Package 'BSDA'

September 18, 2023
Type Package
Title Basic Statistics and Data Analysis
Version 1.2.2
Date 2023-09-14
LazyData yes
Maintainer Alan T. Arnholt arnholtat@appstate.edu
Description Data sets for book "'Basic Statistics and Data Analysis" by Larry J. Kitchens.
Depends lattice, $\mathrm{R}(>=2.10)$
Imports e1071
License GPL-3
Suggests ggplot2 (>= 2.1.0), dplyr, tidyr
RoxygenNote 7.2.3
Encoding UTF-8
URL https://github.com/alanarnholt/BSDA, https://alanarnholt.github.io/BSDA/

BugReports https://github.com/alanarnholt/BSDA/issues
NeedsCompilation no
Author Alan T. Arnholt [aut, cre], Ben Evans [aut]
Repository CRAN
Date/Publication 2023-09-18 17:50:05 UTC

R topics documented:

Abbey

Abc 10
Abilene 10
Ability 11
Abortion 12
Absent 13
Achieve 14
Adsales 14
Aggress 15
Aid 16
Aids 17
Airdisasters 18
Airline 19
Alcohol 20
Allergy 20
Anesthet 21
Anxiety 22
Apolipop 22
Append 23
Appendec 24
Aptitude 25
Archaeo 25
Arthriti 26
Artifici 27
Asprin 28
Asthmati 28
Attorney 29
Autogear 30
Backtoback 31
Bbsalaries 31
Bigten 32
Biology 33
Birth 34
Blackedu 35
Blood 35
Board 36
Bones 37
Books 38
Bookstor 38
Brain 39
Bumpers 40
Bus 41
Bypass 41
Cabinets 42
Cancer 43
Carbon 44
Cat 45
Censored 45
Challeng 46
Chemist 47
Chesapea 48
Chevy 49
R topics documented: 3
Chicken 50
Chipavg 50
Chips 51
Cigar 52
Cigarett 53
CIsim 54
Citrus 55
Clean 56
Coaxial 57
Coffee 58
Coins 58
Combinations 59
Commute 60
Concept 61
Concrete 61
Corn 62
Correlat 63
Counsel 64
Cpi 64
Crime 65
Darwin 66
Dealers 67
Defectiv 67
Degree 68
Delay 69
Depend 70
Detroit 70
Develop 71
Devmath 72
Dice 72
Diesel 73
Diplomat 74
Disposal 75
Dogs 76
Domestic 77
Dopamine 78
Dowjones 79
Drink 80
Drug 80
Dyslexia 81
Earthqk 82
EDA 83
Educat 84
Eggs 85
Elderly 85
Energy 86
Engineer 87
Entrance 88
Epaminicompact 89
Epatwoseater 90
Executiv 91
Exercise 91
Fabric 92
Faithful 93
Family 94
Ferraro1 95
Ferraro2 95
Fertility 96
Firstchi 97
Fish 98
Fitness 99
Florida2000 100
Fluid 101
Food 102
Framingh 102
Freshman 103
Funeral 104
Galaxie 105
Gallup 105
Gasoline 106
German 107
Golf 108
Governor 109
Gpa 110
Grades 111
Graduate 112
Greenriv 112
Grnriv2 113
Groupabc 114
Groups 114
Gym 115
Habits 116
Haptoglo 117
Hardware 117
Hardwood 118
Heat 119
Heating 120
Hodgkin 121
Homes 122
Homework 123
Honda 124
Hostile 124
Housing 125
Hurrican 126
Iceberg 127
Income 128
Independent 129
Indian 130
Indiapol 131
Indy500 131
Inflatio 132
Inletoil 133
Inmate 134
Inspect 135
Insulate 136
Iqgpa 137
Irises 137
Jdpower 138
Jobsat 139
Kidsmoke 140
Kilowatt 141
Kinder 141
Laminect 142
Lead 143
Leader 144
Lethal 144
Life 145
Lifespan 146
Ligntmonth 146
Lodge 147
Longtail 148
Lowabil 149
Magnesiu 149
Malpract 150
Manager 151
Marked 151
Math 152
Mathcomp 153
Mathpro 154
Maze 155
Median 155
Mental 156
Mercury 157
Metrent 157
Miller 158
Miller1 159
Moisture 159
Monoxide 160
Movie 161
Music 162
Name 163
Nascar 164
Nervous 164
Newsstand 165
Nfldraf2 166
Nfldraft 166
Nicotine 167
normarea 168
nsize 169
ntester 170
Orange 171
Orioles 171
Oxytocin 172
Parented 173
Patrol 174
Pearson 175
Phone 175
Poison 176
Politic 177
Pollutio 178
Porosity 178
Poverty 179
Precinct 180
Prejudic 181
Presiden 181
Press 182
Prognost 183
Program 184
Psat 184
Psych 185
Puerto 186
Quail 186
Quality 187
Rainks 188
Randd 189
Rat 189
Ratings 190
Reaction 191
Reading 192
Readiq 192
Referend 193
Region 194
Register 195
Rehab 195
Remedial 196
Rentals 197
Repair 198
Retail 198
Ronbrown1 199
Ronbrown2 200
Rural 200
Salary 201
Salinity 202
Sat 203
Saving 204
Scales 204
Schizop2 205
Schizoph 206
Seatbelt 207
Selfdefe 208
Senior 208
Sentence 209
Shkdrug 210
Shock 211
Shoplift 211
Short 212
Shuttle 213
SIGN.test 214
Simpson 216
Situp 217
Skewed 218
Skin 218
Slc 219
Smokyph 220
Snore 221
Snow 222
Soccer 223
Social 223
Sophomor 224
South 225
Speed 225
Spellers 226
Spelling 227
Sports 227
Spouse 228
SRS 229
Stable 230
Stamp 230
Statclas 231
Statelaw 232
Statisti 232
Step 233
Stress 234
Study 235
Submarin 235
Subway 236
Sunspot 237
Superbowl 238
Supercar 238
Tablrock 239
Teacher 241
Tenness 242
Tensile 243
Test1 243
Thermal 244
Tiaa 245
Ticket 245
Toaster 246
Tonsils 247
Tort 248
Toxic 249
Track 250
Track 15 251
Treatments 251
Trees 252
Trucks 253
tsum.test 253
Tv 257
Twin 257
Undergrad 258
Vacation 259
Vaccine 260
Vehicle 261
Verbal 261
Victoria 262
Viscosit 263
Visual 264
Vocab 264
Wastewat 265
Weather94 266
Wheat 267
Windmill 268
Window 268
Wins 269
Wool 270
Yearsunspot 271
z.test 271
zsum.test 274
Index 278
\qquad
Abbey Daily price returns (in pence) of Abbey National shares between 7/31/91 and 10/8/91

Description

Data used in problem 6.39

Usage

Abbey

Format

A data frame/tibble with 50 observations on one variable
price daily price returns (in pence) of Abbey National shares

