
The markovchain Package: A Package for Easily

Handling Discrete Markov Chains in R

Giorgio Alfredo Spedicato, Ph.D C.Stat ACAS

Abstract

markovchain aims to fill a gap within R packages providing S4 classes and methods to
easily handling discrete markov chains. The S4 class structure will be presented as well
implemented classes and methods. Applied examples will follow

Keywords: markov chain, transition probabilities.

1. Introduction

Markov chains represent a class of stochastic processes of great interest for the wide spectrum
of practical applications. In particular, discrete markov chains permit to model the transition
probabilities between possible discrete states by the aid of matrices. Various R packages
deals with Markov chains processes and their applications: msm (Jackson 2011) works with
Multi-State Models for Panel Data, mcmcR (Geyer and Johnson 2013) is only one of the
many package that implements Monte Carlo Markov Chain approach for estimating models’
parameters, hmm fits hidden markov models taking into account covariates. R statistical
environments seems to lack a simple R package that coherently defines S4 classes for discrete
Markov chains and that allows the statistical analyst to perform probabilistic analysis and
statistical infrence. markovchain (Spedicato 2013) aims to offer greater flexibility in handling
discrete time Markov chains. The paper is structured as it follows: Section 2 briefly revies
mathematic and definitions on discrete Markov chains, Section 4 shows applied example of
discrete Markov chains in various fields.

2. Markov chains mathematic revies

A general overview of Discrete Markov chains can be found in various web sites. See for
example Wikipedia (2013) and ?.

3. The structure of the package

3.1. Creating markovchain objects

The package markovchain contains classes and methods that handle markov chain in a con-
venient manner.



2 The markovchain package

The package is loaded within the R command line as follows:

> #library("markovchain")

> rm(list=ls())

> workDir='D:\\Dropbox\\Dropbox\\markovchain'

> setwd(workDir)

> source('./R code/classesAndMethods.R')

> source('./R code/variousFunctions.R')

>

>

The markovchain and markovchainList S4 classes (?)chambers) is defined within the markovchain
package as displayed:

Class "markovchain" [in ".GlobalEnv"]

Slots:

Name: states byrow transitionMatrix name

Class: character logical matrix character

Class "markovchainList" [in ".GlobalEnv"]

Slots:

Name: markovchains name

Class: list character

Any element of markovchain class is comprised by following slots:

1. states: a character vector, listing the states for which transition probabilities are
defined.

2. byrow: a logical element, indicating whether transition probabilities are shown by row
or by column.

3. transitionMatrix: the probabilities of transition matrix.

4. name: optional character element to name the Markov chain

markovchain objects can be created either in a long way, as the following code shows,

> weatherStates<-c("sunny", "cloudy", "rain")

> byRow<-TRUE

> weatherMatrix<-matrix(data=c(0.70, 0.2,0.1,

+ 0.3,0.4, 0.3,



Giorgio Alfredo Spedicato, Ph.D C.Stat ACAS 3

+ 0.2,0.45,0.35),byrow=byRow, nrow=3,

+ dimnames=list(weatherStates, weatherStates))

> mcWeather<-new("markovchain",states=weatherStates, byrow=byRow,

+ transitionMatrix=weatherMatrix, name="Weather")

or in a shorter way, displayed below.

> mcWeather<-new("markovchain", states=c("sunny", "cloudy", "rain"), transitionMatrix=matrix(data=c(0.70, 0.2,0.1,

+ 0.3,0.4, 0.3,

+ 0.2,0.45,0.35),byrow=byRow, nrow=3), name="Weather")

>

When new("markovchain") is called alone a defaut Markov chain is created.

> defaultMc<-new("markovchain")

The quicker form of object creation is made possible thanks to the implemented initialize

S4 method that assures:

� the transitionMatrix to be a transition matrix, i.e., all entries to be probabilities and
either all rows or all columns to sum up to one, according to the value of byrow slot.

� the columns and rows nams of transitionMatrix to be defined and to coincide with
states vector slot.

markovchain objects can be collected in a list within markovchainList S4 objects as following
example shows.

