- landscape.simulate(land, 10)
> 14 <- landscape.simulate(land, 10)

These commands created four replicate simulations of 10 years each, starting with the
same initial conditions defined above.

> par (mfrow = c(2, 2))
> landscape.plot.locations(11)
> landscape.plot.locations(12)
> landscape.plot.locations(13)
> landscape.plot.locations (14)
> par (mfrow = c(1, 1))
landscape state at generation 10 landscape state at generation 10
o | o |
S 12 S
g g @
g o g o
T 8 T 8
o] o]
8 o 8 o
> g7 > g7
o o
X coordinate X coordinate
landscape state at generation 10 landscape state at generation 10
o | o |
o _ o _ *
N N
g — | 9 — |
e o e o
s 81 s 8
o] o]
8 o 8 o
> g7 > g7
o o
T T T T T T 1
0 400 800 1200
X coordinate X coordinate

14

3.2 I/0

landscapes can be written and read from disk as R binary files using save and load. This
allows the state of a simulation to be saved at any point, and just as importantly, a landscape
can be read into a fresh install of kernelPop and the simulation should proceed with the same
parameter values as the previous generations (probably a different random seed, though).

> save(file = "11.rda", 11)
> rm(11)
> load(file

"11.rda", 11)

3.3 Altering landscapes through time

Because a landscape is a complete state, it is possible to change them through the course of
the simulation. This rasises the possiblity that landscapes can be altered during a simulation
run. At the moment this is going to require altering the landscape object directly. This is
no big deal, but it does take a pretty good understanding of the landscape structure. Some
things are not a good idea to change. Most of the intparams should remain untouched. The
floatparams can change (though if you are doing this, most of the changes will probably be
at the level of the pollen kernels and seed kernels). The switch parameters can be changed,
as can the demographic rates in localdem and epoch.

Do not change the loci object directly. That should really happen using the simulation
routines.

The individuals object can be changed in some ways. The easiest is to kill individuals
at random. It is also fairly easy to add selection on a particular allele at a locus, though
doing this every generation starts to use up some CPU cycles converting R objects to C++
objects.

This will increase long distance dispersal in this entire landscape at generation 10.

> names (11$demography$epochs[[1]])

[1] "RndChooseProb" "StartGen" "Extinct" "Carry"
[5] "Localprob" "s "R" "M
[9] "leftx" "rightx" "topy" "boty"
[13] "pollenkern" "seedkern"

> sk <- matrix(0, nrow = 4 * 6, ncol = 6)

> sk[, 1] <- rep(3, 4 * 6)

> sk[, 2] <- rep(10, 4 * 6)

> sk[, 3] <- rep(1.1, 4 * 6)

> sk[, 4] <- rep(400, 4 * 6)

> sk[, 5] <- rep(100, 4 * 6)

> sk[, 6] <- rep(0.5, 4 * 6)

> sk

15

(,11 [,2] [,3] [,4] [,5] [,6]

[1,] 3 10 1.1 400 100 0.5
[2,] 3 10 1.1 400 100 0.5
[3,] 3 10 1.1 400 100 0.5
[4,] 3 10 1.1 400 100 0.5
[5,] 3 10 1.1 400 100 0.5
[6,] 3 10 1.1 400 100 0.5
[7,] 3 10 1.1 400 100 0.5
[8,] 3 10 1.1 400 100 0.5
[9,] 3 10 1.1 400 100 0.5
[10,] 3 10 1.1 400 100 0.5
[11,] 3 10 1.1 400 100 0.5
[12,] 3 10 1.1 400 100 0.5
[13,] 3 10 1.1 400 100 0.5
[14,] 3 10 1.1 400 100 0.5
[15,] 3 10 1.1 400 100 0.5
[16,] 3 10 1.1 400 100 0.5
[17,] 3 10 1.1 400 100 0.5
[18,] 3 10 1.1 400 100 0.5
[19,] 3 10 1.1 400 100 0.5
[20,] 3 10 1.1 400 100 0.5
[21,] 3 10 1.1 400 100 0.5
[22,] 3 10 1.1 400 100 0.5
[23,] 3 10 1.1 400 100 0.5
[24,] 3 10 1.1 400 100 0.5

> l1$demography$epochs[[1]]$seedkern <- sk

Now we can simulate another 10 years, then plot it again. Note that the same object is
used as parameter and result for the current state before and after simulation.