Source

Buckle, D. (1995), Bayesian Inference for Stable Distributions, Journal of the American Statistical Association, 90, 605-613.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
qqnorm(Abbey$price)
qqline(Abbey$price)
t.test(Abbey$price, mu = 300)
hist(Abbey$price, main = "Exercise 6.39",
    xlab = "daily price returns (in pence)",
    col = "blue")
```


Description

Data used in Exercise 10.1

Usage

Abc

Format

A data frame/tibble with 54 observations on two variables
response a numeric vector
group a character vector A, B, and C

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
boxplot(response ~ group, col=c("red", "blue", "green"), data = Abc )
anova(lm(response ~ group, data = Abc))
```

Abilene

Crimes reported in Abilene, Texas

Description

Data used in Exercise 1.23 and 2.79

Usage

Abilene

Format

A data frame/tibble with 16 observations on three variables
crimetype a character variable with values Aggravated assault, Arson, Burglary, Forcible rape, Larceny theft, Murder, Robbery, and Vehicle theft.
year a factor with levels 1992 and 1999
number number of reported crimes

Source

Uniform Crime Reports, US Dept. of Justice.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
par(mfrow = c(2, 1))
barplot(Abilene$number[Abilene$year=="1992"],
names.arg = Abilene$crimetype[Abilene$year == "1992"],
main = "1992 Crime Stats", col = "red")
barplot(Abilene$number[Abilene$year=="1999"],
names.arg = Abilene$crimetype[Abilene$year == "1999"],
main = "1999 Crime Stats", col = "blue")
par(mfrow = c(1, 1))
## Not run:
library(ggplot2)
ggplot2::ggplot(data = Abilene, aes(x = crimetype, y = number, fill = year)) +
    geom_bar(stat = "identity", position = "dodge") +
    theme_bw() +
    theme(axis.text.x = element_text(angle = 30, hjust = 1))
## End(Not run)
```


Description

Data used in Exercise 8.57

Usage

Ability

Format

A data frame/tibble with 400 observations on two variables
gender a factor with levels girls and boys
ability a factor with levels hopeless, belowavg, average, aboveavg, and superior

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
CT <- xtabs(~gender + ability, data = Ability)
CT
chisq.test(CT)
```


Description

Data used in Exercise 8.51

Usage

Abortion

Format

A data frame/tibble with 51 observations on the following 10 variables:
state a character variable with values alabama, alaska, arizona, arkansas, california, colorado, connecticut, delaware, dist of columbia, florida, georgia, hawaii, idaho, illinois, indiana, iowa, kansas, kentucky, louisiana, maine, maryland, massachusetts, michigan, minnesota, mississippi, missouri, montana, nebraska, nevada, new hampshire, new jersey, new mexico, new york, north carolina, north dakota, ohio, oklahoma, oregon, pennsylvania, rhode island, south carolina, south dakota, tennessee, texas, utah, vermont, virginia, washington, west virginia, wisconsin, and wyoming
region a character variable with values midwest northeast south west
regcode a numeric vector
rate1988 a numeric vector
rate1992 a numeric vector
rate1996 a numeric vector
provide1988 a numeric vector
provide1992 a numeric vector
lowhigh a numeric vector
rate a factor with levels Low and High

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
T1 <- xtabs(~region + rate, data = Abortion)
T1
chisq.test(T1)
```

Absent \quad Number of absent days for 20 employees

Description

Data used in Exercise 1.28

Usage

Absent

Format

A data frame/tibble with 20 observations on one variable
days days absent

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

CT <- xtabs(~ days, data = Absent)
CT
barplot(CT, col = "pink", main = "Exercise 1.28")
plot(ecdf(Absent\$days), main = "ECDF")

Description

Data used in Example 7.14 and Exercise 10.7

Usage

Achieve

Format

A data frame/tibble with 25 observations on two variables
score mathematics achiement score
gender a factor with 2 levels boys and girls

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
anova(lm(score ~ gender, data = Achieve))
t.test(score ~ gender, var.equal = TRUE, data = Achieve)
```


Description

Data used in Exercise 9.15

Usage

Adsales

Format

A data frame/tibble with six observations on three variables
month a character vector listing month
ads a numeric vector containing number of ads
sales a numeric vector containing number of sales

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
plot(sales ~ ads, data = Adsales, main = "Exercise 9.15")
mod <- lm(sales ~ ads, data = Adsales)
abline(mod, col = "red")
summary(mod)
predict(mod, newdata = data.frame(ads = 6), interval = "conf", level = 0.99)
```

Aggress | Agressive tendency scores for a group of teenage members of a street |
| :--- |
| gang |

Description

Data used in Exercises 1.66 and 1.81

Usage

Aggress

Format

A data frame/tibble with 28 observations on one variable
aggres measure of aggresive tendency, ranging from 10-50

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
with(data = Aggress,
    EDA(aggres))
# OR
IQR(Aggress$aggres)
diff(range(Aggress$aggres))
```

Monthly payments per person for families in the AFDC federal program

Description

Data used in Exercises 1.91 and 3.68

Usage

Aid

Format

A data frame/tibble with 51 observations on two variables
state a factor with levels Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, District of Colunbia, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missour, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin, and Wyoming
payment average monthly payment per person in a family

Source

US Department of Health and Human Services, 1993.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
hist(Aid$payment, xlab = "payment", main =
"Average monthly payment per person in a family",
col = "lightblue")
boxplot(Aid$payment, col = "lightblue")
dotplot(state ~ payment, data = Aid)
```


Description

Data used in Exercise 6.60

Usage

Aids

Format

A data frame/tibble with 295 observations on three variables
duration time (in months) from HIV infection to the clinical manifestation of full-blown AIDS age age (in years) of patient
group a numeric vector

Source

Kalbsleich, J. and Lawless, J., (1989), An analysis of the data on transfusion related AIDS, Journal of the American Statistical Association, 84, 360-372.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
with(data = Aids,
EDA(duration)
)
with(data = Aids,
        t.test(duration, mu = 30, alternative = "greater")
)
with(data = Aids,
    SIGN.test(duration, md = 24, alternative = "greater")
)
```


Description

Data used in Exercise 1.12

Usage

Airdisasters

Format

A data frame /tibble with 141 observations on the following seven variables
year a numeric vector indicating the year of an aircraft accident
deaths a numeric vector indicating the number of deaths of an aircraft accident
decade a character vector indicating the decade of an aircraft accident