> mcList<-new("markovchainList",markovchains=list(mcWeather, defaultMc), name="A list of Markov chains")

3.2. Handling markovchain objects

markovchain contains two classes, markovchain and markovchainList. markovchain ob-
jects handle discrete Markov chains, whilst markovchainList objects consists in list of
markovchain that can be useful to model non - homogeneous Markov chain processess.

Following methods have been implemented within the package for markovchain and markovchainLists

respectively:

Function: * (package base)

e1="markovchain", e2="markovchain"

e1="markovchain", e2="matrix"

e1="markovchain", e2="numeric"

e1="matrix", e2="markovchain"

e1="numeric", e2="markovchain"



4 The markovchain package

Function: ^ (package base)

e1="markovchain", e2="numeric"

Function: == (package base)

e1="markovchain", e2="markovchain"

Function: absorbingStates (package .GlobalEnv)

object="markovchain"

Function: coerce (package methods)

from="data.frame", to="markovchain"

from="markovchain", to="data.frame"

Function: dim (package base)

x="markovchain"

Function: initialize (package methods)

.Object="markovchain"

Function "isDiagonal":

<not an S4 generic function>

Function "isTriangular":

<not an S4 generic function>

Function: length (package base)

Function: plotMc (package .GlobalEnv)

object="markovchain"

Function: print (package base)

x="markovchain"

Function: show (package methods)

object="markovchain"

Function: states (package .GlobalEnv)

object="markovchain"

Function: steadyStates (package .GlobalEnv)

object="markovchain"

Function: t (package base)

x="markovchain"

Function: transitionProbability (package .GlobalEnv)

object="markovchain"



Giorgio Alfredo Spedicato, Ph.D C.Stat ACAS 5

Function: initialize (package methods)

.Object="markovchainList"

(inherited from: .Object="ANY")

Function "isDiagonal":

<not an S4 generic function>

Function "isTriangular":

<not an S4 generic function>

Function: length (package base)

Table 1 lists which of implemented methods handle and manipulate markovchain objects.

Method Purpose

* Algebraic operators on the transition matrix.
== Equality operator on the transition matrix.
dim Dimenion of the transition matrix.
states Defined transition states.
t Transposition operator (it switches byrow slot value and modifies the transition matrix coherently).
as Operator con switch from markovchain objects to data.frame objects and vice - versa.

Table 1: markovchain methods: matrix handling.

Operations on the markovchains objects can be easily performed. Using the previously defined
matrix we can find what is the probability distribution of expected weather states two and
seven days after, given actual state to be cloudy.

> initialState<-c(0,1,0)

> after2Days<-initialState*(mcWeather*mcWeather)

> after7Days<-initialState*(mcWeather^7)

> after2Days

sunny cloudy rain

[1,] 0.39 0.355 0.255

> after7Days

sunny cloudy rain

[1,] 0.4622776 0.3188612 0.2188612

A similar answer could have been obtained if the probabilities were defined by column. A col-
umn - defined probability matrix could be set up either creating a new matrix or transposing
an existing markovchain object thanks to the t vector.

> initialState<-c(0,1,0)

> mcWeatherTransposed<-t(mcWeather)



6 The markovchain package

> after2Days<-(mcWeatherTransposed*mcWeatherTransposed)*initialState

> after7Days<-(mcWeather^7)*initialState

> after2Days

[,1]

sunny 0.390

cloudy 0.355

rain 0.255

> after7Days

[,1]

sunny 0.3172005

cloudy 0.3188612

rain 0.3192764

Basing informational methods have been defined for markovchain objects to quickly get states
and dimension.

> states(mcWeather)

[1] "sunny" "cloudy" "rain"

> dim(mcWeather)

[1] 3

A direct access to transition probabilities is provided by transitionProbability method.

> transitionProbability(mcWeather, "cloudy","rain")

[1] 0.3

A transition matrix can be displayed using print, show methods (the latter being less laconic).
Similarly, the underlying transition probability diagram can be plot by the use of plotMc

method that was based on igraph package (Csardi and Nepusz 2006) as Figure 1 displays.