11 <- landscape.simulate(1l1, 10)
12 <- landscape.simulate(12, 10)
13 <- landscape.simulate(13, 10)
14 <- landscape.simulate (14, 10)

vV VvV Vv VvV

In this plot the changed landscape is on the top left panel.

par (mfrow = c(2, 2))
landscape.plot.locations(11)
landscape.plot.locations(12)
landscape.plot.locations(13)
landscape.plot.locations(14)
par (mfrow = c(1, 1))

V V.V Vv Vv VvV

16

landscape state at generation 20 landscape state at generation 20

o | o |
S _| S _|
N N
Q — Q —
T 7 a® X T 7
c o o ° c o
S 8 e e s 8
[} - - - — [} -
8 o N L uy,u":u 8 o
> S)r — nuf Y] 0,,3 A = > 8 —
1l + ui@bx;g -
o 20 $+ _ oRoa o 4
1T T T T T T 1
0 400 800 1200
X coordinate X coordinate
landscape state at generation 20 landscape state at generation 20
o | o |
S _| S _|
N N
Q — Q —
T 7 T 7
c o c o
S 8 7 S 8 7
(o] — (o] —
8 o 8 o
> S 7 > S 7
o o
X coordinate X coordinate

You can see usually see more long-distance seed dispersal events in the top left.

4 Extracting information from landscapes

4.1 Distances

The coordinates of every individual and their parents makes it straightforward to exmine
the actual dispersal distributions for zygotes and male gametes.

Here are the actual dispersal distances in generation 20.

The take advantage of really simple functions distributed with R

This is the seed-kernel. This includes every dispersal event that gave rise to an individual
in the landscape used for the parameter.

> source("../test/distance-functions.R")

> par(mfrow = c(2, 2))
> hist(seed.dist(11), breaks = 30, xlab = "seed dispersal distance")

17

> hist(seed.dist(12), breaks
> hist(seed.dist(13), breaks
> hist(seed.dist(14), breaks

> par(mfrow = c(1, 1))

Frequency

Frequency

200 300

100

400

200

Histogram of seed.dist(I1)

| P

[I I I I I |
0 100 300 500

seed dispersal distance

Histogram of seed.dist(I3)

0 50 100 150 200 250

seed dispersal distance

the spatial structure of plants.

vV V.V Vv VvV

par (mfrow = c(2, 2))
hist(pollination
hist(pollination
hist(pollination
hist(pollination
par (mfrow = c(1, 1))

.dist(11),
.dist(12),
.dist (13),
.dist (14),

= 30, xlab
= 30, xlab
30, xlab

8

>

o <

c

Q

&

& 3

e

L N
o
8

>

o <

o

(]

g o

o o

L N
o

breaks
breaks
breaks
breaks

Histogram of seed.dist(I2)

[I I I I |
0 50 100 200

seed dispersal distance

Histogram of seed.dist(14)

[I I I I |
0 50 100 150 200 250

seed dispersal distance

30, xlab =
30, xlab
30, xlab
xlab

18

"pollination
"pollination
"pollination
"pollination

= "seed dispersal distance")
"seed dispersal distance")
"seed dispersal distance")

Here is the pollination kernel. Pollination distance distributions are really dependent on

dispersal distance")
dispersal distance")
dispersal distance")
dispersal distance")

Histogram of pollination.dist(I1) Histogram of pollination.dist(I2)

_ o _
o o
8 i S I .
> > T
o o | [5)
c < < o _|
o) o ©
> -] >
o o
QO_ o m
L « -
o
_ H S -
o -~ o -~

0 10 20 30 40 0 10 20 30
pollination dispersal distance pollination dispersal distance
Histogram of pollination.dist(I3) Histogram of pollination.dist(14)
o 1 Q I
§ S
& & o]
& o & 8
> (e} >
o o =
o — o
(s H_[L 9
o
- i enth
p— O p—

[I I I | [I I I |
0 10 20 30 40 0 10 20 30 40

pollination dispersal distance pollination dispersal distance

4.2 Populations

The function landscape.populations(land) returns a vector of the population assignments
of each individual in the landscape. This can be useful in selecting individuals from specific
populations for further processing as well as measuring population sizes. For example the
population sizes in the landscape 11 just simulated are:

> table(landscape.populations(11))

1 3 4
155 321 15

4.3 Genetic information

So far the construction of landscapes and their simulation have been described. Genetic
information can be extracted from the landscape as well. The allele indices and states for

19

each genotype at each locus can be accessed by landscape.locus and landscape.states
respectively. There are also some summary statistics. These include Fgr, ®g7, allele fre-
quencies, and measures of § = 4N .