Source

2000 World Almanac and Book of Facts.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
par(las = 1)
stripchart(deaths ~ decade, data = Airdisasters,
    subset = decade != "1930s" & decade != "1940s",
    method = "stack", pch = 19, cex = 0.5, col = "red",
    main = "Aircraft Disasters 1950-1990",
    xlab = "Number of fatalities")
par(las = 0)
```

Airline	Percentage of on-time arrivals and number of complaints for 11 air- lines

Description

Data for Example 2.9

Usage

Airline

Format

A data frame/tibble with 11 observations on three variables
airline a charater variable with values Alaska, Amer West, American, Continental, Delta, Northwest, Pan Am, Southwest, TWA, United, and USAir
ontime a numeric vector
complaints complaints per 1000 passengers

Source

Transportation Department.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
with(data = Airline,
    barplot(complaints, names.arg = airline, col = "lightblue",
    las = 2)
)
plot(complaints ~ ontime, data = Airline, pch = 19, col = "red",
    xlab = "On time", ylab = "Complaints")
```


Description

Data used in Exercise 5.79

Usage

Alcohol

Format

A data frame/tibble with 14 observations on one variable
age age when individual started drinking

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

qqnorm(Alcohol\$age)
qqline(Alcohol\$age)
SIGN.test(Alcohol\$age, md = 20, conf.level = 0.99)

Allergy

Allergy medicines by adverse events

Description

Data used in Exercise 8.22

Usage

Allergy

Format

A data frame/tibble with 406 observations on two variables
event a factor with levels insomnia, headache, and drowsiness
medication a factor with levels seldane-d, pseudoephedrine, and placebo

Source

Marion Merrel Dow, Inc. Kansas City, Mo. 64114.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
T1 <- xtabs(~event + medication, data = Allergy)
T1
chisq.test(T1)
```

Anesthet Recovery times for anesthetized patients

Description

Data used in Exercise 5.58

Usage

Anesthet

Format

A with 10 observations on one variable
recover recovery time (in hours)

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
qqnorm(Anesthet$recover)
qqline(Anesthet$recover)
with(data = Anesthet,
t.test(recover, conf.level = 0.90)$conf
)
```


Description

Data used in Exercise 2.96

Usage

Anxiety

Format

A data frame/tibble with 20 observations on two variables
anxiety anxiety score before a major math test
math math test score

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
plot(math ~ anxiety, data = Anxiety, ylab = "score",
        main = "Exercise 2.96")
with(data = Anxiety,
cor(math, anxiety)
)
linmod <- lm(math ~ anxiety, data = Anxiety)
abline(linmod, col = "purple")
summary(linmod)
```

Apolipop Level of apolipoprotein B and number of cups of coffee consumed per day for 15 adult males

Description

Data used in Examples 9.2 and 9.9

Usage

Apolipop

Format

A data frame/tibble with 15 observations on two variables
coffee number of cups of coffee per day
apolipB level of apoliprotein B

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
plot(apolipB ~ coffee, data = Apolipop)
linmod <- lm(apolipB ~ coffee, data = Apolipop)
summary(linmod)
summary(linmod)$sigma
anova(linmod)
anova(linmod)[2, 3]^.5
par(mfrow = c(2, 2))
plot(linmod)
par(mfrow = c(1, 1))
```

Append Median costs of an appendectomy at 20 hospitals in North Carolina

Description

Data for Exercise 1.119

Usage

Append

Format

A data frame/tibble with 20 observations on one variable
fee fees for an appendectomy for a random sample of 20 hospitals in North Carolina

Source

North Carolina Medical Database Commission, August 1994.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
fee <- Append$fee
ll <- mean(fee) - 2*sd(fee)
ul <- mean(fee) + 2*sd(fee)
limits <-c(ll, ul)
limits
fee[fee < ll | fee > ul]
```

Appendec Median costs of appendectomies at three different types of North Car-
olina hospitals

Description

Data for Exercise 10.60

Usage

Appendec

Format

A data frame/tibble with 59 observations on two variables
cost median costs of appendectomies at hospitals across the state of North Carolina in 1992
region a vector classifying each hospital as rural, regional, or metropolitan

Source

Consumer's Guide to Hospitalization Charges in North Carolina Hospitals (August 1994), North Carolina Medical Database Commission, Department of Insurance.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
boxplot(cost ~ region, data = Appendec, col = c("red", "blue", "cyan"))
anova(lm(cost ~ region, data = Appendec))
```

```
    Aptitude Aptitude test scores versus productivity in a factory
```


Description

Data for Exercises 2.1, 2.26, 2.35 and 2.51

Usage

Aptitude

Format

A data frame/tibble with 8 observations on two variables
aptitude aptitude test scores
product productivity scores

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
plot(product ~ aptitude, data = Aptitude, main = "Exercise 2.1")
model1 <- lm(product ~ aptitude, data = Aptitude)
model1
abline(model1, col = "red", lwd=3)
resid(model1)
fitted(model1)
cor(Aptitude$product, Aptitude$aptitude)
```


Description

Data for Exercises 5.120, 10.20 and Example 1.16

Usage

Archaeo

Format

A data frame/tibble with 60 observations on two variables
age number of years before 1983 - the year the data were obtained
phase Ceramic Phase numbers

Source

Cunliffe, B. (1984) and Naylor and Smith (1988).

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
boxplot(age ~ phase, data = Archaeo, col = "yellow",
    main = "Example 1.16", xlab = "Ceramic Phase", ylab = "Age")
anova(lm(age ~ as.factor(phase), data= Archaeo))
```

Arthriti Time of relief for three treatments of arthritis

Description

Data for Exercise 10.58

Usage

Arthriti

Format

A data frame/tibblewith 51 observations on two variables
time time (measured in days) until an arthritis sufferer experienced relief
treatment a factor with levels A, B, and C

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
boxplot(time ~ treatment, data = Arthriti,
col = c("lightblue", "lightgreen", "yellow"),
ylab = "days")
anova(lm(time ~ treatment, data = Arthriti))
```

 Artifici Durations of operation for 15 artificial heart transplants

Description

Data for Exercise 1.107

Usage

Artifici

Format

A data frame/tibble with 15 observations on one variable
duration duration (in hours) for transplant

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
stem(Artifici$duration, 2)
summary(Artifici$duration)
values <- Artifici$duration[Artifici$duration < 6.5]
values
summary(values)
```


Description

Data for Exercise 10.51

Usage

Asprin

Format

A data frame/tibble with 15 observations on two variables
time time (in seconds) for aspirin to dissolve
impurity impurity of an ingredient with levels $1 \%, 5 \%$, and 10%

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
boxplot(time ~ impurity, data = Asprin,
col = c("red", "blue", "green"))
```


Description

Data for Exercise 7.52

Usage

Asthmati

Format

A data frame/tibble with nine observations on three variables
drug asthmatic relief index for patients given a drug
placebo asthmatic relief index for patients given a placebo
difference difference between the placebo and drug

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
qqnorm(Asthmati$difference)
qqline(Asthmati$difference)
shapiro.test(Asthmati$difference)
with(data = Asthmati,
    t.test(placebo, drug, paired = TRUE, mu = 0, alternative = "greater")
)
```


