Package ‘BLMEngineInR’

September 15, 2025

Type Package

Version 0.1.7

Date 2025-09-03

Title Biotic Ligand Model Engine

Description A chemical speciation and toxicity prediction model for the
toxicity of metals to aquatic organisms. The Biotic Ligand Model (BLM)
engine was originally programmed in 'PowerBasic' by Robert Santore and
others. The main way the BLM can be used is to predict the toxicity of a
metal to an organism with a known sensitivity (i.e., it is known how much
of that metal must accumulate on that organism's biotic ligand to cause a
physiological effect in a certain percentage of the population, such as a
20% loss in reproduction or a 50% mortality rate). The second way the BLM
can be used is to estimate the chemical speciation of the metal and other
constituents in water, including estimating the amount of metal accumulated
to an organism's biotic ligand during a toxicity test. In the first
application of the BLM, the amount of metal associated with a toxicity
endpoint, or regulatory limit will be predicted, while in the
second application, the amount of metal is known and the portions of that
metal that exist in various forms will be determined. This version of the
engine has been re-structured to perform the calculations in a different
way that will make it more efficient in R, while also making it more
flexible and easier to maintain in the future. Because of this, it does
not currently match the desktop model exactly, but we hope to improve
this comparability in the future.

License Apache License (>= 2)

URL https://www.windwardenv.com/biotic-1igand-model/
Encoding UTF-8

Language en-US

LazyData true

Imports methods, openxlsx, Rcpp (>= 1.0.10), utils

LinkingTo Rcpp, ReppArmadillo

Suggests testthat (>= 3.0.0), withr

https://www.windwardenv.com/biotic-ligand-model/

2 Contents

Config/testthat/edition 3
RoxygenNote 7.3.3
Depends R (>=3.5)
NeedsCompilation yes

Author Robert Santore [aut],
Kelly Croteau [aut, cre]

Maintainer Kelly Croteau <kellyc@windwardenv.com>
Repository CRAN
Date/Publication 2025-09-15 09:10:29 UTC

Contents
AILLNIST20170203_reactions v v v v v i e e e e e e e e e 3
All_ WATER23 reactions o o v v i i e e e 3
BlankProblem e 4
BlankWHAM e 8
BLM . . . e e 8
carbonate_system_problem 10
CheckBLMODbject o e 10
CHESS . . . e e e e 11
CommonParameterDefinitions 15
Componentso e e e e e e e e 20
ConvertWHAMVThermoFile 22
ConvertWindowsParamFile 23
CriticalValues e 24
Cu_full_inorganic_problem 26
Cu_full_organic_problem 27
DefineProblem 27
DefineWHAM e e 28
GetData e e e e 28
InLabs e e e 30
InVars e e e e 31
ListCAT e 32
MassCompartmentso vt e e e e e e e e e e 33
MatchlnputsToProblem 35
MW e 37
Ni_full_organic_problem 37
Ni_HCO3_full_organic_problem 38
Phases e 39
ReadInputsFromFile 41
SpecialDefs L 42
SPECIeS 43
water_ MC_problem 46
water_problem L. oL e 46

WriteDetailedFile 47

All_NIST20170203_reactions 3

WritelnputFile e 47
WriteParamFile e 48
WriteWHAMFile e 49
Index 50

A11_NIST20170203_reactions
All NIST_20170203.dbs reactions

Description

A large problem using the WHAM V "NIST_20170203.dbs" thermodynamic database. This is the

thermodynamic database used in some of the newer Windows BLM parameter files, including the

Environment and Climate Change Canada (ECCC) copper Federal Water Quality Guideline.
Usage

Al11_NIST20170203_reactions

Format

An object of class 1ist of length 24.

Al1_WATER23_reactions All WATER23.dbs reactions

Description

A large problem using the WHAM V "WATER?23.dbs" thermodynamic database. This is the ther-
modynamic database used in most of the Windows BLM parameter files, including the United States
Environmental Protection Agency’s (USEPA) final acute value (FAV).

Usage

Al1_WATER23_reactions

Format

An object of class 1ist of length 24.

4 BlankProblem

BlankProblem Make a blank input problem list object

Description

Make a blank input problem list object

Usage
BlankProblem()

Value

A list object with a template for defining the chemical problem for the ‘BLMEngineInR* functions.
Each element in the list is a vector, list, or data.frame object grouping related parameters together.
See ‘str(BlankProblem())‘ for the structure and names of the list object.

See Also

Other problem manipulation functions: Components, CriticalValues, InLabs, InVars, MassCompartments,
Phases, SpecialDef's, Species

Examples

Make a blank problem:
ThisProblem = BlankProblem()
str(ThisProblem)

Add Water as a mass compartment
ThisProblem = AddMassCompartments(

ThisProblem,
MassName = "Water”,
MassAmt = 1,
MassUnit = "L"

)

Add temperature and pH variables:

ThisProblem = AddInVars(ThisProblem,
InVarName = c("Temp"”, "pH"),
InVarMCName = rep("Water”, 2),
InVarType = c("Temperature”, "pH"))

Add CO3 as a component:
ThisProblem = AddInComps(
ThisProblem,
InCompName = "C03",
InCompCharge = -2,
InCompMCName = "Water”,
InCompType = "MassBal”,

BlankProblem

InCompActCorr = "Debye”
)

Add reactions (using SpecCompNames and SpecCompStoichs for arguments):
HCO3 = H + CO3 logK = 10.329
H2CO03 = 2xH + CO3 logK = 10.329 + 6.352 = 16.681
ThisProblem = AddSpecies(
ThisProblem,
SpecName = c("HC03", "H2C03"),
SpecMCName = "Water",
SpecActCorr = "Debye”,
SpecCompNames = list(c("H", "CO03"), c("H", "C03")),
SpecCompStoichs = list(c(1, 1), c(1, 2)),
SpeclLogK = c(10.329, 16.681),
SpecDeltaH = c(-14997.55155, -24166.23162),
SpecTempKelvin = 298.1514609
)

...ThisProblem now simulates carbonate reactions.

Add major ions and copper as components
ThisProblem = AddInComps(
ThisProblem,
InCompName = c("Cu", "Ca", "Mg"”, "Na", "K", "S04", "Cl", "S"),
InCompCharge = c(2, 2, 2, 1, 1, -2, -1, -2),
InCompMCName = "Water”,
InCompType = "MassBal”,
InCompActCorr = "Debye”

Add reactions (using SpecEquation as an argument):
ThisProblem = AddSpecies(
ThisProblem,
SpecEquation = c(
"CuOH = 1 * Cu + 1 %= OH",
"Cu(OH)2 =1 * Cu + 2 x OH",
"CuS04 =1 x Cu + 1 x S04",
"CuCl =1 % Cu + 1 % Cl",

"CuCO3 = 1 * Cu + 1 % CO3",
"Cu(C03)2 = 1 * Cu + 2 % CO3",
"CuHCO3 = 1 % Cu + 1 % CO3 + 1 * H",
"CaHCO3 = 1 % Ca + 1 % H + 1 % CO3",

"CaC03 =1 % Ca + 1 x C0O3",
"CaS04 =1 % Ca + 1 x S04",
"MgHCO3 = 1 * Mg + 1 * H + 1 x C03",
"MgC03 =1 * Mg + 1 x C03",
"MgS04 = 1 * Mg + 1 * S04"
),
SpecMCName = "Water",
SpecActCorr = "Debye”,
SpecLogK = c(6.48, 11.78, 2.360, 0.400, 6.750, 9.920, 14.620,
11.44, 3.22, 2.30, 11.4, 2.98, 2.37),

SpecDeltaH = c(@, 0, 8844.385918, 6738.57975, @, 0, O,

-3664.102737, 14951.22381, 6949.160364, -11666.16619,

BlankProblem

11413.46945, 19163.83616),
SpecTempKelvin = 298.15
)

Add BL mass compartment:
ThisProblem = AddMassCompartments(
ThisProblem,
MassName = "BL",
MassAmt = 1,
MassUnit = "kg wet”
)

Add BL1 defined component:

ThisProblem = AddDefComps(ThisProblem,
DefCompName = "BL1",
DefCompFromNum = 1.78E-5,
DefCompCharge = -1,
DefCompMCName = "BL",
DefCompType = "MassBal”,
DefCompActCorr = "None",
DefCompSiteDens = 3E-5)

Add biotic ligand reactions (using SpecStoich):
spec_that_bind = c(”"Cu”, "CuOH", "Ca", "Mg", "H", "Na")
temp_stoich_mat = ThisProblem$SpecStoich[spec_that_bind,]
rownames(temp_stoich_mat) = paste@("BL1-", spec_that_bind)
temp_stoich_mat[, "BL1"] = 1L
temp_stoich_mat["BL1-CuOH", c("H","OH")] = c(-1L, @L)
ThisProblem = AddSpecies(
ThisProblem,
SpecName = paste@("BL1-", spec_that_bind),
SpecMCName = "BL",
SpecActCorr = "None",
SpecLogK = c(7.4, -1.3, 3.6, 3.6, 5.4, 3.0),
SpecDeltaH = ThisProblem$Spec$DeltaH[match(spec_that_bind, ThisProblem$Spec$Name)],
SpecTempKelvin = ThisProblem$Spec$TempKelvin[match(spec_that_bind, ThisProblem$Spec$Name)],
SpecStoich = temp_stoich_mat

)

Add special definitions for the toxic species:
ThisProblem = AddSpecialDef's(

ThisProblem,

Value = c("BL1","Cu","BL1-Cu”,"BL1-CuOH"),

SpecialDef = c("BL","Metal"”, "BLMetal”, "BLMetal")
)

...ThisProblem now simulates copper toxicity in the absence of organic matter.

