Package 'AIPW'

October 12, 2022

Title Augmented Inverse Probability Weighting

Version 0.6.3.2

Maintainer Yongqi Zhong <yq.zhong7@gmail.com>

Description The 'AIPW' pacakge implements the augmented inverse probability weighting, a doubly robust estimator, for average causal effect estimation with user-defined stacked machine learning algorithms. To cite the 'AIPW' package, please use: ``Yongqi Zhong, Edward H. Kennedy, Lisa M. Bodnar, Ashley I. Naimi (2021, In Press). AIPW: An R Package for Augmented Inverse Probability Weighted Estimation of Average Causal Effects. American Journal of Epidemiology''. Visit: https://yqzhong7.github.io/AIPW/ for more information.

License GPL-3

Encoding UTF-8

Language es

LazyData true

Suggests testthat (>= 2.1.0), knitr, rmarkdown, covr, tmle

RoxygenNote 7.1.0

Imports stats, utils, R6, SuperLearner, ggplot2, future.apply, progressr, Rsolnp

URL https://github.com/yqzhong7/AIPW

BugReports https://github.com/yqzhong7/AIPW/issues

VignetteBuilder knitr

Depends R (>= 2.10)

NeedsCompilation no

Author Yongqi Zhong [aut, cre] (<https://orcid.org/0000-0002-4042-7450>), Ashley Naimi [aut] (<https://orcid.org/0000-0002-1510-8175>), Gabriel Conzuelo [ctb], Edward Kennedy [ctb]

Repository CRAN

Date/Publication 2021-06-11 09:30:02 UTC

R topics documented:

5 5 6
6
8
9
10
11
12
12
13
13
14

Index

AIPW

Augmented Inverse Probability Weighting (AIPW)

Description

An R6Class of AIPW for estimating the average causal effects with users' inputs of exposure, outcome, covariates and related libraries for estimating the efficient influence function.

Details

An AIPW object is constructed by new() with users' inputs of data and causal structures, then it fit() the data using the libraries in Q.SL.library and g.SL.library with k_split cross-fitting, and provides results via the summary() method. After using fit() and/or summary() methods, propensity scores and inverse probability weights by exposure status can be examined with plot.p_score() and plot.ip_weights(), respectively.

If outcome is missing, analysis assumes missing at random (MAR) by estimating propensity scores of I(A=a, observed=1) with all covariates W. (W.Q and W.g are disabled.) Missing exposure is not supported.

See examples for illustration.

Value

AIPW object

Constructor

```
AIPW$new(Y = NULL, A = NULL, W = NULL, W.Q = NULL, W.g = NULL, Q.SL.library = NULL, g.SL.library = NULL, k_split = 10, verbose = TRUE, save.sl.fit = FALSE)
```

AIPW

Constructor Arguments:

Argument	Туре	Details
Y	Integer	A vector of outcome (binary (0, 1) or continuous)
A	Integer	A vector of binary exposure (0 or 1)
W	Data	Covariates for both exposure and outcome models.
W.Q	Data	Covariates for the outcome model (Q).
W.g	Data	Covariates for the exposure model (g).
Q.SL.library	SL.library	Algorithms used for the outcome model (Q).
g.SL.library	SL.library	Algorithms used for the exposure model (g).
k_split	Integer	Number of folds for splitting (Default = 10).
verbose	Logical	Whether to print the result (Default = TRUE)
save.sl.fit	Logical	Whether to save Q.fit and g.fit (Default = FALSE)

Constructor Argument Details:

- W, W.Q & W.g It can be a vector, matrix or data.frame. If and only if W == NULL, W would be replaced by W.Q and W.g.
- Q.SL.library & g.SL.library Machine learning algorithms from SuperLearner libraries
- k_split It ranges from 1 to number of observation-1. If k_split=1, no cross-fitting; if k_split>=2, cross-fitting is used (e.g., k_split=10, use 9/10 of the data to estimate and the remaining 1/10 leftover to predict). **NOTE: it's recommended to use cross-fitting.**
- save.sl.fit This option allows users to save the fitted sl object (libs\$Q.fit & libs\$g.fit) for debug use. Warning: Saving the SuperLearner fitted object may cause a substantive storage/memory use.