> print(mcWeather)

sunny cloudy rain

sunny 0.7 0.20 0.10

cloudy 0.3 0.40 0.30

rain 0.2 0.45 0.35

> show(mcWeather)



Giorgio Alfredo Spedicato, Ph.D C.Stat ACAS 7

0.7

0.4

0.35

0.3

0.2

0.2

0.45

0.1

0.3

●

●

●

sunny

cloudy

rain

Figure 1: Weather example Markov chain plot

Weather

A 3 - dimensional discrete Markov Chain with following states

sunny cloudy rain

The transition matrix (by rows) is defined as follows

sunny cloudy rain

sunny 0.7 0.20 0.10

cloudy 0.3 0.40 0.30

rain 0.2 0.45 0.35

The igraph package (Csardi and Nepusz 2006) is used for plotting. ... additional parameters
are passed to graph.adjacency function to control the graph layout.

Exporting to data.frame is possible and similarly it is possible to import.

> mcDf<-as(mcWeather, "data.frame")

> mcNew<-as(mcDf, "markovchain")

Similarly it is possible to export a markovchain class toward an adjacency matrix.



8 The markovchain package

3.3. Statistics with markovchain objects

Table 2 shows methods appliable on markovchain objects to perform probabilistic analysis.

Method Purpose

absorbingStates it returns the absorbing states of the transition matrix, if any.
steadyStates it returns the vector(s) of steady state(s) in matricial form.

Table 2: markovchain methods: statistical operations.

The steady state(s), also known as stationary distribution(s), of the Markov chains are iden-
tified by the following algorithm:

1. decompose the Markov Chain in eigenvalues and eigenvectors.

2. consider only eigenvectors corresponding to eigenvalues equal to one.

3. normalize such eigenvalues so the sum of their components to total one.

The result is returned in matricial form.

> steadyStates(mcWeather)

sunny cloudy rain

[1,] 0.4636364 0.3181818 0.2181818

It is possible a Markov chain to have more than one stationary distribuition, as the gambler
ruin example shows.

> gamblerRuinMarkovChain<-function(moneyMax, prob=0.5) {

+ require(matlab)

+ matr<-zeros(moneyMax+1)

+ states<-as.character(seq(from=0, to=moneyMax, by=1))

+ rownames(matr)=states; colnames(matr)=states

+ matr[1,1]=1;matr[moneyMax+1,moneyMax+1]=1

+ for(i in 2:moneyMax)

+ {

+ matr[i,i-1]=1-prob;matr[i,i+1]=prob

+ }

+ out<-new("markovchain",

+ transitionMatrix=matr,

+ name=paste("Gambler ruin",moneyMax,"dim",sep=" ")

+ )

+ return(out)

+ }

> mcGR4<-gamblerRuinMarkovChain(moneyMax=4, prob=0.5)

> steadyStates(mcGR4)



Giorgio Alfredo Spedicato, Ph.D C.Stat ACAS 9

0 1 2 3 4

[1,] 1 0 0 0 0

[2,] 0 0 0 0 1

Any absorbing state is determined by the inspection of results returned by steadyStates

method.

> absorbingStates(mcGR4)

[1] "0" "4"

> absorbingStates(mcWeather)

character(0)

Table 3 lists functions (and their purpose) as implemented within the package that helps to
fit and simulate discrete time Markov chains.

Function Purpose

markovchainFit function to return fitten markov chain for a given sequence.
markovchainSequence function to obtain a sample of the stationary process underlying the markov chain.

Table 3: markovchain statistical functions.

Simulating a random sequence from an underlying Markov chain is quite easy thanks to the
function markovchainSequence.

> weathersOfDays<-markovchainSequence(n=365,markovchain=mcWeather,t0="sunny")

> weathersOfDays

[1] "rain" "sunny" "rain" "cloudy" "rain" "rain" "rain" "cloudy" "rain"

[10] "rain" "cloudy" "cloudy" "rain" "rain" "cloudy" "sunny" "sunny" "sunny"

[19] "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny"

[28] "sunny" "sunny" "sunny" "sunny" "sunny" "cloudy" "sunny" "cloudy" "rain"

[37] "rain" "sunny" "sunny" "sunny" "sunny" "cloudy" "sunny" "cloudy" "rain"