Add DOC: first we add DOC and HA input variables...
ThisProblem = AddInVars(

ThisProblem,

InVarName = c("DOC", "HA"),

InVarMCName = "Water"”,

InVarType = c("WHAM-HAFA", "PercHA")

BlankProblem 7

)
...then we add a WHAM version as a special definition.
ThisProblem = AddSpecialDef's(
ThisProblem,
Value = "V",
SpecialDef = "WHAM"
)

As a finishing touch, we already know our critical values:
ThisProblem = AddCriticalValues(
ThisProblem,
CATab = data.frame(
CA = c(0.05541, 0.03395),
Species = c("Ceriodaphnia dubia”,”FAV"),
TestType = "Acute”,
Duration = c("48h","DIV=2.00"),
Lifestage = c("Neonate (<24h)","ACR=3.22"),
Endpoint = c("Mortality”,"FAV"),
Quantifier = c(”EC50; LC50", "NA"),
References = c("Gensemer et al. 2002; Hyne et al. 2005; 2002; 2003; Van Genderen et al. 2007",
"US EPA 2007"),
Miscellaneous = c("SMEA calculated by median”, NA)
)

)
ThisProblem can now calculate the Cu WQC

Now what about CO2 dissolving from the atmosphere?
ThisProblem = AddPhases(
ThisProblem,
PhaseName = "C02(g)",
PhaseCompNames = list(c("C03", "H")),
PhaseCompStoichs = list(c(1, 2)),
PhaselLogk = -1.5,
PhaseDeltaH = 0,
PhaseTempKelvin = @,
PhaseMoles = 10%-3.2
)

Actually, scratch that - no C02 dissolution
ThisProblem = RemovePhases(ThisProblem, "C02(g)")

Actually, I don't want C. dubia in this parameter file.
ThisProblem = RemoveCriticalValues(ThisProblem, 1)

I know we usually have sulfide in there, but it's really not doing anything
for us, so let's remove that.
ThisProblem = RemoveComponents(ThisProblem, "S")

I kinda want to try this with WHAM VII instead of V...
ThisProblem = RemoveSpecialDefs(ThisProblem, SpecialDefToRemove = "WHAM")
ThisProblem = AddSpecialDefs(ThisProblem, Value = "VII", SpecialDef = "WHAM")

8 BLM

Now what if I wanted to make this just a simulation of organic matter binding,
sans biotic ligand?
ThisProblem = RemoveMassCompartments(ThisProblem, MCToRemove = "BL")

BlankWHAM Make a blank WHAM parameter list object

Description

Make a blank WHAM parameter list object

Usage
BlankWHAM()

Value

A list object with a template for defining the organic matter binding in a chemical problem for
the ‘BLMEnginelnR*‘ functions. Each element in the list is a vector, matrix, or data.frame object
grouping related parameters together. See ‘str(BlankWHAMY())* for the structure and names of the
list object.

BLM Run the Biotic Ligand Model

Description

‘BLM* will run the Windward Environmental Biotic Ligand Model (BLM) with the provided pa-
rameter file, input file, and options.

Usage

BLM(
ParamFile = character(),
InputFile = character(),
ThisProblem = list(),
AllInput = list(),
DoTox = logical(),
CritAccumIndex = 1L,
CritAccumValue = numeric(),
QuietFlag = c("Very Quiet"”, "Quiet"”, "Debug"),
ConvergenceCriteria = 1e-04,
MaxIter = 100L

BLM 9
Arguments

ParamFile (optional) The path and file name of the parameter file

InputFile (optional) The path and file name of the chemistry input file

ThisProblem (optional) A problem list object, such as returned by ‘DefineProblem®.

AllInput (optional) An input chemistry list object, such as returned by ‘GetData“.

DoTox Should this be a speciation (TRUE) or toxicity (FALSE) run? In a speciation
run, the total metal is input and the free metal and metal bound to the biotic
ligand is calculated. In a toxicity run, the critical accumulation is input and the
free and total metal concentrations that would result in that amount bound to the
biotic ligand is calculated.

CritAccumIndex (unnecessary unless DoTox = TRUE) The index of the critical accumulation
value in the parameter file critical accumulation table. If this is a single value,
then it will be applied to all observations. If it is a vector with the same length as
the inputs, then each value given will be used for the corresponding observation.
Ignored if ‘CritAccumValue® is given.

CritAccumValue (unnecessary unless DoTox = TRUE) The critical accumulation value to use, in
nmol/gw. If this is a single value, then it will be applied to all observations. If it
is a vector with the same length as the inputs, then each value given will be used
for the corresponding observation.

QuietFlag Either "Quiet", "Very Quiet", or "Debug". With "Very Quiet", the simulation
will run silently. With "Quiet", the simulation will print "Obs=1", "Obs=2",
etc... to the console. With "Debug", intermediate information from the CHESS
function will print to the console.

ConvergenceCriteria
(numeric) The maximum allowed CompError in for the simulation to be consid-
ered complete. CompError = abs(CalcTotMoles - TotMoles) / TotMoles

MaxIter (integer) The maximum allowed CHESS iterations before the program should
give up.

Value

A data frame with chemistry speciation information, including species concentrations, species ac-
tivities, and total concentrations.

Examples

running the BLM function with a parameter file and input file:

n on

mypfile = system.file("extdata”,"ParameterFiles”,"carbonate_system_only.dat4",

package = "BLMEngineInR",
mustWork = TRUE)

n on

myinputfile = system.file("extdata”,"InputFiles”,"carbonate_system_test.blm4"”,

BLM(ParamFile =

package = "BLMEnginelInR",
mustWork = TRUE)

mypfile, InputFile = myinputfile, DoTox = FALSE)

running the BLM with parameter and input objects
myinputs = GetData(InputFile = myinputfile, ThisProblem = carbonate_system_problem)

10 CheckBLMObject

BLM(ThisProblem = carbonate_system_problem, AllInput = myinputs, DoTox = FALSE)

here we only read in the same files, but the inputs could also be constructed

carbonate_system_problem
Carbonate system problem

Description
An example BLMEngineInR problem object, which describes a water-only system with only the
(closed) carbonate system.

Usage

carbonate_system_problem

Format

An object of class 1ist of length 24.

Details

This problem consists of two components (hydrogen "H" and carbonate "CO3") and three reactions
(dissociation of water/formation of hydroxide "OH", formation of bicarbonate "HCO3" and forma-
tion of carbonic acid "H2CO3"). The pH and temperature are supplied as input variables, and the
input label "ID" is supplied as well.

Examples

carbonate_system_problem$Comp[, c(”Name"”, "Charge"”, "Type")]
carbonate_system_problem$Spec[, c("Equation”, "ActCorr”, "LogK", "DeltaH")]

CheckBLMObject Check an object for use in the BLMEnginelnR package

Description
This function will compare an object to a reference object to make sure the required list elements
are present and that they are the correct types.

Usage

CheckBLMObject (Object, Reference, BreakOnError = TRUE)

CHESS 11

Arguments

Object, Reference
R objects that are to be compared. Assumed to be list objects.

BreakOnError A logical value indicating if an error should stop whatever function or code
it might be embedded in (‘TRUE, the default) or allow it to proceed without
stopping (‘FALSE").

Value

The returned value depends on the value of ‘BreakOnError*:

TRUE TRUE will be returned invisibly if all checks succeed, and an error with the error list as the
text will be triggered if at least one check fails.

FALSE The error list will be returned, which will be a zero-length vector if all checks succeed.

Examples

This one works:
myproblem = BlankProblem()
myproblem = AddMassCompartments(
ThisProblem = myproblem,
MassName = "Water”,
MassAmt = 1.0,
MassUnit = "L"
)
CheckBLMObject(Object = myproblem,
Reference = BlankProblem(),
BreakOnError = FALSE)

This one fails:

myproblem$N = NULL

CheckBLMObject(Object = myproblem,
Reference = BlankProblem(),
BreakOnError = FALSE)

CHESS CHemical Equilibria in Soils and Solutions

Description

Given a chemical system, equilibria equations, and total concentrations of components, calculate
the species concentrations of each chemical product in the system.

12 CHESS

Usage

CHESS(
QuietFlag,
ConvergenceCriteria,
MaxIter,
NMass,
MassName,
MassAmt,
NComp,
CompName,
CompType,
TotConc,
NSpec,
SpecName,
SpecType,
SpecMCR,
SpecK,
SpecTempKelvin,
SpecDeltaH,
SpecStoich,
SpecCharge,
SpecActCorr,
DoWHAM,
AqueousMCR,
WHAMDonnanMCR,
HumicSubstGramsPerLiter,
WHAMMo1Wt ,
WHAMRadius,
WHAMP
WHAMDLF ,
WHAMKZED,
SysTempKelvin,
DoTox,
MetalName,
MetalCompR,
BLCompR,
NBLMetal,
BLMetalSpecsR,
CATarget,
DodVidCj,
DodVidCjDonnan,
DodKidCj,
DoGammai,
DoJacDonnan,
DoJacWHAM,
DoWHAMSimpleAdjust,
DoDonnanSimpleAdjust

CHESS 13
Arguments

QuietFlag character, one of "Very Quiet" (only print out when run is done), "Quiet" (print
out Obs=iObs), or "Debug" (print out lots of info)

ConvergenceCriteria
numeric, the maximum value of MaxError that counts as convergence by the
Newton-Raphson root-finding algorithm

MaxIter integer, the maximum number of iterations the Newton-Raphson root-finding
algorithm should do before giving up

NMass integer, number of mass compartments

MassName CharacterVector (NMass), the names of the mass compartments

MassAmt NumericVector (NMass), The amount of each mass compartment.

NComp integer, number of components

CompName character vector (NComp), the name of each component in the simulation

CompType character vector (NComp), the type of each component in the simulation

TotConc numeric vector (NComp), the total concentrations of each component in the
simulation (units of e.g., mol/L and mol/kg)

NSpec integer, number of species reactions

SpecName character vector (NSpec), the name of the chemical species for which we have
formation reactions

SpecType character vector (NSpec), the type or category of the chemical species for which
we have formation reactions.

SpecMCR IntegerVector (NSpec), the mass compartment of the chemical species for which
we have formation reactions

SpecK numeric vector (NSpec), the equilibrium coefficient of the formation reactions.

SpecTempKelvin NumericVector (NSpec), the temperature associated with K/logK and DeltaH of
the formation reactions

SpecDeltaH numeric vector (NSpec), the enthalpy change of the formation reactions

SpecStoich signed integer matrix (NSpec x NComp), the reaction stoichiometry of the for-
mation reactions

SpecCharge signed integer vector (NSpec), the charge of the chemical species for which we
have formation reactions

SpecActCorr character vector (NSpec), the activity correction method of the chemical species
for which we have formation reactions

DoWHAM boolean, true=there are WHAM species, false=no WHAM species

AqueousMCR integer, the (1-based) position of the water/aqueous mass compartment. (trans-
formed to O-based at the beginning of the function)

WHAMDonnanMCR the mass compartments corresponding to the humic acid (0) and fulvic acid (1)

Donnan layers. (transformed to 0-based at the beginning of the function)

HumicSubstGramsPerLiter

NumericVector, length of 2, grams per liter of each organic matter component
(HA and FA) in solution

14

CHESS

WHAMMo1Wt numeric (2), WHAM’s molecular weight parameter for organic matter

WHAMRadius numeric (2), WHAM’s molecular radius parameter for organic matter

WHAMP numeric (2), WHAM’s P parameter...

WHAMDLF numeric (2), WHAM’s Double layer overlap factor

WHAMKZED numeric (2), WHAM’s Constant to control DDL at low ZED

SysTempKelvin double; input temperature for the current observation, in Kelvin

DoTox logical, TRUE for toxicity mode where the MetalName component concentra-
tion is adjusted to try to match the CATarget with BLMetalSpecs

MetalName character string, the name of the toxic metal

MetalCompR integer, the position of the metal in the component arrays (i.e., which is the toxic
metal component) Note: this is base-1 indexed on input then converted.

BLCompR integer, the position of the biotic ligand in the component arrays. Note: this is
base-1 indexed on input, then converted.