Public Methods

Methods	Details	Link
fit()	Fit the data to the AIPW object	fit.AIPW
<pre>stratified_fit()</pre>	Fit the data to the AIPW object stratified by A	stratified_fit.AIPW
summary()	Summary of the average treatment effects from AIPW	summary.AIPW_base
<pre>plot.p_score()</pre>	Plot the propensity scores by exposure status	plot.p_score
plot.ip_weights()	Plot the inverse probability weights using truncated propensity scores	plot.ip_weights

Public Variables

Variable	Generated by	Return
n	Constructor	Number of observations
stratified_fitted	<pre>stratified_fit()</pre>	Fit the outcome model stratified by exposure status
obs_est	<pre>fit() & summary()</pre>	Components calculating average causal effects
estimates	<pre>summary()</pre>	A list of Risk difference, risk ratio, odds ratio
result	<pre>summary()</pre>	A matrix contains RD, ATT, ATC, RR and OR with their SE and 95%CI
g.plot	<pre>plot.p_score()</pre>	A density plot of propensity scores by exposure status

ip_weights.plot	<pre>plot.ip_weights()</pre>	A box plot of inverse probability weights
libs	fit()	SuperLearner libraries and their fitted objects
sl.fit	Constructor	A wrapper function for fitting SuperLearner
<pre>sl.predict</pre>	Constructor	A wrapper function using sl.fit to predict

Public Variable Details:

- stratified_fit An indicator for whether the outcome model is fitted stratified by exposure status in thefit() method. Only when using stratified_fit() to turn on stratified_fit = TRUE, summary outputs average treatment effects among the treated and the controls.
- obs_est After using fit() and summary() methods, this list contains the propensity scores
 (p_score), counterfactual predictions (mu, mu1 & mu0) and efficient influence functions (aipw_eif1
 & aipw_eif0) for later average treatment effect calculations.

g.plot This plot is generated by ggplot2::geom_density

ip_weights.plot This plot uses truncated propensity scores stratified by exposure status (ggplot2::geom_boxplot)

References

Zhong Y, Kennedy EH, Bodnar LM, Naimi AI (2021, In Press). AIPW: An R Package for Augmented Inverse Probability Weighted Estimation of Average Causal Effects. *American Journal of Epidemiology*.

Robins JM, Rotnitzky A (1995). Semiparametric efficiency in multivariate regression models with missing data. *Journal of the American Statistical Association*.

Chernozhukov V, Chetverikov V, Demirer M, et al (2018). Double/debiased machine learning for treatment and structural parameters. *The Econometrics Journal*.

Kennedy EH, Sjolander A, Small DS (2015). Semiparametric causal inference in matched cohort studies. *Biometrika*.

Examples

#check the propensity scores by exposure status after truncation aipw_sl\$plot.p_score() AIPW_base

Description

A base class for AIPW that implements the common methods, such as summary() and plot.p_score(), inheritted by AIPW and AIPW_tmle class

Format

R6Class object.

Value

AIPW base object

See Also

AIPW and AIPW_tmle

AIPW_nuis	Augmented Inverse Probability Weighting (AIPW) uses tmle or tmle3
	as inputs

Description

AIPW_nuis class for users to manually input nuisance functions (estimates from the exposure and the outcome models)

Details

Create an AIPW_nuis object that uses users' input nuisance functions from the exposure model P(A|W), and the outcome models P(Y|do(A = 0), W) and P(Y|do(A = 1), W.Q):

$$\psi(a) = E[I(A = a)/P(A = a|W)] * [Y - P(Y = 1|A, W)] + P(Y = 1|do(A = a), W)$$

Note: If outcome is missing, replace (A=a) with (A=a, observed=1) when estimating the propensity scores.