[46] "cloudy" "cloudy" "rain" "rain" "rain" "rain" "cloudy" "rain" "sunny"

[55] "sunny" "sunny" "cloudy" "cloudy" "cloudy" "sunny" "rain" "rain" "cloudy"

[64] "sunny" "sunny" "rain" "cloudy" "rain" "rain" "rain" "rain" "cloudy"

[73] "cloudy" "cloudy" "cloudy" "rain" "cloudy" "cloudy" "rain" "sunny" "sunny"

[82] "sunny" "sunny" "cloudy" "sunny" "cloudy" "cloudy" "cloudy" "cloudy" "cloudy"

[91] "rain" "cloudy" "rain" "rain" "cloudy" "rain" "cloudy" "cloudy" "rain"

[100] "cloudy" "cloudy" "cloudy" "sunny" "sunny" "cloudy" "sunny" "sunny" "rain"

[109] "cloudy" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny"

[118] "sunny" "sunny" "sunny" "rain" "rain" "cloudy" "cloudy" "sunny" "sunny"

[127] "sunny" "rain" "cloudy" "sunny" "sunny" "sunny" "rain" "cloudy" "cloudy"

[136] "sunny" "sunny" "sunny" "cloudy" "cloudy" "cloudy" "cloudy" "cloudy" "cloudy"

[145] "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny"



10 The markovchain package

[154] "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "cloudy" "cloudy" "cloudy"

[163] "cloudy" "rain" "cloudy" "sunny" "cloudy" "cloudy" "cloudy" "sunny" "cloudy"

[172] "sunny" "cloudy" "sunny" "sunny" "rain" "rain" "rain" "sunny" "sunny"

[181] "sunny" "sunny" "sunny" "sunny" "cloudy" "rain" "cloudy" "sunny" "sunny"

[190] "sunny" "cloudy" "sunny" "sunny" "cloudy" "rain" "rain" "cloudy" "rain"

[199] "cloudy" "sunny" "sunny" "sunny" "sunny" "rain" "cloudy" "rain" "rain"

[208] "cloudy" "cloudy" "sunny" "sunny" "cloudy" "sunny" "cloudy" "cloudy" "cloudy"

[217] "sunny" "sunny" "sunny" "sunny" "cloudy" "cloudy" "rain" "sunny" "sunny"

[226] "sunny" "sunny" "sunny" "cloudy" "cloudy" "rain" "sunny" "rain" "cloudy"

[235] "rain" "cloudy" "rain" "sunny" "sunny" "sunny" "cloudy" "rain" "rain"

[244] "rain" "rain" "rain" "cloudy" "rain" "sunny" "sunny" "sunny" "rain"

[253] "cloudy" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny"

[262] "sunny" "sunny" "rain" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny"

[271] "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny"

[280] "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny"

[289] "sunny" "cloudy" "cloudy" "sunny" "sunny" "rain" "cloudy" "sunny" "sunny"

[298] "cloudy" "sunny" "cloudy" "sunny" "sunny" "rain" "cloudy" "sunny" "sunny"

[307] "sunny" "sunny" "cloudy" "rain" "sunny" "sunny" "sunny" "sunny" "sunny"

[316] "sunny" "sunny" "sunny" "sunny" "rain" "rain" "sunny" "sunny" "rain"

[325] "rain" "cloudy" "rain" "rain" "cloudy" "sunny" "rain" "rain" "cloudy"

[334] "rain" "sunny" "cloudy" "sunny" "rain" "cloudy" "rain" "rain" "rain"

[343] "cloudy" "cloudy" "rain" "sunny" "sunny" "sunny" "sunny" "sunny" "cloudy"

[352] "cloudy" "cloudy" "cloudy" "cloudy" "sunny" "sunny" "sunny" "sunny" "sunny"

[361] "sunny" "sunny" "sunny" "sunny" "sunny"

Similarly, a markovchain object can be fit from given data

> mcFitted<-markovchainFit(data=weathersOfDays, method="mle")

>

4. Applied examples

4.1. Actuarial examples

Markov chains are widely applied in the fields of actuarial science. Actuaries quantify the
risk inherent in insurance contracts evaluating the premium of insurance contract to be sold
(therefore covering future risk) and evaluating the actuarial reseves of existing portfolios (the
liabilities in terms of benefits or claims payments due to policyholder arising from previously
sold contracts).
Key quantities of actuarial interest are: the expected present value of future benefits, PV FB,
the (periodic) benefit premium, P , and the present value of future premium PV FP . A level
benefit premium could be set equating at the beginning of the contract PV FB = PV FP . Af-
ter the beginning of the contract the benefit reserve is the differenbe betwwen PVFBandPVFP.
The first example shows the pricing and reserving of a (simple) health insurance contract.