Attorney

Number of convictions reported by U.S. attorney's offices

Description

Data for Example 2.2 and Exercises 2.43 and 2.57

Usage

Attorney

Format

A data frame/tibble with 88 observations on three variables
staff U.S. attorneys' office staff per 1 million population
convict U.S. attorneys' office convictions per 1 million population
district a factor with levels Albuquerque, Alexandria, Va, Anchorage, Asheville, NC, Atlanta, Baltimore, Baton Rouge, Billings, Mt, Birmingham, Al, Boise, Id, Boston, Buffalo, Burlington, Vt, Cedar Rapids, Charleston, WVA, Cheyenne, Wy, Chicago, Cincinnati, Cleveland, Columbia, SC, Concord, NH, Denver, Des Moines, Detroit, East St. Louis, Fargo, ND, Fort Smith, Ark, Fort Worth, Grand Rapids, Mi, Greensboro, NC, Honolulu, Houston, Indianapolis, Jackson, Miss, Kansas City, Knoxville, Tn, Las Vegas, Lexington, Ky, Little Rock, Los Angeles, Louisville, Memphis, Miami, Milwaukee, Minneapolis, Mobile, Ala, Montgomery, Ala, Muskogee, Ok, Nashville, New Haven, Conn, New Orleans, New York (Brooklyn), New York (Manhattan), Newark, NJ, Oklahoma City, Omaha, Oxford, Miss, Pensacola, Fl, Philadelphia, Phoenix, Pittsburgh, Portland, Maine, Portland, Ore, Providence, RI, Raleigh, NC, Roanoke, Va, Sacramento, Salt Lake City, San Antonio, San Diego, San Francisco, Savannah, Ga, Scranton, Pa, Seattle, Shreveport, La, Sioux Falls, SD, South Bend, Ind, Spokane, Wash ,Springfield, Ill, St. Louis, Syracuse, NY, Tampa, Topeka, Kan, Tulsa, Tyler, Tex, Washington, Wheeling, WVa, and Wilmington, Del

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
par(mfrow=c(1, 2))
plot(convict ~ staff, data = Attorney, main = "With Washington, D.C.")
plot(convict[-86] ~staff[-86], data = Attorney,
main = "Without Washington, D.C.")
par(mfrow=c(1, 1))
```

Autogear Number of defective auto gears produced by two manufacturers

Description

Data for Exercise 7.46

Usage

Autogear

Format

A data frame/tibble with 20 observations on two variables
defectives number of defective gears in the production of 100 gears per day
manufacturer a factor with levels A and B

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

t.test(defectives ~ manufacturer, data = Autogear)
wilcox.test(defectives ~ manufacturer, data = Autogear)
t.test(defectives ~ manufacturer, var.equal = TRUE, data = Autogear)

Backtoback	Illustrates inferences based on pooled t-test versus Wilcoxon rank sum test

Description

Data for Exercise 7.40

Usage

Backtoback

Format

A data frame/tibble with 24 observations on two variables
score a numeric vector
group a numeric vector

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

wilcox.test(score ~ group, data = Backtoback)
t.test(score ~ group, data $=$ Backtoback)

Bbsalaries
Baseball salaries for members of five major league teams

Description

$$
\text { Data for Exercise } 1.11
$$

Usage

Bbsalaries

Format

A data frame/tibble with 142 observations on two variables
salary 1999 salary for baseball player
team a factor with levels Angels, Indians, Orioles, Redsoxs, and Whitesoxs

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
stripchart(salary ~ team, data = Bbsalaries, method = "stack",
    pch = 19, col = "blue", cex = 0.75)
title(main = "Major League Salaries")
```

Bigten Graduation rates for student athletes and nonathletes in the Big Ten Conf.

Description

Data for Exercises 1.124 and 2.94

Usage

Bigten

Format

A data frame/tibble with 44 observations on the following four variables
school a factor with levels Illinois, Indiana, Iowa, Michigan, Michigan State, Minnesota, Northwestern, Ohio State, Penn State, Purdue, and Wisconsin
rate graduation rate
year factor with two levels 1984-1985 and 1993-1994
status factor with two levels athlete and student

Source

NCAA Graduation Rates Report, 2000.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
boxplot(rate ~ status, data = subset(Bigten, year = "1993-1994"),
horizontal = TRUE, main = "Graduation Rates 1993-1994")
with(data = Bigten,
    tapply(rate, list(year, status), mean)
)
```

Biology Test scores on first exam in biology class

Description

Data for Exercise 1.49

Usage

Biology

Format

A data frame/tibble with 30 observations on one variable
score test scores on the first test in a beginning biology class

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
hist(Biology$score, breaks = "scott", col = "brown", freq = FALSE,
main = "Problem 1.49", xlab = "Test Score")
lines(density(Biology$score), lwd=3)
```


Description

Data for Example 1.10

Usage

Birth

Format

A data frame/tibble with 51 observations on three variables
state a character with levels Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, District of Colunbia, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missour, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin, and Wyoming
rate live birth rates per 1000 population
year a factor with levels 1990 and 1998

Source

National Vital Statistics Report, 48, March 28, 2000, National Center for Health Statistics.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
rate1998 <- subset(Birth, year == "1998", select = rate)
stem(x = rate1998$rate, scale = 2)
hist(rate1998$rate, breaks = seq(10.9, 21.9, 1.0), xlab = "1998 Birth Rate",
    main = "Figure 1.14 in BSDA", col = "pink")
hist(rate1998$rate, breaks = seq(10.9, 21.9, 1.0), xlab = "1998 Birth Rate",
    main = "Figure 1.16 in BSDA", col = "pink", freq = FALSE)
lines(density(rate1998$rate), lwd = 3)
rm(rate1998)
```

Blackedu Education level of blacks by gender

Description

$$
\text { Data for Exercise } 8.55
$$

Usage

Blackedu

Format

A data frame/tibble with 3800 observations on two variables
gender a factor with levels Female and Male
education a factor with levels High school dropout, High school graudate, Some college, Bachelor's degree, and Graduate degree

Source

Bureau of Census data.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
T1 <- xtabs(~gender + education, data = Blackedu)
T1
chisq.test(T1)
```


Blood

Description

Data for Exercise 7.84

Usage

Blood

Format

A data frame/tibble with 15 observations on the following two variables
machine blood pressure recorded from an automated blood pressure machine
expert blood pressure recorded by an expert using an at-home device

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
DIFF <- Blood$machine - Blood$expert
```

shapiro.test(DIFF)
qqnorm(DIFF)
qqline(DIFF)
rm(DIFF)
t.test(Blood\$machine, Blood\$expert, paired = TRUE)

Description

Data for Exercise 10.14

Usage

Board

Format

A data frame/tibble with 7 observations on three variables
salary 1999 salary (in \$1000) for board directors
university a factor with levels A, B, and C

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
boxplot(salary ~ university, data = Board, col = c("red", "blue", "green"),
    ylab = "Income")
tapply(Board$salary, Board$university, summary)
anova(lm(salary ~ university, data = Board))
## Not run:
library(dplyr)
dplyr::group_by(Board, university) %>%
        summarize(Average = mean(salary))
## End(Not run)
```