Value

AIPW_nuis object

Constructor

AIPW\$new(Y = NULL, A = NULL, tmle_fit = NULL, verbose = TRUE)

Constructor Arguments:

Argument	Туре	Details
Y	Integer	A vector of outcome (binary (0, 1) or continuous)
A	Integer	A vector of binary exposure (0 or 1)
mu0	Numeric	User input of $P(Y = 1 do(A = 0), W_Q)$
mu1	Numeric	User input of $P(Y = 1 do(A = 1), W_Q)$
raw_p_score	Numeric	User input of $P(A = a W_g)$
verbose	Logical	Whether to print the result (Default = TRUE)
stratified_fitted	Logical	Whether mu0 & mu1 was estimated only using A=0 & A=1 (Default = FALSE)

Public Methods

Methods	Details	Link
<pre>summary()</pre>	Summary of the average treatment effects from AIPW	summary.AIPW_base
<pre>plot.p_score()</pre>	Plot the propensity scores by exposure status	plot.p_score
plot.ip_weights()	Plot the inverse probability weights using truncated propensity scores	plot.ip_weights

Public Variables

Variable	Generated by	Return
n	Constructor	Number of observations
obs_est	Constructor	Components calculating average causal effects
estimates	summary()	A list of Risk difference, risk ratio, odds ratio
result	summary()	A matrix contains RD, ATT, ATC, RR and OR with their SE and 95%CI
g.plot	<pre>plot.p_score()</pre>	A density plot of propensity scores by exposure status
<pre>ip_weights.plot</pre>	<pre>plot.ip_weights()</pre>	A box plot of inverse probability weights

Public Variable Details:

stratified_fit An indicator for whether the outcome model is fitted stratified by exposure status in thefit() method. Only when using stratified_fit() to turn on stratified_fit = TRUE, summary outputs average treatment effects among the treated and the controls.

obs_est This list includes propensity scores (p_score), counterfactual predictions (mu, mu1 &
 mu0) and efficient influence functions (aipw_eif1 & aipw_eif0)

g.plot This plot is generated by ggplot2::geom_density

ip_weights.plot This plot uses truncated propensity scores stratified by exposure status (ggplot2::geom_boxplot)

AIPW_tmleAugmented Inverse Probability Weighting (AIPW) uses tmle or tmle3
as inputs

AIPW_tmle

Description

AIPW_tmle class uses a fitted tmle or tmle3 object as input

Details

Create an AIPW_tmle object that uses the estimated efficient influence function from a fitted tmle or tmle3 object

Value

AIPW_tmle object

Constructor

AIPW\$new(Y = NULL, A = NULL, tmle_fit = NULL, verbose = TRUE)

Constructor Arguments:

Argument	Туре	Details
Y	Integer	A vector of outcome (binary $(0, 1)$ or continuous)
A	Integer	A vector of binary exposure (0 or 1)
<pre>tmle_fit</pre>	Object	A fitted tmle or tmle3 object
verbose	Logical	Whether to print the result (Default = TRUE)

Public Methods

Methods	Details	Link
summary()	Summary of the average treatment effects from AIPW	summary.AIPW_base
<pre>plot.p_score()</pre>	Plot the propensity scores by exposure status	plot.p_score
<pre>plot.ip_weights()</pre>	Plot the inverse probability weights using truncated propensity scores	plot.ip_weights

Public Variables

Variable	Generated by	Return
n	Constructor	Number of observations
obs_est	Constructor	Components calculating average causal effects
estimates	summary()	A list of Risk difference, risk ratio, odds ratio
result	summary()	A matrix contains RD, ATT, ATC, RR and OR with their SE and 95%CI
g.plot	plot.p_score()	A density plot of propensity scores by exposure status
ip_weights.plot	<pre>plot.ip_weights()</pre>	A box plot of inverse probability weights