Giorgio Alfredo Spedicato, Ph.D C.Stat ACAS 11

The second example analyze the evolution of a MTPL portfolio characterized by Bonus Malus
experience rating feature.

Health insurance example

The example comes from ?. The interest rate is 5%, benefits are payable upon death (1000)
and disability (500). Premiums are payable at the beginning of period only if policyholder is
active. The contract term is three years

> mcHI=new("markovchain", states=c("active", "disable", "withdrawn", "death"),

+ transitionMatrix=matrix(c(0.5,.25,.15,.1,

+ 0.4,0.4,0.0,.2,

+ 0,0,1,0,

+ 0,0,0,1), byrow=TRUE, nrow=4))

> benefitVector=as.matrix(c(0,0,500,1000))

>

The policyholders is active at T0. Therefore the expected states at T1, . . . T3 are calculated as
shown.

> T0=t(as.matrix(c(1,0,0,0)))

> T1=T0*mcHI

> T2=T1*mcHI

> T3=T2*mcHI

Therefore the present value of future benefit at T0 is

> PVFB=T0%*%benefitVector*1.05^-0+T1%*%benefitVector*1.05^-1+T2%*%benefitVector*1.05^-2+T3%*%benefitVector*1.05^-3

and the yearly premium payable whether the insured is alive is

> P=PVFB/(T0[1]*1.05^-0+T1[1]*1.05^-1+T2[1]*1.05^-2)

The reserve at the beginning of year two, in case of the insured being alive, is

> PVFB=(T2%*%benefitVector*1.05^-1+T3%*%benefitVector*1.05^-2)

> PVFP=P*(T1[1]*1.05^-0+T2[1]*1.05^-1)

> V=PVFB-PVFP

> V

[,1]

[1,] 300.2528

5. Aknowledgments

References



12 The markovchain package

Csardi G, Nepusz T (2006). “The igraph software package for complex network research.”
InterJournal, Complex Systems, 1695. URL http://igraph.sf.net.

Geyer CJ, Johnson LT (2013). mcmc: Markov Chain Monte Carlo. R package version 0.9-2,
URL http://CRAN.R-project.org/package=mcmc.

Jackson CH (2011). “Multi-State Models for Panel Data: The msm Package for R.” Journal
of Statistical Software, 38(8), 1–29. URL http://www.jstatsoft.org/v38/i08/.

Spedicato GA (2013). markovchain: an R package to easily handle discrete markov chain. R
package version 0.0.1.

Wikipedia (2013). “Markov chain — Wikipedia, The Free Encyclopedia.” [Online; ac-
cessed 23-August-2013], URL http://en.wikipedia.org/w/index.php?title=Markov_

chain&oldid=568910294.

Affiliation:

Giorgio Alfredo Spedicato
StatisticalAdvisor
Via Firenze 11 20037 Italy
Telephone: +39/334/6634384
E-mail: spedygiorgio@gmail.com
URL: www.statisticaladvisor.com

http://igraph.sf.net
http://CRAN.R-project.org/package=mcmc
http://www.jstatsoft.org/v38/i08/
http://en.wikipedia.org/w/index.php?title=Markov_chain&oldid=568910294
http://en.wikipedia.org/w/index.php?title=Markov_chain&oldid=568910294
mailto:spedygiorgio@gmail.com
www.statisticaladvisor.com

	Introduction
	Markov chains mathematic revies
	The structure of the package
	Creating markovchain objects
	Handling markovchain objects
	Statistics with markovchain objects

	Applied examples
	Actuarial examples
	Health insurance example


	Aknowledgments