Bone density measurements of 35 physically active and 35 non-active women

Description

Data for Example 7.22

Usage

Bones

Format

A data frame/tibble with 70 observations on two variables
density bone density measurements
group a factor with levels active and nonactive

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

t.test(density ~ group, data = Bones, alternative = "greater")
t.test(rank(density) ~ group, data = Bones, alternative = "greater")
wilcox.test(density ~ group, data = Bones, alternative = "greater")

Books

Description

Data for Exercise 9.53

Usage

Books

Format

A data frame/tibble with 17 observations on two variables
book number of books read
spelling spelling score

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
plot(spelling ~ book, data = Books)
mod <- lm(spelling ~ book, data = Books)
summary (mod)
abline(mod, col = "blue", lwd = 2)
```

Bookstor

Description

Data for Exercise 10.30 and 10.31

Usage

Bookstor

Format

A data frame/tibble with 72 observations on two variables
dollars money obtained for selling textbooks
store a factor with levels A, B, and C

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples

```
boxplot(dollars ~ store, data = Bookstor,
    col = c("purple", "lightblue", "cyan"))
kruskal.test(dollars ~ store, data = Bookstor)
```

```
Brain

\section*{Description}

Data for Exercises 2.15, 2.44, 2.58 and Examples 2.3 and 2.20

\section*{Usage}

Brain

\section*{Format}

A data frame/tibble with 28 observations on three variables
species a factor with levels African elephant, Asian Elephant, Brachiosaurus, Cat, Chimpanzee, Cow, Diplodocus, Donkey, Giraffe, Goat, Gorilla, Gray wolf, Guinea Pig, Hamster, Horse, Human, Jaguar, Kangaroo, Mole, Mouse, Mt Beaver, Pig, Potar monkey, Rabbit, Rat, Rhesus monkey, Sheep, and Triceratops
bodyweight body weight (in kg)
brainweight brain weight (in g)

\section*{Source}
P. Rousseeuw and A. Leroy, Robust Regression and Outlier Detection (New York: Wiley, 1987).

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(log(brainweight) ~ log(bodyweight), data = Brain,
pch = 19, col = "blue", main = "Example 2.3")
mod <- lm(log(brainweight) ~ log(bodyweight), data = Brain)
abline(mod, lty = "dashed", col = "blue")

```

\section*{Description}

Data for Exercise 1.73

\section*{Usage}

Bumpers

\section*{Format}

A data frame/tibble with 23 observations on two variables
car a factor with levels Buick Century, Buick Skylark, Chevrolet Cavalier, Chevrolet Corsica, Chevrolet Lumina, Dodge Dynasty, Dodge Monaco, Ford Taurus, Ford Tempo, Honda Accord, Hyundai Sonata, Mazda 626, Mitsubishi Galant, Nissan Stanza, Oldsmobile Calais, Oldsmobile Ciere, Plymouth Acclaim, Pontiac 6000, Pontiac Grand Am, Pontiac Sunbird, Saturn SL2, Subaru Legacy, and Toyota Camry
repair total repair cost (in dollars) after crashing a car into a barrier four times while the car was traveling at 5 miles per hour

\section*{Source}

Insurance Institute of Highway Safety.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

EDA(Bumpers$repair)
stripchart(Bumpers$repair, method = "stack", pch = 19, col = "blue")
library(lattice)
dotplot(car ~ repair, data = Bumpers)

```

\section*{Description}

Data for Exercise 8.25

\section*{Usage}

Bus

\section*{Format}

A data frame/tibble with 29363 observations on two variables
attendance a factor with levels absent and present
shift a factor with levels am, noon, pm, swing, and split

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~attendance + shift, data = Bus)
T1
chisq.test(T1)

```
    Bypass

\section*{Description}

Data for Exercises 5.104 and 6.43

\section*{Usage}

Bypass

\section*{Format}

A data frame/tibble with 17 observations on two variables
hospital a factor with levels Carolinas Med Ct, Duke Med Ct, Durham Regional, Forsyth Memorial, Frye Regional, High Point Regional, Memorial Mission, Mercy, Moore Regional, Moses Cone Memorial, NC Baptist, New Hanover Regional, Pitt Co. Memorial, Presbyterian, Rex, Univ of North Carolina, and Wake County
charge median charge for coronary bypass

\section*{Source}

Consumer's Guide to Hospitalization Charges in North Carolina Hospitals (August 1994), North Carolina Medical Database Commission, Department of Insurance.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

EDA(Bypass\$charge)
t.test(Bypass\$charge, conf.level=.90)\$conf
t.test(Bypass\$charge, mu = 35000)

Cabinets Estimates of costs of kitchen cabinets by two suppliers on 20 prospective homes

\section*{Description}

Data for Exercise 7.83

\section*{Usage}

Cabinets

\section*{Format}

A data frame/tibble with 20 observations on three variables
home a numeric vector
supplA estimate for kitchen cabinets from supplier A (in dollars)
supplB estimate for kitchen cabinets from supplier A (in dollars)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

DIF <- Cabinets$supplA - Cabinets$supplB
qqnorm(DIF)
qqline(DIF)
shapiro.test(DIF)
with(data = Cabinets,
t.test(supplA, supplB, paired = TRUE)
)
with(data = Cabinets,
wilcox.test(supplA, supplB, paired = TRUE)
)
rm(DIF)

```
Cancer \(\quad\) Survival times of terminal cancer patients treated with vitamin \(C\)

\section*{Description}

Data for Exercises 6.55 and 6.64

\section*{Usage}

Cancer

\section*{Format}

A data frame/tibble with 64 observations on two variables
survival survival time (in days) of terminal patients treated with vitamin C
type a factor indicating type of cancer with levels breast, bronchus, colon, ovary, and stomach

\section*{Source}

Cameron, E and Pauling, L. 1978. "Supplemental Ascorbate in the Supportive Treatment of Cancer." Proceedings of the National Academy of Science, 75, 4538-4542.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(survival ~ type, Cancer, col = "blue")
stomach <- Cancer$survival[Cancer$type == "stomach"]
bronchus <- Cancer$survival[Cancer$type == "bronchus"]
boxplot(stomach, ylab = "Days")
SIGN.test(stomach, md = 100, alternative = "greater")
SIGN.test(bronchus, md = 100, alternative = "greater")
rm(bronchus, stomach)

```
    Carbon Carbon monoxide level measured at three industrial sites

\section*{Description}

Data for Exercise 10.28 and 10.29

\section*{Usage}

Carbon

\section*{Format}

A data frame/tibble with 24 observations on two variables
CO carbon monoxide measured (in parts per million)
site a factor with levels SiteA, SiteB, and SiteC

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(CO ~ site, data = Carbon, col = "lightgreen")
kruskal.test(CO ~ site, data = Carbon)