An important function is landscape.sample this simulates random sampling of popula-
tions to subsequently analyse. It speeds up analyses and allows you to examing the impact
of sampling on summary statistics.

Here is some code to simulate the landscape land defined above for 100 generations,
saving the state at 10 generation intervals in a list called landlist At generation 50, the
mean dispersal distance is increased (though the mixture parameter is weighted more highly
towards local dispersal)

> gland <- land
> landlist <- vector("list", 11)
> landlist[[1]] <- gland
> for (i in 2:11) {
print(table(landscape.populations(gland)))
gland <- landscape.simulate(gland, 10)
landlist[[i]] <- gland
if (i ==6) {
sk <- gland$demography$epochs[[1]]$seedkern
sk[, 4] <- rep(500, dim(sk)[1])
sk[, 6] <- rep(0.8, dim(sk)[1])
gland$demography$epochs[[1]]$seedkern <- sk

+ + + + + + + + + 4+

1 2 3 4
600 600 600 600

189 596

365 598

503 598

997 597

997 598

20

1 2 3 4
997 77 597 76

1 2 3 4
997 78 598 183

1 2 3 4
997 69 596 147

1 2 3 4
997 124 597 161

This code chunk takes the list created above, “collects” 24 individuals from each of the
extant populations (landscape . amova calls landscape . sample internally) at each time point
and calculates mean ®gp. It creates an object with two columns: the generation of the
simulation and the mean ®¢;. These are then plotted.

> plot.ob <- do.call(rbind, lapply(landlist, function(l) {

+ c(1$intparam$currentgen, mean(landscape.amova(l, ns = 24)))

+ 1))

> print(xyplot(plot.ob[, 2] ~ plot.ob[, 1], type = c("b", "smooth"),
+ xlab = "Time in years", ylab = "Mean Phi-ST"))

21

0.3 4 -

0.2 4 ~

Mean Phi-ST

0.1 4 ~

0.0 4 ~
I I I I I I
0 20 40 60 80 100

Time in years

4.4 Writing files out for other programs to use

The simple analyses in R may fall short of those implemented in other languages There
several functions to write files in formats that support other software. Right now, these
functions only write out genotypic data suitable for frequency-based analyses. There is room
for improvement for outputting sequences and microsat states.

GenePop There is a function that outputs data into GenePop format which can be used by
a host of other software. This is called landscape.genepop.output. It only exports
the diploid loci. Right now, landscape.genepop.output does output allele states,
including microsat states, but it does not produce sequences for the sequence locus
type. Instead it produces the allele indices as alleles in the output file. Because allele
indices can equal zero, and this is the missing data designation in genepop, 1 is added
to all allele indices in the output file

> landscape.genepop.output (gland)

22

Arlequin landscape.write.foreign can output diploid Arlequin files of genotypes. The
allele states are not used.

> 1 <- landscape.write.foreign(gland, fn = "diploid-arlequin.arb",
+ fmt = "arlequin")

migrate landscape.write.foreign can also output files in a format that migrate should
be able to read. This function outputs diploid data in the form of genotypes for the
genotypic version of migrate analyses. No sequences are output yet.

> 1 <- landscape.write.foreign(gland, fn = "migrate.infile", fmt = "migrate")
Biosys landsacpe.write.foreign should also be able to output files in biosys format
> 1 <- landscape.write.foreign(gland, fn = "biosys.txt", fmt = "biosys")

fdist landscape.write.fdist produces an infile suitable for use in the program FDIST.
This is based solely on allele frequencies

> landscape.write.fdist (gland)

The code snippets above should leave files in the ’inst/doc’ directory of your Ker-
nelPopinstallation.

23