NBLMetal integer, the number of biotic ligand-bound metal species that are associated with
toxic effects.

BLMetalSpecsR integer vector, the positions of the species in the arrays which contribute to tox-
icity (i.e., which species are the toxic metal bound to the relevant biotic ligand)
Note: these are base-1 indexed on input then converted.

CATarget numeric, the target critical accumulation in units of mol / kg (only used when
DoTox == TRUE)

DodVidCj boolean, should the Jacobian matrix include the change in the main water solu-
tion (excluding Donnan layer volume)?

DodVidCjDonnan boolean, should the Jacobian matrix include the change in the Donnan layer
volume?

DodKidCj boolean, should the Jacobian matrix include the change in the DOC equilibrium
constants?

DoGammai boolean, should the Jacobian matrix include the change in the activity coeffi-
cients?

DoJacDonnan boolean, should the Jacobian matrix be used to solve the Donnan layer concen-
trations?

DoJacWHAM boolean, should the Jacobian matrix be used to solve the WHAM component
concentrations?

DoWHAMSimpleAdjust
boolean, should SimpleAdjust be used to solve the WHAM component concen-
trations?

DoDonnanSimpleAdjust
boolean, should SimpleAdjust be used to solve the Donnan layer concentra-
tions?

Value

list with the following elements:

CommonParameterDefinitions 15

SpecConc numeric vector (NSpec), the concentrations of each species for which we have forma-
tion reactions

Finallter integer, the number of Newton-Raphson iterations that we needed to reach convergence
FinalMaxError numeric, the highest final absolute error fraction =max(abs(Resid / TotMoles))

CalcTotConc numeric vector (NComp), the calculated total concentrations of each component in
the simulation (units of e.g., mol/L and mol/kg)

CommonParameterDefinitions
Common Parameter Definitions

Description

These are parameters that are commonly used in the BLMEngineInR package. They will appear
throughout the various internal functions, and this central repository of their definitions is helpful.

Arguments
NMass integer, the number of mass compartments.
MassName character vector (NMass), The name of each mass compartment.
MassAmt numeric vector (NMass), The amount of each mass compartment.
MassUnit character vector (NMass), The units for each mass compartment.
AqueousMCR integer, the (1-based) position of the water/aqueous mass compartment.

BioticLigMCR integer, the (1-based) position of the biotic ligand mass compartment(s).

WHAMDonnanMCR integer (2), the mass compartments corresponding to the humic acid (1) and
fulvic acid (2) Donnan layers.

WHAMDonnanMC integer (2), the mass compartments corresponding to the humic acid (0) and
fulvic acid (1) Donnan layers.

NInLab integer, the number of input label fields

InLabName character vector (NInLab), The names of the input label fields.

NInVar integer, the number of input variables

InVarName character vector (NInVar), The name of each input variable.

InVarMCR integer vector (NInVar), The mass compartment of each input variable. (1-
based)

InVarMC integer vector (NInVar), The mass compartment of each input variable. (0O-
based)

InVarType character vector (NInVar), The type of each input variable. Should be one of

"Temperature" (the temperature in degrees C), "pH" (the -log[H]...you know,
pH), "WHAM-HA", "WHAM-FA", "WHAM-HAFA" (Windemere Humic Aque-
ous Model organic matter (input mg C/L), as all humic acid, all fulvic acid, or a
mix of humics and fulvics, respectively.), "PercHA" (optionally indicate the per-
cent humic acid in a the WHAM-HAFA component for that compartment.), or
"PercAFA" (optionally indicate the percent of active fulvic acid for the WHAM-
FA or WHAM-HAFA component for that compartment)

16

NInComp
InCompName
NDefComp
DefCompName

DefCompFromNum

DefCompFromVar

DefCompCharge
DefCompMCR

DefCompMC

DefCompType

DefCompActCorr

DefCompSiteDens

NComp

CompName
CompCharge
CompMCR

CompMC

CompCtoM

CompType
CompActCorr

CompSiteDens

CompConc

TotConc

TotMoles

NSpec

CommonParameterDefinitions

integer, the number of input components

character vector (NInComp), The names of the input components.
integer, the number of defined components

character vector (NDefComp), the names of each defined component

numeric vector (NDefComp), the number used for deriving the concentration of
each defined component

character vector (NDefComp), the variable used for deriving the concentration
of each defined component

signed integer vector (NDefComp), the charge of each defined component

integer vector (NDefComp), the mass compartment number each defined com-
ponent (1-based)

integer vector (NDefComp), the mass compartment number each defined com-
ponent (0-based)

character vector (NDefComp), the type of each defined component

character vector (NDefComp), the activity correction method to use with each
defined component

numeric vector (NDefComp), the site density of each defined component

integer, the combined number of components in the simulation, including the
input components, defined components (and including the defined components
that get added by ExpandWHAM)

character vector (NComp), the name of each component in the simulation
signed integer vector (NComp), the charge of each component in the simulation

integer vector (NComp), the mass compartment of each component in the sim-
ulation (1-based)

integer vector (NComp), the mass compartment of each component in the sim-
ulation (0-based)

numeric vector (NSpec), the concentration to mass conversion factor of the com-
ponents

character vector (NComp), the type of each component in the simulation

character vector (NComp), the activity correction method of each component in
the simulation

numeric vector (NComp), the site density of each component in the simulation

numeric vector (NComp), the free ion concentrations of each component in the
simulation

numeric vector (NComp), the total concentrations of each component in the
simulation (units of e.g., mol/L and mol/kg)

numeric vector (NComp), the total moles of each component in the simulation
(units of mol)

integer, the number of chemical species for which we have formation reactions
in the simulation

CommonParameterDefinitions 17

SpecName

SpecMCR

SpecMC

SpecActCorr

SpecNC
SpecCompList

SpecCtoM

SpecCharge

SpecK
SpecLogK

SpecDeltaH
SpecTempKelvin

SpecStoich

SpecConc

SpecMoles

NPhase

PhaseName

PhaseNC
PhaseComplList

PhaseStoich

PhaseK
PhaselLogK

PhaseDeltaH
PhaseTemp

character vector (NSpec), the name of the chemical species for which we have
formation reactions

integer vector (NSpec), the mass compartment of the chemical species for which
we have formation reactions (1-based)

integer vector (NSpec), the mass compartment of the chemical species for which
we have formation reactions (0-based)

character vector (NSpec), the activity correction method of the chemical species
for which we have formation reactions

integer vector (NSpec), the number of components for the formation reactions

integer matrix (NSpec x max(SpecNC)), the list of components for the formation
reactions

numeric vector (NSpec), the concentration to mass conversion factor of the
chemical species for which we have formation reactions

signed integer vector (NSpec), the charge of the chemical species for which we
have formation reactions

numeric vector (NSpec), the equilibrium coefficient of the formation reactions

numeric vector (NSpec), the logl10-transformed equilibrium coefficient of the
formation reactions

numeric vector (NSpec), the enthalpy change of the formation reactions

numeric vector (NSpec), the temperature associated with K/logK and DeltaH of
the formation reactions

signed integer matrix (NSpec x NComp), the reaction stoichiometry of the for-
mation reactions

numeric vector (NSpec), the concentrations of each species for which we have
formation reactions

numeric vector (NSpec), the moles of each species for which we have formation
reactions

integer, the number of phases in the phase list

character vector (NPhase), the name of the phases for which we have phase
reactions

integer vector (NPhase), the number of components for the phase reactions

integer matrix (NPhase x max(PhaseNC)), the list of components for the phase
reactions

signed integer matrix (NPhase x NComp), the reaction stoichiometry for the
phase reactions

numeric vector (NPhase), the equilibrium coefficient for the phase reactions

numeric vector (NPhase), the log10-transformed equilibrium coefficient for the
phase reactions

numeric vector (NPhase), the enthalpy change for the phase reactions

numeric vector (NPhase), the temperature associated with K/logK and DeltaH
for the phase reactions

18

PhaseMoles

NSpecialDef

NBL

NMetal

NBLMetal

BLName

MetalName

BLMetalName

BLCompR

BLComp

MetalCompR

MetalComp

BLMetalSpecsR

BLMetalSpecs

DoWHAM
WHAMDLF
WHAMKZED
SpecKsel

WHAMP
WHAMRadius
WHAMMo1Wt

CommonParameterDefinitions

numeric vector (NPhase), the number of moles of the phases for which we have
phase reactions

integer, the number of special definitions in the parameter file, including biotic
ligands, metals, WHAM versions, etc.

integer, the number of biotic ligand components associated with toxic effects...typically
one...and things might get messed up if it’s not one.

integer, the number of metal components associated with toxic effects...typically
one...and things might get messed up if it’s not one.

integer, the number of biotic ligand-bound metal species that are associated with
toxic effects.

The name of the component that corresponds to the biotic ligand associated with
toxic effects.

The name of the component that corresponds to the metal associated with toxic
effects.

The names of the species that are the biotic ligand-bound metal associated with
toxic effects.

integer vector (NBL), the (1-based) position of the biotic ligand component(s)
in the component arrays

integer vector (NBL), the (0-based) position of the biotic ligand component(s)
in the component arrays

integer vector (NMetal), the (1-based) position of the metal component(s) in the
component arrays (i.e., which is the toxic metal component)

integer vector (NMetal), the (0-based) position of the metal component(s) in the
component arrays (i.e., which is the toxic metal component)

integer vector (NBLMetal), the (1-based) positions of the species in the arrays
which contribute to toxicity (i.e., which species are the toxic metal bound to the
relevant biotic ligand)

integer vector (NBLMetal), the (0-based) positions of the species in the arrays
which contribute to toxicity (i.e., which species are the toxic metal bound to the
relevant biotic ligand)

logical, TRUE = there are WHAM species, FALSE = no WHAM species
numeric (2), WHAM’s Double layer overlap factor

numeric (2), WHAM’s Constant to control DDL at low ZED

numeric (NSpec, 2), WHAM’s Selectivity coefficient Ksel for diffuse layer bind-
ing

numeric (2), WHAM’s P parameter...

numeric (2), WHAM’s molecular radius parameter for organic matter

numeric (2), WHAM’s molecular weight parameter for organic matter

HumicSubstGramsPerLiter

CATab

numeric (2), grams per liter of each organic matter component (HA and FA) in
solution

data frame, the critical accumulation table from the parameter file.

CommonParameterDefinitions 19

NCAT integer, the number of critical accumulations in the parameter file table.