```
\begin{tabular}{ll} 
Cat \begin{tabular}{l} 
Reading scores on the California achievement test for a group of 3 rd \\
graders
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Data for Exercise 1.116

\section*{Usage}

Cat

\section*{Format}

A data frame/tibble with 17 observations on one variable
score reading score on the California Achievement Test

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
stem(Cat\$score)
fivenum(Cat\$score)
boxplot(Cat\$score, main = "Problem 1.116", col = "green")

Censored
Entry age and survival time of patients with small cell lung cancer under two different treatments

\section*{Description}

\section*{Data for Exercises 7.34 and 7.48}

\section*{Usage}

Censored

\section*{Format}

A data frame/tibble with 121 observations on three variables
survival survival time (in days) of patients with small cell lung cancer
treatment a factor with levels armA and armB indicating the treatment a patient received
age the age of the patient

\section*{Source}

Ying, Z., Jung, S., Wei, L. 1995. "Survival Analysis with Median Regression Models." Journal of the American Statistical Association, 90, 178-184.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(survival ~ treatment, data = Censored, col = "yellow")
wilcox.test(survival ~ treatment, data = Censored, alternative = "greater")

```

Challeng \(\begin{aligned} & \text { Temperatures and O-ring failures for the launches of the space shuttle } \\ & \text { Challenger }\end{aligned}\)

\section*{Description}

Data for Examples 1.11, 1.12, 1.13, 2.11 and 5.1

\section*{Usage}

Challeng

\section*{Format}

A data frame/tibble with 25 observations on four variables
flight a character variable indicating the flight
date date of the flight
temp temperature (in fahrenheit)
failures number of failures

\section*{Source}

Dalal, S. R., Fowlkes, E. B., Hoadley, B. 1989. "Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure." Journal of the American Statistical Association, 84, No. 408, 945-957.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Challeng$temp)
summary (Challeng$temp)
IQR(Challeng$temp)
quantile(Challeng$temp)
fivenum(Challeng$temp)
stem(sort(Challeng$temp)[-1])
summary(sort(Challeng$temp)[-1])
IQR(sort(Challeng$temp)[-1])
quantile(sort(Challeng$temp)[-1])
fivenum(sort(Challeng$temp)[-1])
par(mfrow=c(1, 2))
qqnorm(Challeng$temp)
qqline(Challeng$temp)
qqnorm(sort(Challeng$temp)[-1])
qqline(sort(Challeng$temp)[-1])
par(mfrow=c(1, 1))

```
Chemist Starting salaries of 50 chemistry majors

\section*{Description}

Data for Example 5.3

\section*{Usage}

Chemist

\section*{Format}

A data frame/tibble with 50 observations on one variable
salary starting salary (in dollars) for chemistry major

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

EDA(Chemist\$salary)
Chesapea \begin{tabular}{l} 
Surface salinity measurements taken offshore from Annapolis, Mary- \\
land in 1927
\end{tabular}

\section*{Description}
\[
\text { Data for Exercise } 6.41
\]

\section*{Usage}

Chesapea

\section*{Format}

A data frame/tibble with 16 observations on one variable
salinity surface salinity measurements (in parts per 1000) for station 11, offshore from Annanapolis, Maryland, on July 3-4, 1927.

\section*{Source}

Davis, J. (1986) Statistics and Data Analysis in Geology, Second Edition. John Wiley and Sons, New York.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

qqnorm(Chesapea$salinity)
qqline(Chesapea$salinity)
shapiro.test(Chesapea$salinity)
t.test(Chesapea$salinity, mu = 7)

```

\section*{Description}

Data for Exercise 8.35

\section*{Usage}

Chevy

\section*{Format}

A data frame/tibble with 67 observations on two variables
year a factor with levels 1988-90 and 1991-93
frequency a factor with levels much better than average, above average, average, below average, and much worse than average

\section*{Source}

Insurance Institute for Highway Safety and the Highway Loss Data Institute, 1995.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~year + frequency, data = Chevy)
T1
chisq.test(T1)
rm(T1)

```

Chicken Weight gain of chickens fed three different rations

\section*{Description}

Data for Exercise 10.15

\section*{Usage}

Chicken

\section*{Format}

A data frame/tibble with 13 observations onthree variables
gain weight gain over a specified period
feed a factor with levels ration1, ration2, and ration3

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(gain ~ feed, col = c("red","blue","green"), data = Chicken)
anova(lm(gain ~ feed, data = Chicken))

```

Measurements of the thickness of the oxide layer of manufactured integrated circuits

\section*{Description}

\section*{Data for Exercises 6.49 and 7.47}

\section*{Usage}

Chipavg

\section*{Format}

A data frame/tibble with 30 observations on three variables
wafer 1 thickness of the oxide layer for wafer1
wafer2 thickness of the oxide layer for wafer2
thickness average thickness of the oxide layer of the eight measurements obtained from each set of two wafers

\section*{Source}

Yashchin, E. 1995. "Likelihood Ratio Methods for Monitoring Parameters of a Nested Random Effect Model." Journal of the American Statistical Association, 90, 729-738.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

EDA(Chipavg$thickness)
t.test(Chipavg$thickness, mu = 1000)
boxplot(Chipavg$wafer1, Chipavg$wafer2, name = c("Wafer 1", "Wafer 2"))
shapiro.test(Chipavg$wafer1)
shapiro.test(Chipavg$wafer2)
t.test(Chipavg$wafer1, Chipavg$wafer2, var.equal = TRUE)

```

\section*{Description}

Data for Exercise 10.9

\section*{Usage}

Chips

\section*{Format}

A data frame/tibble with 30 observations on eight variables
wafer11 first measurement of thickness of the oxide layer for wafer1
wafer 12 second measurement of thickness of the oxide layer for wafer 1
wafer13 third measurement of thickness of the oxide layer for wafer1
wafer14 fourth measurement of thickness of the oxide layer for wafer1
wafer21 first measurement of thickness of the oxide layer for wafer2
wafer22 second measurement of thickness of the oxide layer for wafer2
wafer23 third measurement of thickness of the oxide layer for wafer2
wafer24 fourth measurement of thickness of the oxide layer for wafer2

\section*{Source}

Yashchin, E. 1995. "Likelihood Ratio Methods for Monitoring Parameters of a Nested Random Effect Model." Journal of the American Statistical Association, 90, 729-738.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

with(data = Chips,
boxplot(wafer11, wafer12, wafer13, wafer14, wafer21,
wafer22, wafer23, wafer24, col = "pink")
)

```

Cigar Milligrams of tar in 25 cigarettes selected randomly from 4 different brands

\section*{Description}

Data for Example 10.4

\section*{Usage}

Cigar

\section*{Format}

A data frame/tibble with 100 observations on two variables
tar amount of tar (measured in milligrams)
brand a factor indicating cigarette brand with levels brandA, brandB, brandC, and brandD

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(tar ~ brand, data = Cigar, col = "cyan", ylab = "mg tar")
anova(lm(tar ~ brand, data = Cigar))

