Last updated on 2024-12-22 10:49:57 CET.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.0 | 2.45 | 25.67 | 28.12 | NOTE | |
r-devel-linux-x86_64-debian-gcc | 1.0 | 2.20 | 19.14 | 21.34 | NOTE | |
r-devel-linux-x86_64-fedora-clang | 1.0 | 46.12 | NOTE | |||
r-devel-linux-x86_64-fedora-gcc | 1.0 | 43.19 | NOTE | |||
r-devel-windows-x86_64 | 1.0 | 4.00 | 48.00 | 52.00 | NOTE | |
r-patched-linux-x86_64 | 1.0 | 2.97 | 24.73 | 27.70 | NOTE | |
r-release-linux-x86_64 | 1.0 | 3.02 | 24.29 | 27.31 | NOTE | |
r-release-macos-arm64 | 1.0 | 18.00 | NOTE | |||
r-release-macos-x86_64 | 1.0 | 30.00 | NOTE | |||
r-release-windows-x86_64 | 1.0 | 4.00 | 46.00 | 50.00 | NOTE | |
r-oldrel-macos-arm64 | 1.0 | 18.00 | OK | |||
r-oldrel-macos-x86_64 | 1.0 | 25.00 | OK | |||
r-oldrel-windows-x86_64 | 1.0 | 6.00 | 47.00 | 53.00 | OK |
Version: 1.0
Check: Rd files
Result: NOTE
checkRd: (-1) jointNmix.Rd:30: Lost braces; missing escapes or markup?
30 | The function fits a bivariate extension to Royle's (2004) N-mixture model to data on the abundance of two species collected at R sites over T time occasions. The model for observation on site i at time t for species 1 can be specified as \deqn{Y_{1it}|N_{1i} ~ Bin(N_{1i},p_{1it})}\deqn{N_{1i} ~ a count distribution with mean \lambda_{1i}.} The model for species 2 is \deqn{Y_{2it}|N_{1i},N_{2i} ~ Bin(N_{2i},p_{2it})}\deqn{N_{2i}|N_{1i} ~ a count distribution with mean \psi+\lambda_{2i}N_{1i}.} Here, users may define a Poisson or negative binomial distribution for the latent abundances N_{1i} and N_{2i}.
| ^
checkRd: (-1) jointNmix.Rd:30: Lost braces; missing escapes or markup?
30 | The function fits a bivariate extension to Royle's (2004) N-mixture model to data on the abundance of two species collected at R sites over T time occasions. The model for observation on site i at time t for species 1 can be specified as \deqn{Y_{1it}|N_{1i} ~ Bin(N_{1i},p_{1it})}\deqn{N_{1i} ~ a count distribution with mean \lambda_{1i}.} The model for species 2 is \deqn{Y_{2it}|N_{1i},N_{2i} ~ Bin(N_{2i},p_{2it})}\deqn{N_{2i}|N_{1i} ~ a count distribution with mean \psi+\lambda_{2i}N_{1i}.} Here, users may define a Poisson or negative binomial distribution for the latent abundances N_{1i} and N_{2i}.
| ^
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64