CATarget numeric, the target critical accumulation in units of mol / kg (only used when
DoTox == TRUE)

NObs integer; the number of chemistry observations

InLabObs character matrix with NObs rows and InLab columns; the input labels for each
observation

InVarObs matrix with NObs rows and InVar columns; the input variables for each obser-
vation

InCompObs matrix with NObs rows and InComp columns; the input component concentra-
tions for each observation

SysTempCelsiusObs
numeric vector of length NObs; input temperatures, in Celsius

SysTempKelvinObs
numeric vector of length NObs; input temperatures, in Kelvin

SysTempCelsius double; input temperature for the current observation, in Celsius

SysTempKelvin double; input temperature for the current observation, in Kelvin

TotConcObs numeric matrix with NObs rows and NComp columns; the total concentrations
of each component, including derived components

pH numeric vector NObs; input pH for each observation

Finallter integer, the number of Newton-Raphson iterations that we needed to reach con-
vergence

FinalMaxError numeric, the highest final absolute error fraction =max(abs(Resid / TotMoles))

MaxError numeric, the highest absolute error fraction in this iteration =max(abs(Resid /
TotMoles))

CalcTotConc numeric vector (NComp), the calculated total concentrations of each component
in the simulation (units of e.g., mol/L and mol/kg)

QuietFlag character, one of "Very Quiet" (only print out when run is done), "Quiet" (print
out Obs=iObs), or "Debug" (print out lots of info)

DoTox logical, TRUE for toxicity mode where the MetalName component concentra-
tion is adjusted to try to match the CATarget with BLMetalSpecs

ConvergenceCriteria
numeric, the maximum value of MaxError that counts as convergence by the
Newton-Raphson root-finding algorithm

MaxIter integer, the maximum number of iterations the Newton-Raphson root-finding
algorithm should do before giving up

IonicStrength double, the ionic strength of the solution

See Also

Other BLMEngine Functions: GetData(), MatchInputsToProblem(), ReadInputsFromFile()

20 Components

Components Add or remove components in the problem

Description

A component should be added either as an input component (with ‘AddInComps) or a defined com-
ponent (with ‘AddDefComps‘). Both of those functions will call the ‘AddComponents* function,
but using either ‘AddInComps‘ and ‘AddDefComps* ensures that it’s very clear where the inputs
come from.

Usage

AddComponents (
ThisProblem,
CompName,
CompCharge,
CompMCName = NULL,
CompType,
CompActCorr,
CompSiteDens = 1,
CompMCR = match(CompMCName, ThisProblem$Mass$Name, nomatch = -1L),
DoCheck = TRUE

)

RemoveComponents(ThisProblem, ComponentToRemove, DoCheck = TRUE)

AddInComps(
ThisProblem,
InCompName,
InCompCharge,
InCompMCName = NULL,
InCompType,
InCompActCorr,
InCompMCR = match(InCompMCName, ThisProblem$Mass$Name, nomatch = -1L),
DoCheck = TRUE

)

RemoveInComps(ThisProblem, InCompToRemove, DoCheck = TRUE)

AddDefComps (
ThisProblem,
DefCompName,
DefCompFromNum
DefCompFromVar
DefCompCharge,
DefCompMCName = NULL,
DefCompType,

NULL,
NULL,

Components 21

DefCompActCorr,

DefCompSiteDens,

DefCompMCR = match(DefCompMCName, ThisProblem$Mass$Name, nomatch = -1L),
InDefComp = TRUE,

DoCheck = TRUE

)

RemoveDefComps (ThisProblem, DefCompToRemove, DoCheck = TRUE)

Arguments

ThisProblem A list object with a structure like that returned by ‘BlankProblem()‘.
CompName, InCompName, DefCompName
A character vector with the name(s) of the components to be added.
CompCharge, InCompCharge, DefCompCharge
An integer vector with the charge(s) of the components to be added.
CompMCName, InCompMCName, DefCompMCName
A character vector with the name(s) of the mass compartments the new compo-
nents are associated with. Does not need to be specified if ‘CompMCR /* InCompMCR ‘/*‘DefCompMCR*
is specified instead.
CompType, InCompType, DefCompType
A character vector with the types of the new input variables. Must be one of
"MassBal", "FixedAct", "FixedConc", "DonnanHA", or "DonnanFA".
CompActCorr, InCompActCorr, DefCompActCorr
A character vector with the activity correction method(s) of the new compo-
nents. Must be one of "None", "Debye", "Davies", "DonnanHA", "DonnanFA",
"WHAMHA", or "WHAMFA". Generally, "DonnanHA", "DonnanFA", "WHAMHA",
and "WHAMFA" will only be used internally.
CompSiteDens, DefCompSiteDens
A numeric vector with the binding site densities of the new components. ‘AddIn-
Comps* assumes a site density of 1.0.
CompMCR, InCompMCR, DefCompMCR
(optional) A character vector with the indices of the mass compartments the
new components are associated with. Only needs to be specified if ‘CompMC-
Name‘/‘InCompMCName ‘/‘DefCompMCName* is not specified.

DoCheck A logical value indicating whether checks should be performed on the incoming
and outgoing problem objects. Defaults to “TRUE®, as you usually want to make
sure something isn’t awry, but the value is often set to ‘FALSE* when used
internally (like in DefineProblem) so the problem is only checked once at the
end.

ComponentToRemove, InCompToRemove, DefCompToRemove
A character vector with names or indices of the component(s) to remove from
‘ThisProblem®. It is safer to use a name, since the index of the component may
be different within ‘ThisProblem$Comp$Name* versus ‘ThisProblem$InCompName*
versus ‘ThisProblem$DefComp$Name*.

DefCompFromNum A numeric vector with the numeric values used to derive the component. Specify
‘NA“ if the defined component uses a variable to define it.

22 ConvertWHAM YV ThermoFile

DefCompFromVar A character vector with the variable names used to derive the component. Spec-
ify ‘NA‘ if the defined component uses a number to define it.

InDefComp A logical value indicating if this is a defined component from the parameter
file (‘“TRUE®) or was added from another process, such as ‘ExpandWHAM"*
(‘FALSE").
Value

‘ThisProblem*, with the edits done to the component list, including "trickle-down" changes, such
as removing formation reactions that used a now-removed component.

See Also

The in-depth example in [BlankProblem()] will show all problem manipulation functions in use.

Other problem manipulation functions: BlankProblem(), CriticalValues, InLabs, InVars, MassCompartments,
Phases, SpecialDefs, Species

Examples

print(carbonate_system_problem$Comp)

my_new_problem = carbonate_system_problem

my_new_problem = AddInComps(ThisProblem = my_new_problem,
InCompName = "Ca",
InCompCharge = 2,
InCompMCName = "Water”,
InCompType = "MassBal”,
InCompActCorr = "Debye")

print(my_new_problem$Comp)

ConvertWHAMVThermoFile
Convert from a WHAM V thermodynamic database file

Description

This function will take a thermodynamic database file used by the Windemere Humic Aqueous
Model (WHAM) V and the Windows BLM and convert it into a BLMEngineInR chemistry problem
list.

Usage

ConvertWHAMVThermoFile(ThermoDBSName, RWHAMFile = NULL, RParamFile = NULL)

ConvertWindowsParamFile 23

Arguments

ThermoDBSName
RWHAMFile

RParamFile

Value

Character string with the file path of the WHAM thermodynamic database file
to convert (typically ".dbs" file extension).

(optional) Character string with the file path of the R-format WHAM parameter
file to save (suggest file extension ".wdat").

(optional) Character string with the file path of the R-format BLM parameter
file to save (suggest file extension ".dat4").

The BLMEngineInR-compatible chemistry problem object. If RWHAMFile or RParamFile are
provided, this will return invisibly.

ConvertWindowsParamFile

Convert From a Windows BLM Parameter File

Description

Convert From a Windows BLM Parameter File

Usage
ConvertWindowsParamFile(
WindowsParamFile,
RParamFile = NULL,
RWHAMFile = NULL,
MarineFile = FALSE
)
Arguments
WindowsParamFile
Character string with the file path of the Windows-format BLM parameter file.
Typically will have the extension ".dat".
RParamFile (optional) Character string with the file path of the R-format BLM parameter
file to save.
RWHAMFile (optional) Character string with the file path of the R-format WHAM parameter
file to save.
MarineFile Boolean value - is this a marine file? If so, it uses a lower mass value. In
the Windows BLM, this is equivalent to using the "/M" switch. Defaults to
‘FALSE".
Value

The BLMEngineInR-compatible chemistry problem object. If RParamFile is provided, this will

return invisibly.

24 Critical Values

Criticalvalues Edit Critical Values Table

Description

‘AddCritical Values‘ will add one or more rows to the critical accumulation table (CAT or CATab),
while ‘RemoveCritical Values‘ will remove one or more rows,

Usage

AddCriticalValues(
ThisProblem,
CATab = data.frame(),
CA = CATab[, which(colnames(CATab) %in% c("CA", "CA (nmol/gw)"))[111],
Species = CATab$Species,
TestType = CATab[, which(colnames(CATab) %in% c("TestType", "Test.Type",
"Test Type"))[1]],
Duration = CATab$Duration,
Lifestage = CATab$Lifestage,
Endpoint = CATab$Endpoint,
Quantifier = CATab$Quantifier,
References = CATab$References,
Miscellaneous = CATab$Miscellaneous,
DoCheck = TRUE
)

RemoveCriticalValues(ThisProblem, CAToRemove, DoCheck = TRUE)

Arguments

ThisProblem A list object with a structure like that returned by ‘BlankProblem()‘.

CATab a data.frame object with, at a minimum, columns named ‘CA‘/‘CA (nmol/gw)‘,
‘Species®, “TestType*/‘Test. Type‘/‘Test Type‘, ‘Duration‘, ‘Lifestage‘, ‘Endpoint*,
‘Quantifier’, ‘References, ‘Miscellaneous‘. See optional parameter descrip-
tions for further descriptions of each of those columns.

CA (optional) a numeric vector of the critical accumulation value(s) in nmol/gw.

Species (optional) a character vector of the species names to include for the correspond-
ing ‘CA° value.

TestType (optional) a character vector of the test type (e.g., "Acute" or "Chronic") to in-
clude for the corresponding ‘CA* value.

Duration (optional) a character vector of the Duration to include for the corresponding
‘CA°® value. Can also be ‘"DIV=#.##"‘ for FAV, FCV, WQS, and HC5 critical
values.

Lifestage (optional) a character vector of the organism Lifestage to include for the cor-

responding ‘CA° value. Can also be ‘"ACR=###"* for FAV, WQS, and HC5
critical values.

Critical Values 25

Endpoint (optional) a character vector of the Endpoint to include for the corresponding
‘CA* value. This can also be either ‘"FAV"‘, ‘"FCV"‘, “"HC5"*, “"WQS"*,
"CMC", or “"CCC"* to indicate this critical value calculates one of those water
quality standards.

Quantifier (optional) a character vector of the Quantifier (e.g., EC50, NOEC, ...) to include
for the corresponding ‘CA‘ value. May also be ‘NA‘ if this is a WQS value.

References (optional) a character vector of the list of References to include for the corre-
sponding ‘CA°‘ value. Each ‘CA°‘ value requires a single character string with
no line breaks.