```
    Cigarett Effect of mother's smoking on birth weight of newborn

\section*{Description}

Data for Exercise 2.27

\section*{Usage}

Cigarett

\section*{Format}

A data frame/tibble with 16 observations on two variables
cigarettes mothers' estimated average number of cigarettes smoked per day
weight children's birth weights (in pounds)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples
```

plot(weight ~ cigarettes, data = Cigarett)
model <- lm(weight ~ cigarettes, data = Cigarett)
abline(model, col = "red")
with(data = Cigarett,
cor(weight, cigarettes)
)
rm(model)

```
CIsim

Confidence Interval Simulation Program

\section*{Description}

This program simulates random samples from which it constructs confidence intervals for one of the parameters mean \((\mathrm{Mu})\), variance \((\) Sigma \()\), or proportion of successes \((\mathrm{Pi})\).
```

Usage
CIsim(
samples = 100,
n = 30,
mu = 0,
sigma = 1,
conf.level = 0.95,
type = "Mean"
)

```

\section*{Arguments}
samples the number of samples desired.
n
mu
the size of each sample.
if constructing confidence intervals for the population mean or the population variance, mu is the population mean (i.e., type is one of either "Mean", or "Var"). If constructing confidence intervals for the poulation proportion of successes, the value entered for mu represents the population proportion of successes ( Pi ), and as such, must be a number between 0 and 1 .
sigma the population standard deviation. sigma is not required if confidence intervals are of type "Pi".
conf.level confidence level for the graphed confidence intervals, restricted to lie between zero and one.
type character string, one of "Mean", "Var" or "Pi", or just the initial letter of each, indicating the type of confidence interval simulation to perform.

\section*{Details}

Default is to construct confidence intervals for the population mean. Simulated confidence intervals for the population variance or population proportion of successes are possible by selecting the appropriate value in the type argument.

\section*{Value}

Graph depicts simulated confidence intervals. The number of confidence intervals that do not contain the parameter of interest are counted and reported in the commands window.

\section*{Author(s)}

Alan T. Arnholt

\section*{Examples}
```

CIsim(100, 30, 100, 10)
\# Simulates 100 samples of size 30 from
\# a normal distribution with mean 100
\# and standard deviation 10. From the
\# 100 simulated samples, 95% confidence
\# intervals for the Mean are constructed
\# and depicted in the graph.
CIsim(100, 30, 100, 10, type="Var")
\# Simulates 100 samples of size 30 from
\# a normal distribution with mean 100
\# and standard deviation 10. From the
\# 100 simulated samples, 95% confidence
\# intervals for the variance are constructed
\# and depicted in the graph.
CIsim(100, 50, .5, type="Pi", conf.level=.90)
\# Simulates }100\mathrm{ samples of size 50 from
\# a binomial distribution where the population
\# proportion of successes is 0.5. From the
\# 100 simulated samples, 90% confidence
\# intervals for Pi are constructed
\# and depicted in the graph.

```
Citrus

\section*{Description}

Data for Exercise 9.7

\section*{Usage}

Citrus

\section*{Format}

A data frame/tibble with nine observations on two variables
age age of children
percent percent peak bone density

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

model <- lm(percent ~ age, data = Citrus)
summary(model)
anova(model)
rm(model)

```

\section*{Clean}

Residual contaminant following the use of three different cleansing agents

\section*{Description}

Data for Exercise 10.16

\section*{Usage}

Clean

\section*{Format}

A data frame/tibble with 45 observations on two variables
clean residual contaminants
agent a factor with levels \(\mathrm{A}, \mathrm{B}\), and C

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(clean ~ agent, col = c("red", "blue", "green"), data = Clean)
anova(lm(clean ~ agent, data = Clean))

```
    Coaxial Signal loss from three types of coxial cable

\section*{Description}

Data for Exercise 10.24 and 10.25

\section*{Usage}

Coaxial

\section*{Format}

A data frame/tibble with 45 observations on two variables
signal signal loss per 1000 feet
cable factor with three levels of coaxial cable typeA, typeB, and typeC

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(signal ~ cable, data = Coaxial, col = c("red", "green", "yellow"))
kruskal.test(signal ~ cable, data = Coaxial)

```

\section*{Description}

Data for Exercise 7.55

\section*{Usage}

Coffee

\section*{Format}

A data frame/tibble with nine observations on three variables
without workers' productivity scores without a coffee break
with workers' productivity scores with a coffee break
differences with minus without

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
qqnorm(Coffee\$differences)
qqline(Coffee\$differences)
shapiro.test(Coffee\$differences)
t.test(Coffee\$with, Coffee\$without, paired = TRUE, alternative = "greater")
wilcox.test(Coffee\$with, Coffee\$without, paired = TRUE,
alterantive = "greater")
Coins Yearly returns on 12 investments

\section*{Description}

Data for Exercise 5.68

\section*{Usage}

Coins

\section*{Format}

A data frame/tibble with 12 observations on one variable
return yearly returns on each of 12 possible investments

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

qqnorm(Coins\$return)

```
qqline(Coins\$return)
Combinations Combinations

\section*{Description}

Computes all possible combinations of n objects taken k at a time.

\section*{Usage}

Combinations(n, k)

\section*{Arguments}
n
a number.
\(k \quad a \quad\) number less than or equal to \(n\).

\section*{Value}

Returns a matrix containing the possible combinations of \(n\) objects taken \(k\) at a time.

\section*{See Also}

SRS

\section*{Examples}

\section*{Combinations \((5,2)\)}
\# The columns in the matrix list the values of the 10 possible
\# combinations of 5 things taken 2 at a time.

\section*{Description}

Data for Exercises 1.13, and 7.85

\section*{Usage}

Commute

\section*{Format}

A data frame/tibble with 39 observations on three variables
city a factor with levels Atlanta, Baltimore, Boston, Buffalo, Charlotte, Chicago, Cincinnati, Cleveland, Columbus, Dallas, Denver, Detroit, Hartford, Houston, Indianapolis, Kansas City, Los Angeles, Miami, Milwaukee, Minneapolis, New Orleans, New York, Norfolk, Orlando, Philadelphia, Phoenix, Pittsburgh, Portland, Providence, Rochester, Sacramento, Salt Lake City, San Antonio, San Diego, San Francisco, Seattle, St. Louis, Tampa, and Washington
year year
time commute times