Public Variable Details:

obs_est This list extracts from the fitted tmle object. It includes propensity scores (p_score),

counterfactual predictions (mu, mu1 & mu0) and efficient influence functions (aipw_eif1 & aipw_eif0)

g.plot This plot is generated by ggplot2::geom_density

ip_weights.plot This plot uses truncated propensity scores stratified by exposure status (ggplot2::geom_boxplot)

Examples

aipw_wrapper

AIPW wrapper function

Description

A wrapper function for AIPW\$new()\$fit()\$summary()

Usage

```
aipw_wrapper(
 Y,
 A,
 verbose = TRUE,
 W = NULL,
 W.Q = NULL,
 W.g = NULL,
 Q.SL.library,
 g.SL.library,
 k_split = 10,
 g.bound = 0.025,
 stratified_fit = FALSE
)
```

Arguments

Y	Outcome (binary integer: 0 or 1)
A	Exposure (binary integer: 0 or 1)
verbose	Whether to print the result (logical; Default = FALSE)

W	covariates for both exposure and outcome models (vector, matrix or data.frame). If null, this function will seek for inputs from W.Q and W.g.
W.Q	Only valid when W is null, otherwise it would be replaced by W. Covariates for outcome model (vector, matrix or data.frame).
W.g	Only valid when W is null, otherwise it would be replaced by W. Covariates for exposure model (vector, matrix or data.frame)
Q.SL.library	SuperLearner libraries for outcome model
g.SL.library	SuperLearner libraries for exposure model
k_split	Number of splitting (integer; range: from 1 to number of observation-1): if k_split=1, no cross-fitting; if k_split>=2, cross-fitting is used (e.g., k_split=10, use 9/10 of the data to estimate and the remaining 1/10 leftover to predict). NOTE: it's recommended to use cross-fitting.
g.bound	Value between $[0,1]$ at which the propensity score should be truncated. Defaults to 0.025.
stratified_fit	An indicator for whether the outcome model is fitted stratified by exposure status in thefit() method. Only when using stratified_fit() to turn on stratified_fit = TRUE, summary outputs average treatment effects among the treated and the controls.

Value

A fitted AIPW object with summarised results

See Also

AIPW

Examples

eager_sim_obs Simulated Observational Study

Description

Datasets were simulated using baseline covariates (sampling with replacement) from the Effects of Aspirin in Gestation and Reproduction (EAGeR) study. Data generating mechanisms were described in our manuscript (Zhong et al. (inpreparation), Am. J. Epidemiol.). True marginal causal effects on risk difference, log risk ratio and log odds ratio scales were attached to the dataset attributes (true_rd, true_logrr,true_logor).

Usage

data(eager_sim_obs)

Format

An object of class data.frame with 200 rows and 8 column:

sim_Y binary, simulated outcome which is condition on all other covariates in the dataset

sim_A binary, simulated exposure which is conditon on all other covarites expect sim_Y.

eligibility binary, indicator of the eligibility stratum

loss_num count, number of prior pregnancy losses

age continuous, age in years

time_try_pregnant count, months of conception attempts prior to randomization

BMI continuous, body mass index

meanAP continuous, mean arterial blood pressure

References

Schisterman, E.F., Silver, R.M., Lesher, L.L., Faraggi, D., Wactawski-Wende, J., Townsend, J.M., Lynch, A.M., Perkins, N.J., Mumford, S.L. and Galai, N., 2014. Preconception low-dose aspirin and pregnancy outcomes: results from the EAGeR randomised trial. The Lancet, 384(9937), pp.29-36.