Miscellaneous (optional) a character vector of the miscellaneous information (e.g., how the
value was calculated, test conditions not covered by other columns, etc.) to
include for the corresponding ‘CA‘ value.

DoCheck A logical value indicating whether checks should be performed on the incoming
and outgoing problem objects. Defaults to “TRUE®, as you usually want to make
sure something isn’t awry, but the value is often set to ‘FALSE* when used
internally (like in DefineProblem) so the problem is only checked once at the
end.

CAToRemove an integer vector - the indices/row numbers of the critical values to remove from
the table.

Value

The edited version of ‘“ThisProblem°.

See Also

Other problem manipulation functions: BlankProblem(), Components, InLabs, InVars, MassCompartments,
Phases, SpecialDef's, Species

Examples

my_new_problem = carbonate_system_problem

my_new_problem = AddCriticalValues(
ThisProblem = my_new_problem,
CA = 12345,
Species = "A. species”,
TestType = "Acute”,
Duration = "24h",
Lifestage = "adult”,
Endpoint = "survival”,
Quantifier = "LC50",
References = "thin air”,
Miscellaneous = "individual data point”

)

lots_of_data = data.frame(CA = runif(26),
Species = paste@(LETTERS,". species"”),
TestType = "Acute”,

26

Duration = "24h",
Lifestage = "adult”,

Endpoint = "survival”,
Quantifier = "LC50",
References = "thin air")

my_new_problem = AddCriticalValues(
ThisProblem = my_new_problem,
CATab = lots_of_data

)

my_new_problem = RemoveCriticalValues(
ThisProblem = my_new_problem,

Cu_tull_inorganic_problem

CAToRemove = which((my_new_problem$CATab$Species == "A. species”) &
is.na(my_new_problem$CATab$Miscellaneous))

)

print(my_new_problem$CATab)

Cu_full_inorganic_problem

Cu problem with only inorganic components

Description

An example BLMEngineInR problem object, which describes a system with all of the common
cations (Ca, Mg, Na, K) and anions (SO4, Cl, CO3) represented with their usual reactions. Copper
is also represented as the toxic metal binding to a biotic ligand, and some example critical accumu-
lations values are provided including one for the United States Environmental Protection Agency’s
(USEPA) final acute value (FAV). These critical accumulation values are the ones calibrated from
the full organic model, as the DOC complexation should not affect the amount of organic matter
required to induce a toxic effect, in theory. This will not give accurate predictions of toxicity when

DOC is present in the water.

Usage

Cu_full_inorganic_problem

Format

An object of class 1ist of length 24.

Cu_tull_organic_problem 27

Cu_full_organic_problem
Copper problem with WHAM V organic matter

Description

An example BLMEngineInR problem object, which describes a system with organic matter repre-
sented by WHAM YV, and all of the common cations (Ca, Mg, Na, K) and anions (SO4, Cl, CO3)
represented with their usual reactions. Copper is also represented as the toxic metal binding to a
biotic ligand, and some example critical accumulations values are provided, including one for the
United States Environmental Protection Agency’s (USEPA) final acute value (FAV).

Usage

Cu_full_organic_problem

Format

An object of class 1list of length 24.

DefineProblem Define the speciation problem

Description
‘DefineProblem* reads in a parameter file, and sets up the required vectors and matrices that will be
needed to run the speciation calculations in CHESS.

Usage

DefineProblem(ParamFile, WritelLog = FALSE)

Arguments

ParamFile the path and file name to a parameter file

WritelLog if TRUE, the CHESS.LOG file will be written, summarizing the current problem
Value

Returns a ‘list® object with each list item named according to the template of BlankProblem

Examples

mypfile = system.file("extdata”, "ParameterFiles”,
"carbonate_system_only.dat4",
package = "BLMEngineInR", mustWork = TRUE)
thisProblem = DefineProblem(mypfile)

28 GetData

DefineWHAM Read a WHAM file and make a WHAM list

Description

A WHAM file is a text file (typically with the file extension ".wdat") that has all of the information
necessary for defining organic matter binding, according to the Windemere Humic Aqueous Model
(WHAM). Only constants relating directly to organic matter binding are in this object and file (i.e.,
nothing related to inorganic binding). This is the information needed by the ‘ExpandWHAM()*
function and to do organic matter binding in the ‘CHESS* subroutine.

Usage
DefineWHAM(WHAMVer = "V”, WHAMFile = NA)

Arguments
WHAMVer a character string specifying the WHAM version to use, must be one of “"V"*
(default), “"VI"‘, or *"VII"*. Ignored if “‘WHAMFile* is not ‘NA*.
WHAMFile (optional) a character string specifying the file path of a WHAM parameter file
Value

A WHAM list in the format of ‘BlankWHAM()*.

GetData Get data from the input file

Description

‘GetData‘ reads in the input file and prepares it for input to the BLM function.

Usage

GetData(
InputFile,
ThisProblem = NULL,
NInLab = ThisProblem$N["InLab"],
InLabName = ThisProblem$InLabName,
NInVar = ThisProblem$N["InVar"],
InVarName = ThisProblem$InVar$Name,
InVarMCR = ThisProblem$InVar$MCR,
InVarType = ThisProblem$InVar$Type,
NInComp = ThisProblem$N["InComp"],
InCompName = ThisProblem$InCompName,

GetData 29

NComp = ThisProblem$N["Comp"],

CompName = ThisProblem$Comp$Name,

NDefComp = ThisProblem$N["DefComp”],
DefCompName = ThisProblem$DefComp$Name,
DefCompFromNum = ThisProblem$DefComp$FromNum,
DefCompFromVar = ThisProblem$DefComp$FromVar,
DefCompSiteDens = ThisProblem$DefComp$SiteDens

)

Arguments
InputFile character(1); the path and file name to a BLM input file
ThisProblem a list object following the template of BlankProblem
NInLab integer; number of input label columns
InLabName character vector of length ‘NInLab‘; names of input columns
NInVar integer; Number of input variables
InVarName character vector of length ‘NInVar‘; Names of input variables
InVarMCR integer vector of length ‘NInVar‘; Mass compartments of input variables
InVarType character vector of length ‘NInVar‘; Types of input variables
NInComp integer; Number in input components
InCompName character vector of length ‘NInComp‘; names of input components
NComp integer; Number of components
CompName character vector of length ‘NComp*; component names
NDefComp integer; Number of defined components
DefCompName character vector of length ‘NDefComp*; defined component names

DefCompFromNum numeric vector of length ‘NDefComp*; the number the defined component is
formed from

DefCompFromVar character vector of length ‘NDefComp*; the column used to form the defined
component
DefCompSiteDens

numeric vector of length ‘NDefComp*; the binding site density of each defined
component

Value

Returns a ‘list* object with the following components:

NObs integer; the number of chemistry observations
InLabObs matrix with NObs rows and InLab columns; the input labels for each observation
InVarObs matrix with NObs rows and InVar columns; the input variables for each observation

InCompObs matrix with NObs rows and InComp columns; the input component concentrations
for each observation

SysTempCelsiusObs numeric vector of length NObs; input temperatures, in Celsius

30 InLabs

SysTempKelvinObs numeric vector of length NObs; input temperatures, in Kelvin
pHObs numeric vector (NObs); input pH for each observation

TotConcObs numeric matrix with NObs rows and NComp columns; the total concentrations of each
component, including derived components

HumicSubstGramsPerLiterObs numeric matrix with NObs rows and 2 columns; the total concen-
tration of humic substances (humic/HA and fulvic/FA) in grams per liter

See Also

Other BLMEngine Functions: CommonParameterDefinitions, MatchInputsToProblem(), ReadInputsFromFile()

Examples

myinputfile = system.file("extdata”, "InputFiles”,
"carbonate_system_test.blm4",
package = "BLMEngineInR"”, mustWork = TRUE)
GetData(InputFile = myinputfile, ThisProblem = carbonate_system_problem)#'

InLabs Add or remove input labels in a problem

Description

Add or remove input labels in a problem

Usage
AddInLabs(ThisProblem, InLabName, DoCheck = TRUE)

RemovelInLabs(ThisProblem, InLabToRemove, DoCheck = TRUE)

Arguments

ThisProblem A list object with a structure like that returned by ‘BlankProblem()°.
InLabName A character vector with the name(s) of the new input label(s).

DoCheck A logical value indicating whether checks should be performed on the incoming
and outgoing problem objects. Defaults to “TRUE®, as you usually want to make
sure something isn’t awry, but the value is often set to ‘FALSE‘ when used
internally (like in DefineProblem) so the problem is only checked once at the
end.

InLabToRemove A character vector with names or indices of the input label(s) to remove from
“ThisProblem®.

Value

‘ThisProblem*, with the edited input labels.

InVars 31

See Also

Other problem manipulation functions: BlankProblem(), Components, CriticalValues, InVars,
MassCompartments, Phases, SpecialDef's, Species

Examples

my_new_problem = carbonate_system_problem
print(carbonate_system_problem$InLabName) # ID only

my_new_problem = AddInLabs(ThisProblem = my_new_problem, InLabName = "ID2")
my_new_problem = RemovelInLabs(my_new_problem, InLabToRemove = "ID")

print(my_new_problem$InlLabName) # ID2 only

InVars Add or remove a input variables in a problem

Description

Add or remove a input variables in a problem

Usage

AddInVars(
ThisProblem,
InVarName,
InVarMCName = NULL,
InVarType = c("Temperature”, "pH", "WHAM-FA", "WHAM-HA" 6 "WHAM-HAFA", "PercHA",
"PercAFA", "Misc"),
InVarMCR = match(InVarMCName, ThisProblem$Mass$Name, nomatch = -1L),
DoCheck = TRUE

RemovelInVars(ThisProblem, InVarToRemove, DoCheck = TRUE)

Arguments

ThisProblem A list object with a structure like that returned by ‘BlankProblem()°.
InVarName A character vector with the name(s) of the input input variable(s).

InVarMCName A character vector with the name(s) of the mass compartments the new input
variables are associated with. Does not need to be specified if ‘InVarMCR® is
specified instead.

InVarType A character vector with the types of the new input variables. Must be one
of "Temp", "pH", "WHAM-HA", "WHAM-FA", "WHAM-HAFA", "PercHA",
"PercAFA", and "Misc".

32 ListCAT

InVarMCR (optional) A character vector with the indices of the mass compartments the
new input variables are associated with. Only needs to be specified if ‘InVarM-
CName* is not specified.

DoCheck A logical value indicating whether checks should be performed on the incoming
and outgoing problem objects. Defaults to “TRUE®, as you usually want to make
sure something isn’t awry, but the value is often set to ‘FALSE when used
internally (like in DefineProblem) so the problem is only checked once at the
end.

InVarToRemove A character vector with names or indices of the input variable(s) to remove from
‘ThisProblem®.

Value

‘ThisProblem*, with the changed input variables. If the input variable being added is pH, "H" and
"OH" components will also be added as fixed activity components.