Zhong, Y., Naimi, A.I., Kennedy, E.H., (In preparation). AIPW: An R package for Augmented Inverse Probability Weighted Estimation of Average Causal Effects. American Journal of Epidemiology

See Also

eager_sim_rct

eager_sim_rct Simulated Randomized Trial

Description

Datasets were simulated using baseline covariates (sampling with replacement) from the Effects of Aspirin in Gestation and Reproduction (EAGeR) study.

Usage

data(eager_sim_rct)

10

Format

An object of class data.frame with 1228 rows and 8 column:

sim_Y binary, simulated outcome which is condition on all other covariates in the dataset

sim_T binary, simulated treatment which is condition on eligibility only.

eligibility binary, indicator of the eligibility stratum

loss_num count, number of prior pregnancy losses

age continuous, age in years

time_try_pregnant count, months of conception attempts prior to randomization

BMI continuous, body mass index

meanAP continuous, mean arterial blood pressure

References

Schisterman, E.F., Silver, R.M., Lesher, L.L., Faraggi, D., Wactawski-Wende, J., Townsend, J.M., Lynch, A.M., Perkins, N.J., Mumford, S.L. and Galai, N., 2014. Preconception low-dose aspirin and pregnancy outcomes: results from the EAGeR randomised trial. The Lancet, 384(9937), pp.29-36.

Zhong, Y., Naimi, A.I., Kennedy, E.H., (In preparation). AIPW: An R package for Augmented Inverse Probability Weighted Estimation of Average Causal Effects. American Journal of Epidemiology

See Also

eager_sim_obs

fit

Fit the data to the AIPW object

Description

Fitting the data into the AIPW object with/without cross-fitting to estimate the efficient influence functions

Value

A fitted AIPW object with obs_est and libs (public variables)

R6 Usage

\$fit()

See Also

AIPW

plot.ip_weights

Description

Plot and check the balance of propensity scores by exposure status

Value

ip_weights.plot (public variable): A box plot of inverse probability weights using truncated propensity scores by exposure status (ggplot2::geom_boxplot)

R6 Usage

\$plot.ip_weights()

See Also

AIPW and AIPW_tmle

Description

Plot and check the balance of propensity scores by exposure status

Value

g.plot (public variable): A density plot of propensity scores by exposure status (ggplot2::geom_density)

R6 Usage

\$plot.p_plot()

See Also

AIPW and AIPW_tmle

stratified_fit

Description

Fitting the data into the AIPW object with/without cross-fitting to estimate the efficient influence functions. Outcome model is fitted, stratified by exposure status A

Value

A fitted AIPW object with obs_est and libs (public variables)

R6 Usage

\$stratified_fit.AIPW()

See Also

AIPW

summary

Summary of the average treatment effects from AIPW

Description

Calculate average causal effects in RD, RR and OR in the fitted AIPW or AIPW_tmle object using the estimated efficient influence functions

Arguments

```
g.bound Value between [0,1] at which the propensity score should be truncated. Propensity score will be truncated to [g.bound, 1-g.bound] when one g.bound value is provided, or to [min(g.bound), max(g.bound)] when two values are provided. Defaults to 0.025.
```

Value

estimates and result (public variables): Risks, Average treatment effect in RD, RR and OR.

R6 Usage

\$summary(g.bound = 0.025)
\$summary(g.bound = c(0.025,0.975))

See Also

AIPW and AIPW_tmle

Index

* datasets eager_sim_obs,9 eager_sim_rct, 10 AIPW, 2, 3, 5, 9, 11–13 AIPW_base, 5 AIPW_nuis, 5 AIPW_tmle, 5, 6, 12, 13 aipw_wrapper, 8 eager_sim_obs, 9, 11 eager_sim_rct, *10*, 10 fit, 11 fit.AIPW, 3 plot.ip_weights, *3*, *6*, *7*, 12 plot.p_score, *3*, *6*, *7*, 12 R6Class, 5 stratified_fit, 13 stratified_fit.AIPW, 3 summary, 13 summary.AIPW_base, 3, 6, 7 SuperLearner, 3, 4