See Also

Other problem manipulation functions: BlankProblem(), Components, CriticalValues, InLabs,
MassCompartments, Phases, SpecialDefs, Species

Examples

print(carbonate_system_problem$InVar)
my_new_problem = carbonate_system_problem
my_new_problem = AddInVars(ThisProblem = my_new_problem,
InVarName = c("Humics”, "Fulvics"),
InVarMCName = "Water"”,
InVarType = c("WHAM-HA", "WHAM-FA"))
my_new_problem = RemoveInVars(ThisProblem = my_new_problem,
InVarToRemove = "Humics")
print(my_new_problem$InVar)

ListCAT List Critical Accumulation Table

Description

List out the critical accumulation table for the user to allow them to pick which CAT number they
should specify for a toxicity run where the critical value is coming from the table in the parameter
file.

Usage

ListCAT(ParamFile)

MassCompartments 33

Arguments

ParamFile character string; the file name and path of the parameter file.

Value
A data. frame object with the CAT table in the given parameter file. Columns include:

Num the number or index in the table

‘CA (nmol/gw)‘ the critical accumulation in units of nmol/gw

Species species name or CA significance, such as HC5 or FAV

‘Test Type‘ acute or chronic

Duration test duration (e.g., 48 h)

Lifestage age or size of the organisms

Endpoint toxicity endpoint (e.g., mortality, reproduction)

Quantifier endpoint quantifier or effect level (e.g., LC50, EC10, NOEC)

References citations of sources with the toxicity data that went into calculating the CA, or the
citation of the HCS or FAV

Miscellanous other notes or comments (e.g., number of data points or methods of calculating)

Examples

mypfile = system.file("extdata”, "ParameterFiles”, "Cu_full_organic.dat4",
package = "BLMEngineInR",
mustWork = TRUE)

ListCAT(ParamFile = mypfile)

MassCompartments Add or remove mass compartments in a problem

Description

Add or remove mass compartments in a problem

Usage

AddMassCompartments(
ThisProblem,
MassTable = data.frame(),
MassName = MassTable$Name,
MassAmt = MassTable$Amt,
MassUnit = MassTable$Unit,
InMass = TRUE,
DoCheck = TRUE

RemoveMassCompartments(ThisProblem, MCToRemove, DoCheck = TRUE)

34 MassCompartments

Arguments

ThisProblem A list object with a structure like that returned by ‘BlankProblem()‘.

MassTable A ‘data.frame’ object with, at a minimum, columns ‘Name°‘, ‘Amt‘, and ‘Unit",
defining the characteristics of the mass compartment(s) to add.

MassName A character vector with the name(s) of the new mass compartment(s).

MassAmt A numeric vector with the mass compartment amount(s).

MassUnit A character vector with the units for the amount(s) of the mass compartment(s).
InMass A logical value or vector indicating if this mass compartment is in the parameter

file (“TRUE", default) or was created as a result of, e.g. the ‘ExpandWHAM"*
function (‘FALSE®).

DoCheck A logical value indicating whether checks should be performed on the incoming
and outgoing problem objects. Defaults to “TRUE®, as you usually want to make
sure something isn’t awry, but the value is often set to ‘FALSE‘ when used
internally (like in DefineProblem) so the problem is only checked once at the
end.

MCToRemove A character vector with names or indices of the mass compartment(s) to remove
from ‘ThisProblem°.

Value

‘ThisProblem*, with all the edited mass compartments, along with any components, input variables,
etc. associated with those mass compartments edited.

See Also

Other problem manipulation functions: BlankProblem(), Components, CriticalValues, InLabs,
InVars, Phases, SpecialDef's, Species

Examples

print(carbonate_system_problem$Mass)

my_new_problem = carbonate_system_problem

my_new_problem = AddMassCompartments(ThisProblem = my_new_problem,
MassName = c("Soil”, "BL"),
MassAmt = 1,
MassUnit = c("kg", "kg wet"))

print(my_new_problem$Mass)

my_new_problem = RemoveMassCompartments(ThisProblem = my_new_problem,

MCToRemove = "Soil")
print(my_new_problem$Mass)

MatchInputsToProblem 35

MatchInputsToProblem Match Inputs to Problem

Description

‘MatchInputsToProblem* will take the input variables and component concentrations and match/transform

them to the inputs for full list of components, including defined components and WHAM compo-
nents.

Usage

MatchInputsToProblem(
DFInputs = data.frame(),
NObs = nrow(DFInputs),
InLabObs = DFInputs[, ThisProblem$InLabName, drop = FALSE],
InVarObs = DFInputs[, ThisProblem$InVar$Name, drop = FALSE],
InCompObs = DFInputs[, ThisProblem$InCompName, drop = FALSE],
ThisProblem = NULL,
NInVar = ThisProblem$N["InVar"],
InVarName = ThisProblem$InVar$Name,
InVarMCR = ThisProblem$InVar$MCR,
InVarType = ThisProblem$InVar$Type,
NInComp = ThisProblem$N["InComp"],
InCompName = ThisProblem$InCompName,
NComp = ThisProblem$N["Comp"],
CompName = ThisProblem$Comp$Name,
NDefComp = ThisProblem$N["DefComp"],
DefCompName = ThisProblem$DefComp$Name,
DefCompFromNum = ThisProblem$DefComp$FromNum,
DefCompFromVar = ThisProblem$DefComp$FromVar,
DefCompSiteDens = ThisProblem$DefComp$SiteDens

)
Arguments

DFInputs A data.frame object with, at a minimum, columns named for ‘ThisProblem$InLabName°,
‘ThisProblem$InVar$Name* and ‘ThisProblem$InCompName*.

NObs integer; the number of chemistry observations

InLabObs character matrix with NObs rows and InLab columns; the input labels for each
observation

InVarObs matrix with ‘NObs‘ rows and ‘NInVar* columns; the input variables for each
observation

InCompObs matrix with ‘NObs‘ rows and ‘NInComp* columns; the input component con-

centrations for each observation

ThisProblem a list object following the template of BlankProblem

36 MatchInputsToProblem

NInVar integer; Number of input variables

InVarName character vector of length ‘NInVar‘; Names of input variables

InVarMCR integer vector of length ‘NInVar‘; Mass compartments of input variables
InVarType character vector of length ‘NInVar‘; Types of input variables

NInComp integer; Number in input components

InCompName character vector of length ‘NInComp‘; names of input components
NComp integer; Number of components

CompName character vector of length ‘NComp*; component names

NDefComp integer; Number of defined components

DefCompName character vector of length ‘NDefComp*; defined component names

DefCompFromNum numeric vector of length ‘NDefComp*; the number the defined component is
formed from

DefCompFromVar character vector of length ‘NDefComp*; the column used to form the defined
component

DefCompSiteDens
numeric vector of length ‘NDefComp*; the binding site density of each defined
component

Value

Returns a 1ist object with the following components:

NObs integer; the number of chemistry observations
InLabObs matrix with NObs rows and InLab columns; the input labels for each observation
InVarObs matrix with NObs rows and InVar columns; the input variables for each observation

InCompObs matrix with NObs rows and InComp columns; the input component concentrations
for each observation

SysTempCelsiusObs numeric vector of length NObs; input temperatures, in Celsius
SysTempKelvinObs numeric vector of length NObs; input temperatures, in Kelvin
pHObs numeric vector (NObs); input pH for each observation

TotConcObs numeric matrix with NObs rows and NComp columns; the total concentrations of each
component, including derived components

HumicSubstGramsPerLiterObs numeric matrix with NObs rows and 2 columns; the total concen-
tration of humic substances (humic/HA and fulvic/FA) in grams per liter

See Also

Other BLMEngine Functions: CommonParameterDefinitions, GetData(), ReadInputsFromFile()

MwW 37

MW Molecular and atomic weights

Description

‘MW* is a named list of molecular and atomic weights. The name of the list element is the symbol
or formula of the chemical element or molecule (e.g. find hydrogen with "H", carbon dioxide as
"COZH).

Usage
MW

Format

An object of class numeric of length 132.

Source

Prohaska, T., Irrgeher, J., Benefield, J., Bohlke, J., Chesson, L., Coplen, T., Ding, T., Dunn, P.,
Groning, M., Holden, N., Meijer, H., Moossen, H., Possolo, A., Takahashi, Y., Vogl, J., Wal-
czyk, T., Wang, J., Wieser, M., Yoneda, S., Zhu, X. & Meija, J. (2022). Standard atomic weights
of the elements 2021 (IUPAC Technical Report). Pure and Applied Chemistry, 94(5), 573-600.
https://doi.org/10.1515/pac-2019-0603

Examples

check that the molecular weight of CaCO3 is the same as Ca + C + O * 3
sum(MW[c("Ca"”, "C")], MWL"0"] * 3) #=100.086
MWL"CaC03"] #=100.086

Ni_full_organic_problem
Ni problem with WHAM V organic matter

Description

An example BLMEngineInR problem object, which describes a system with all of the common
cations (Ca, Mg, Na, K) and anions (SO4, CI, CO3) represented with their usual reactions. Nickel
is also represented as the toxic metal binding to the biotic ligand, and the critical accumulations
from the Santore et al. (2021) paper.

Usage

Ni_full_organic_problem

38 Ni_HCO3_full_organic_problem

Format

An object of class 1ist of length 25.

References

Santore, Robert C., Kelly Croteau, Adam C. Ryan, Christian Schlekat, Elizabeth Middleton, Emily
Garman, and Tham Hoang (2021). A Review of Water Quality Factors that Affect Nickel Bioavail-
ability to Aquatic Organisms: Refinement of the Biotic Ligand Model for Nickel in Acute and
Chronic Exposures. Environmental Toxicology and Chemistry, col 40, iss. 8, pp 2121-2134. doi:
10.1002/etc.5109

Ni_HCO3_full_organic_problem
Ni problem with WHAM V organic matter and NiHCO3 toxic

Description

An example BLMEngineInR problem object, which describes a system with all of the common
cations (Ca, Mg, Na, K) and anions (S04, Cl, CO3) represented with their usual reactions. Nickel
is also represented as the toxic metal binding to the biotic ligand, and the critical accumulations from
the Santore et al. (2021) paper. This version has a BL-NiHCO3 species whose binding constant
has been calibrated to Ceriodaphnia dubia toxicity. Ceriodaphnia dubia are sensitive to bicarbonate
toxicity and this file simulates this mixtures effect.

Usage

Ni_HCO3_full_organic_problem

Format

An object of class 1ist of length 25.

References

Santore, Robert C., Kelly Croteau, Adam C. Ryan, Christian Schlekat, Elizabeth Middleton, Emily
Garman, and Tham Hoang (2021). A Review of Water Quality Factors that Affect Nickel Bioavail-
ability to Aquatic Organisms: Refinement of the Biotic Ligand Model for Nickel in Acute and
Chronic Exposures. Environmental Toxicology and Chemistry, col 40, iss. 8, pp 2121-2134. doi:
10.1002/etc.5109

Phases

39

Phases

Add or remove phase reactions in a problem

Description

PHASES ARE NOT CURRENTLY IMPLEMENTED. This function is here for as a placeholder
since it will require much of the same support infrastructure once it is implemented, but no reactions

are processed in CHESS.
Usage
AddPhases(
ThisProblem,
PhaseEquation = character(),

PhaseName = character(),
PhaseCompNames = list(),
PhaseCompStoichs = list(),

PhaseStoich = NULL,
PhaselogK,
PhaseDeltaH,
PhaseTempKelvin,
PhaseMoles,

DoCheck = TRUE

)

RemovePhases(ThisProblem, PhasesToRemove, DoCheck = TRUE)

Arguments

ThisProblem

PhaseEquation

PhaseName

PhaseCompNames

A list object with a structure like that returned by ‘BlankProblem()‘.

A character vector giving the chemical equation for a formation reaction. This
must include the stoichiometric coefficients for each reactant, even ifit’s 1. (e.g.,
the equation for the formation of calcium chloride would be ‘"CaCI2 =1 * Ca +
2 * CI"%). If ‘PhaseName° is also supplied, then a partial equation with just the
right hand side (reactants) can be supplied (i.e., ‘"= 1 * Ca + 2 * CI1"). Can be
omitted if either ‘PhaseStoich‘ or both ‘PhaseCompNames* and ‘PhaseComp-
Stoichs* are supplied.

A character vector with the name(s) of the species to add formation reactions
for. Can be omitted if ‘SpecEquation‘ indicates the phase name.

A list where each element is a character vector of the component names used to
form each phase. See examples for clarification. Can be omitted if ‘PhaseEqua-
tion‘ or ‘PhaseStoich’ is supplied.

PhaseCompStoichs

A list where each element is an integer vector of the stoichiometric coefficients
of each component used to form each phase. See examples for clarification. Can
be omitted if ‘PhaseEquation‘ or ‘PhaseStoich* is supplied.

40 Phases

PhaseStoich A matrix of stoichiometric coefficients, where each row corresponds to a phase
reaction and each column corresponds to a component. The columns should
match “ThisProblem$Comp$Name* exactly. Can be omitted if either ‘PhaseE-
quation® or both ‘PhaseCompNames‘ and ‘PhaseCompStoichs‘ are supplied.

PhaselogK A numeric vector with the loglO-transformed equilibrium coefficients of the
phase formation reactions.

PhaseDeltaH A numeric vector with the change in enthalpy of the phase formation reactions.

PhaseTempKelvin
A numeric vector with the temperatures (in Kelvin) corresponding to ‘PhaseDeltaH*
values of the phase formation reactions.

PhaseMoles A numeric vector with the moles of the phase.

DoCheck A logical value indicating whether checks should be performed on the incoming
and outgoing problem objects. Defaults to “TRUE®, as you usually want to make
sure something isn’t awry, but the value is often set to ‘FALSE‘ when used
internally (like in DefineProblem) so the problem is only checked once at the
end.

PhasesToRemove A character or integer vector indicating the names or indices (respectively) of
the phase formation reactions to remove.

Value

“ThisProblem*, with the phase reaction(s) changed.

See Also

Other problem manipulation functions: BlankProblem(), Components, CriticalValues, InLabs,
InVars, MassCompartments, SpecialDef's, Species

Examples

print(carbonate_system_problem$Phase)
my_new_problem = carbonate_system_problem
my_new_problem = AddPhases(ThisProblem = my_new_problem,
PhaseEquation = "C02(g) =1 x CO3 + 2 x H",
PhaselLogK = -1.5,
PhaseDeltaH = 0,
PhaseTempKelvin = 0,
PhaseMoles = 10*-3.5)
print(my_new_problem$Phase)

ReadInputsFromFile 41

ReadInputsFromFile Read a BLM Input File

Description

‘ReadInputsFromFile‘ will read a BLM input file, assuming it matches the problem as defined by
the input arguments.

Usage

ReadInputsFromFile(
InputFile,
ThisProblem = NULL,
NInLab = ThisProblem$N["InLab"],
InLabName = ThisProblem$InLabName,
NInVar = ThisProblem$N["InVar"],
InVarName = ThisProblem$InVar$Name,
NInComp = ThisProblem$N["InComp”],
InCompName = ThisProblem$InCompName

)
Arguments
InputFile character; the path and file name to a BLM input file
ThisProblem a list object following the template of BlankProblem
NInLab integer; number of input label columns
InLabName character vector of length ‘NInLab‘; names of input columns
NInVar integer; Number of input variables
InVarName character vector of length ‘NInVar‘; Names of input variables
NInComp integer; Number in input components
InCompName character vector of length ‘NInComp‘; names of input components
Value

Returns a 1ist object with the following components:

NObs integer; the number of chemistry observations
InLabObs matrix with Obs rows and InLab columns; the input labels for each observation
InVarObs matrix with Obs rows and InVar columns; the input variables for each observation

InCompObs matrix with Obs rows and InComp columns; the input component concentrations for
each observation

See Also

Other BLMEngine Functions: CommonParameterDefinitions, GetData(),MatchInputsToProblem()

42 SpecialDefs

Examples

myinputfile = system.file("extdata”, "InputFiles”,
"carbonate_system_test.blm4",
package = "BLMEngineInR"”, mustWork = TRUE)
ReadInputsFromFile(InputFile = myinputfile,
ThisProblem = carbonate_system_problem)

SpecialDefs Add or remove species definitions

Description

The special definitions in a parameter file include indicating the biotic ligand species relevant to
toxicity ("BL"), the toxic metal ("Metal"), the species responsible for the critical accumulation
associated with toxicity at the biotic ligand ("BL-Metal"), and the model version of the Windemere
Humic Aqueous Model to use to represent organic matter binding ("WHAM").

Usage

AddSpecialDefs(ThisProblem, Value, SpecialDef, DoCheck = TRUE)

RemoveSpecialDefs(ThisProblem, SpecialDefToRemove, Index = 1, DoCheck = TRUE)

Arguments

ThisProblem A list object with a structure like that returned by ‘BlankProblem()‘.

Value A character vector. When ‘SpecialDef* is either ‘"BL"‘ or ‘"Metal", this should
be the name of a component in “ThisProblem$Chem$Name*. When ‘SpecialDef*
is “"BL-Metal"‘, this should be the name of a chemical species in ‘ThisProb-
lem$Spec$Name‘. When ‘SpecialDef* is ‘"WHAM"*, this should be either a
supported WHAM version number (i.e., one of “"V"*, “"VI"‘, or “"VII"), or the
file path to a WHAM parameters file (.wdat file) that follows the format of one of
the standard versions supplied with this package (see ‘system.file("extdata/ WHAM/WHAM_V.wdat",
package = "BLMEngineInR")‘ for an example).

SpecialDef A character vector indicating which special definition to add a value for. Valid
values are ‘"BL"‘, ‘"Metal"*, ‘"BL-Metal"*, ‘"BLMetal"‘ (same as ‘"BL-Metal"*),
and “"WHAM"*.

DoCheck A logical value indicating whether checks should be performed on the incoming

and outgoing problem objects. Defaults to “TRUE®, as you usually want to make
sure something isn’t awry, but the value is often set to ‘FALSE* when used
internally (like in DefineProblem) so the problem is only checked once at the
end.

SpecialDefToRemove

The name of the special definition to remove.

Index If applicable (such as if there are two BL-Metal species), the index of which to
remove (i.e., the first one or second one).

Species

Value

‘ThisProblem*, with the special definitions changed.

See Also

43

Other problem manipulation functions: BlankProblem(), Components, CriticalValues, InLabs

InVars, MassCompartments, Phases, Species

Examples

print(carbonate_system_problem[c("BL", "Metal”, "BLMetal”, "WHAM")])

my_new_problem = carbonate_system_problem

my_new_problem = AddInComps(ThisProblem = my_new_problem, InCompName = "Cu",

InCompCharge = 2,

InCompMCName = "Water",

InCompType = "MassBal”,

InCompActCorr = "Debye")
my_new_problem = AddSpecialDefs(ThisProblem = my_new_problem,

Value = "Cu",

SpecialDef = "Metal”)
print(my_new_problem[c("BL","Metal”, "BLMetal”, "WHAM")1)
my_new_problem = RemoveSpecialDefs(ThisProblem = my_new_problem,

SpecialDefToRemove = "Metal”)
print(my_new_problem[c("BL","Metal”, "BLMetal”, "WHAM")1)

Species Add or remove a species reactions in a problem

Description

Functions to add or remove species formation reactions.

Usage

AddSpecies(
ThisProblem,
SpecEquation = character(),
SpecName = character(),
SpecMCName = NULL,
SpecType = "Normal”,
SpecActCorr,
SpecCompNames = list(),
SpecCompStoichs = list(),
SpecStoich = NULL,
SpecLogK,
SpecDeltaH,
SpecTempKelvin,

SpecMCR = match(SpecMCName, ThisProblem$Mass$Name, nomatch = -1L),

44 Species

InSpec = TRUE,
DoCheck = TRUE
)

RemoveSpecies(ThisProblem, SpeciesToRemove, DoCheck = TRUE)

Arguments

ThisProblem A list object with a structure like that returned by ‘BlankProblem()‘.

SpecEquation A character vector giving the chemical equation for a formation reaction. This
must include the stoichiometric coefficients for each reactant, even ifit’s 1. (e.g.,
the equation for the formation of calcium chloride would be *"CaCI2=1 * Ca+2
Cl1"). If ‘SpecName* is also supplied, then a partial equation with just the right
hand side (reactants) can be supplied (i.e., “"=1* Ca+2 * CI"*). Can be omitted
if either ‘SpecStoich® or both ‘SpecCompNames* and ‘SpecCompStoichs* are
supplied.

SpecName A character vector with the name(s) of the species to add formation reactions
for. Can be omitted if ‘SpecEquation® indicates the species name.

SpecMCName A character vector with the name(s) of the mass compartments the new species
are associated with. Does not need to be specified if ‘SpecMCR® is specified
instead.

SpecType A character vector with the species type. SpecType values must be either *"Nor-

mal"‘, “"DonnanHA"‘, “"DonnanFA"‘, “"WHAMHA"*, “*"WHAMFA"*. The de-
fault value is “"Normal"‘, while the others are usually only needed for indicating
species that are added from ‘ExpandWHAM®.

SpecActCorr A character vector with the activity correction method(s) of the new species.
Must be one of "None", "Debye", "Davies", "DonnanHA", "DonnanFA", "WHAMHA",
or "WHAMFA".

SpecCompNames A list where each element is a character vector of the component names used to
form each species. See examples for clarification. Can be omitted if ‘SpecEqua-
tion* or ‘SpecStoich’ is supplied.

SpecCompStoichs
A list where each element is an integer vector of the stoichiometric coefficients
of each component used to form each species. See examples for clarification.
Can be omitted if ‘SpecEquation® or ‘SpecStoich‘ is supplied.

SpecStoich A matrix of stoichiometric coefficients, where each row corresponds to a chem-
ical species and each column corresponds to a component. The columns should
match ‘ThisProblem$Comp$Name* exactly. Can be omitted if either ‘SpecE-
quation‘ or both ‘SpecCompNames* and ‘SpecCompStoichs* are supplied.

SpeclLogK A numeric vector with the loglO-transformed equilibrium coefficients of the
species formation reactions.

SpecDeltaH A numeric vector with the change in enthalpy of the species formation reactions.

SpecTempKelvin A numeric vector with the temperatures (in Kelvin) corresponding to ‘SpecDeltaH*
values of the species formation reactions.

Species 45

SpecMCR (optional) A character vector with the indices of the mass compartments the new
species are associated with. Only needs to be specified if ‘SpecMCName* is not
specified.

InSpec A logical value indicating if this is a species formation reaction indicated from

the parameter file (‘TRUE®, the default) or a reaction that was added from an-
other process such as ‘ExpandWHAM* (‘FALSE®). This should usually only
be ‘FALSE‘ when another function is calling this function, such as ‘Expand-
WHAM".

DoCheck A logical value indicating whether checks should be performed on the incoming
and outgoing problem objects. Defaults to “TRUE®, as you usually want to make
sure something isn’t awry, but the value is often set to ‘FALSE* when used
internally (like in DefineProblem) so the problem is only checked once at the
end.

SpeciesToRemove
A character or integer vector indicating the names or indices (respectively) of
the species formation reactions to remove.

Value

‘ThisProblem*, with the species reaction(s) changed.

See Also

Other problem manipulation functions: BlankProblem(), Components, CriticalValues, InLabs,
InVars, MassCompartments, Phases, SpecialDefs

Examples

print(carbonate_system_problem$Spec)
my_new_problem = carbonate_system_problem
my_new_problem = AddInComps(ThisProblem = my_new_problem,
InCompName = "Ca",
InCompCharge = 2,
InCompMCName = "Water”,
InCompType = "MassBal",
InCompActCorr = "Debye")
my_new_problem = AddSpecies(
ThisProblem = my_new_problem,
SpecEquation = c("CaC03 =1 * Ca + 1 * C03",
"CaHCO3 =1 * Ca + 1 * H + 1 x CO3"),
SpecMCName = "Water",
SpecActCorr = "Debye”,
SpeclLogK = c(3.22, 11.44),
SpecDeltaH = c(14951, -3664),
SpecTempKelvin = 298.15
)
print(my_new_problem$Spec)
my_new_problem = RemoveSpecies(ThisProblem = my_new_problem,
SpeciesToRemove = "CaC03")

print(my_new_problem$Spec)

46 water_problem

water_MC_problem Water mass compartment only problem

Description

An example BLMEngineInR problem object, which describes a water-only system with no input
variables or components yet, and the input label "ID".

Usage

water_MC_problem

Format

An object of class 1ist of length 24.

water_problem Water-only problem

Description

An example BLMEngineInR problem object, which describes a water-only system with pH and
temperature are supplied as input variables, and the input label "ID" is supplied as well. The only
reaction is water dissociation (hydroxide "OH" formation reaction).

Usage

water_problem

Format

An object of class 1ist of length 24.

WriteDetailedFile 47

WriteDetailedFile Write a VERY Detailed Output File

Description

This will write an output XLSX file with everything that is returned by the ‘BLM* function. This
includes inputs, concentrations, activities, etc.

Usage
WriteDetailedFile(
OutlList,
FileName,
AdditionalInfo = paste@("”Saved on: ", Sys.time())
)
Arguments
OutList The list object returned by the BLM function.
FileName The name of the file you’d like to write.

AdditionalInfo This vector will be included in the "Additional Info". By default, it will give the
date/time the file was saved.

Value

Returns TRUE (invisibly) if successful.

WriteInputFile Write a BLM input file

Description

This function will take a BLM inputs list object and turn it into an input file, effectively doing the
opposite of ‘GetData“.

Usage
WriteInputFile(AllInput, ThisProblem, InputFile)

Arguments
AllInput A list object with a structure like that returned by ‘GetData()".
ThisProblem A list object with a structure like that returned by
InputFile ‘BlankProblem()°.

48 WriteParamFile

Value

TRUE (invisibly) if successful.

Examples

tf = tempfile()

myinputfile = system.file("extdata”, "InputFiles”,
"carbonate_system_test.blm4",
package = "BLMEnginelInR",
mustWork = TRUE)

myinputs = GetData(InputFile = myinputfile,

ThisProblem = carbonate_system_problem)
WriteInputFile(AllInput = myinputs, ThisProblem = carbonate_system_problem,
InputFile = tf)

scan(tf, what = character(), sep = "\n")

scan(myinputfile, what = character(), sep = "\n")

file.remove(tf)

WriteParamFile Write a BLM Parameter File

Description

This function will take a BLM chemical problem list object and turn it into a parameter file, effec-
tively doing the opposite of ‘DefineProblem®.

Usage

WriteParamFile(ThisProblem, ParamFile, Notes = ThisProblem$Notes)

Arguments

ThisProblem A list object with a structure like that returned by ‘BlankProblem()°.
ParamFile a character value, indicating the file path and name of the parameter file to write.

Notes A character vector of additional notes to include at the bottom of the parameter
file. The text "written by USERNAME from R: YYYY-MM-DD HH:MM:SS"
will always be written, regardless of the value of this argument. This will be
filled in with a "Notes" item in ‘ThisProblem®, if available.

Value

ThisProblem, with the ParamFile element changed to the ParamFile argument.

Examples

tf = tempfile()
WriteParamFile(ThisProblem = carbonate_system_problem, ParamFile = tf)
DefineProblem(ParamFile = tf)

WriteWHAMFile 49

WriteWHAMFile Write a WHAM Parameter File

Description

This function will take a WHAM parameter list object and turn it into a WHAM parameter file,
effectively doing the opposite of ‘DefineWHAM".

Usage
WriteWHAMFile(ThisWHAM, WHAMFile, Notes = ThisWHAM$Notes)

Arguments
ThisWHAM A list object with a structure like that returned by ‘BlankWHAM()“.
WHAMFile a character value, indicating the file path and name of the WHAM parameter file
to write.
Notes A character vector of additional notes to include at the bottom of the WHAM
parameter file. The text "written by USERNAME from R: YYYY-MM-DD
HH:MM:SS" will always be written, regardless of the value of this argument.
Be default, this will be filled in with a "Notes" item in ‘ThisWHAM", if avail-
able.
Value

ThisProblem, with the ParamFile element changed to the ParamFile argument.

Examples

tf = tempfile()
WriteWHAMFile(ThisWHAM = Cu_full_organic_problem$WHAM, WHAMFile = tf)
DefineWHAM(WHAMFile = tf)

Index

* BLMEngine Functions
CommonParameterDefinitions, 15
GetData, 28
MatchInputsToProblem, 35
ReadInputsFromFile, 41

+ datasets
A11_NIST20170203_reactions, 3
A11_WATER23_reactions, 3
carbonate_system_problem, 10
Cu_full_inorganic_problem, 26
Cu_full_organic_problem, 27
MW, 37
Ni_full_organic_problem, 37
Ni_HCO3_full_organic_problem, 38
water_MC_problem, 46
water_problem, 46

* problem manipulation functions
BlankProblem, 4
Components, 20
CriticalValues, 24
InLabs, 30
InVars, 31
MassCompartments, 33
Phases, 39
SpecialDef's, 42
Species, 43

AddComponents (Components), 20

AddCriticalValues (CriticalValues), 24

AddDefComps (Components), 20

AddInComps (Components), 20

AddInLabs (InLabs), 30

AddInVars (InVars), 31

AddMassCompartments (MassCompartments),
33

AddPhases (Phases), 39

AddSpecialDefs (SpecialDefs), 42

AddSpecies (Species), 43

Al11_NIST20170203_reactions, 3

Al1_WATER23_reactions, 3

50

BlankProblem, 4, 22, 25, 31, 32, 34,40, 43, 45
BlankWHAM, 8
BLM, 8

carbonate_system_problem, 10
CheckBLMObject, 10
CHESS, 11
CommonParameterDefinitions, 15, 30, 36,
41
Components, 4, 20, 25, 31, 32, 34, 40, 43,45
ConvertWHAMVThermoFile, 22
ConvertWindowsParamFile, 23
CriticalValues, 4, 22,24, 31, 32, 34, 40, 43,
45
Cu_full_inorganic_problem, 26
Cu_full_organic_problem, 27

DefineProblem, 27
DefineWHAM, 28

GetData, 19, 28, 36, 41

InLabs, 4, 22, 25, 30, 32, 34, 40, 43, 45
InVars, 4, 22, 25, 31, 31, 34, 40, 43,45

ListCAT, 32

MassCompartments, 4, 22, 25, 31, 32, 33, 40,
43,45

MatchInputsToProblem, 19, 30, 35, 41

MW, 37

Ni_full_organic_problem, 37
Ni_HCO3_full_organic_problem, 38

Phases, 4, 22, 25, 31, 32, 34,39, 43,45

ReadInputsFromFile, 19, 30, 36, 41

RemoveComponents (Components), 20

RemoveCriticalValues (CriticalValues),
24

INDEX

RemoveDefComps (Components), 20
RemoveInComps (Components), 20
RemovelnLabs (InLabs), 30
RemovelInVars (InVars), 31
RemoveMassCompartments
(MassCompartments), 33
RemovePhases (Phases), 39
RemoveSpecialDef's (SpecialDefs), 42
RemoveSpecies (Species), 43

SpecialDefs, 4, 22, 25, 31, 32, 34, 40,42, 45
Species, 4, 22, 25, 31, 32, 34,40, 43, 43

water_MC_problem, 46
water_problem, 46
WriteDetailedFile, 47
WriteInputFile, 47
WriteParamFile, 48
WriteWHAMFile, 49

51

	All_NIST20170203_reactions
	All_WATER23_reactions
	BlankProblem
	BlankWHAM
	BLM
	carbonate_system_problem
	CheckBLMObject
	CHESS
	CommonParameterDefinitions
	Components
	ConvertWHAMVThermoFile
	ConvertWindowsParamFile
	CriticalValues
	Cu_full_inorganic_problem
	Cu_full_organic_problem
	DefineProblem
	DefineWHAM
	GetData
	InLabs
	InVars
	ListCAT
	MassCompartments
	MatchInputsToProblem
	MW
	Ni_full_organic_problem
	Ni_HCO3_full_organic_problem
	Phases
	ReadInputsFromFile
	SpecialDefs
	Species
	water_MC_problem
	water_problem
	WriteDetailedFile
	WriteInputFile
	WriteParamFile
	WriteWHAMFile
	Index