\section*{Source}

Federal Highway Administration.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stripplot(year ~ time, data = Commute, jitter = TRUE)
dotplot(year ~ time, data = Commute)
bwplot(year ~ time, data = Commute)
stripchart(time ~ year, data = Commute, method = "stack", pch = 1,
cex = 2, col = c("red", "blue"),
group.names = c("1980", "1990"),
main = "", xlab = "minutes")
title(main = "Commute Time")
boxplot(time ~ year, data = Commute, names=c("1980", "1990"),
horizontal = TRUE, las = 1)

```
\begin{tabular}{ll}
\hline Concept \(\quad\) Tennessee self concept scale scores for a group of teenage boys \\
\hline
\end{tabular}

\section*{Description}

Data for Exercise 1.68 and 1.82

\section*{Usage}

Concept

\section*{Format}

A data frame/tibble with 28 observations on one variable
self Tennessee self concept scores

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

summary(Concept$self)
sd(Concept$self)
diff(range(Concept$self))
IQR(Concept$self)
summary(Concept$self/10)
IQR(Concept$self/10)
sd(Concept$self/10)
diff(range(Concept$self/10))

```

\section*{Concrete}

Compressive strength of concrete blocks made by two different methods

\section*{Description}
\[
\text { Data for Example } 7.17
\]

\section*{Usage}

Concrete

\section*{Format}

A data frame/tibble with 20 observations on two variables
strength comprehensive strength (in pounds per square inch)
method factor with levels new and old indicating the method used to construct a concrete block

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

wilcox.test(strength ~ method, data = Concrete, alternative = "greater")

```
Corn Comparison of the yields of a new variety and a standard variety of corn planted on 12 plots of land

\section*{Description}

Data for Exercise 7.77

\section*{Usage}

Corn

\section*{Format}

A data frame/tibble with 12 observations on three variables
new corn yield with new meathod
standard corn yield with standard method
differences new minus standard

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(Corn$differences)
qqnorm(Corn$differences)
qqline(Corn$differences)
shapiro.test(Corn$differences)
t.test(Corn\$differences, alternative = "greater")

```
    Correlat Exercise to illustrate correlation

\section*{Description}

Data for Exercise 2.23

\section*{Usage}

Correlat

\section*{Format}

A data frame/tibble with 13 observations on two variables
\(\mathbf{x}\) a numeric vector
\(\mathbf{y}\) a numeric vector

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(y ~ x, data = Correlat)
model <- lm(y ~ x, data = Correlat)
abline(model)
rm(model)

```

\section*{Description}

Data for Exercise 6.96

\section*{Usage}

Counsel

\section*{Format}

A data frame/tibble with 18 observations on one variable score standardized psychology scores after a counseling process

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

EDA(Counsel\$score)
t.test(Counsel\$score, mu = 70)
Cpi Consumer price index from 1979 to 1998

\section*{Description}

Data for Exercise 1.34

\section*{Usage}

Cpi

\section*{Format}

A data frame/tibble with 20 observations on two variables
year year
cpi consumer price index

\section*{Source}

Bureau of Labor Statistics.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(cpi ~ year, data = Cpi, type = "l", lty = 2, lwd = 2, col = "red")
barplot(Cpi\$cpi, col = "pink", las = 2, main = "Problem 1.34")

```
Crime

\section*{Description}

Data for Exercises 1.90, 2.32, 3.64, and 5.113

\section*{Usage}

Crime

\section*{Format}

A data frame/tibble with 102 observations on three variables
state a factor with levels Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, DC, Delaware, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missour, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin, and Wyoming
year a factor with levels 1983 and 1993
rate crime rate per 100,000 inhabitants

\section*{Source}
U.S. Department of Justice, Bureau of Justice Statistics, Sourcebook of Criminal Justice Statistics, 1993.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(rate ~ year, data = Crime, col = "red")

```
Darwin Charles Darwin's study of cross-fertilized and self-fertilized plants

\section*{Description}

Data for Exercise 7.62

\section*{Usage}

Darwin

\section*{Format}

A data frame/tibble with 15 observations on three variables
pot number of pot
cross height of plant (in inches) after a fixed period of time when cross-fertilized
self height of plant (in inches) after a fixed period of time when self-fertilized

\section*{Source}

Darwin, C. (1876) The Effect of Cross- and Self-Fertilization in the Vegetable Kingdom, 2nd edition, London.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

differ <- Darwin$cross - Darwin$self
qqnorm(differ)
qqline(differ)
shapiro.test(differ)
wilcox.test(Darwin$cross, Darwin$self, paired = TRUE)
rm(differ)

```

\section*{Description}

Data for Example 2.22

\section*{Usage}

Dealers

\section*{Format}

A data frame/tibble with 122 observations on two variables
type a factor with levels Honda, Toyota, Mazda, Ford, Dodge, and Saturn
service a factor with levels Replaces unnecessarily and Follows manufacturer guidelines

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

xtabs(~type + service, data = Dealers)
T1 <- xtabs(~type + service, data = Dealers)
T1
addmargins(T1)
pt <- prop.table(T1, margin = 1)
pt
barplot(t(pt), col = c("red", "skyblue"), legend = colnames(T1))
rm(T1, pt)

```
Defectiv Number of defective items produced by 20 employees

\section*{Description}

Data for Exercise 1.27

\section*{Usage}

Defectiv

\section*{Format}

A data frame/tibble with 20 observations on one variable
number number of defective items produced by the employees in a small business firm

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~ number, data = Defectiv)
T1
barplot(T1, col = "pink", ylab = "Frequency",
xlab = "Defective Items Produced by Employees", main = "Problem 1.27")
rm(T1)

```

\section*{Description}

Data for Exercise 2.75

\section*{Usage}

Degree

\section*{Format}

A data frame/tibble with 1064 observations on two variables
field a factor with levels Health, Education, Foreign Language, Psychology, Fine Arts, Life Sciences, Business, Social Science, Physical Sciences, Engineering, and All Fields awarded a factor with levels 1970 and 1990

\section*{Source}
U.S. Department of Health and Human Services, National Center for Education Statistics.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~field + awarded, data = Degree)
T1
barplot(t(T1), beside = TRUE, col = c("red", "skyblue"), legend = colnames(T1))
rm(T1)

```
Delay

Delay times on 20 flights from four major air carriers

\section*{Description}

\section*{Data for Exercise 10.55}

\section*{Usage}

Delay

\section*{Format}

A data frame/tibble with 80 observations on two variables
delay the delay time (in minutes) for 80 randomly selected flights
carrier a factor with levels \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and D

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(delay ~ carrier, data = Delay,
main = "Exercise 10.55", ylab = "minutes",
col = "pink")
kruskal.test(delay ~carrier, data = Delay)

```
Depend Number of dependent children for 50 families

\section*{Description}

Data for Exercise 1.26

\section*{Usage}

Depend

\section*{Format}

A data frame/tibble with 50 observations on one variable number number of dependent children in a family

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~ number, data = Depend)
T1
barplot(T1, col = "lightblue", main = "Problem 1.26",
xlab = "Number of Dependent Children", ylab = "Frequency")
rm(T1)

```

\section*{Detroit Educational levels of a sample of 40 auto workers in Detroit}

\section*{Description}

Data for Exercise 5.21

\section*{Usage}

Detroit

\section*{Format}

A data frame/tibble with 40 observations on one variable
educ the educational level (in years) of a sample of 40 auto workers in a plant in Detroit

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

EDA(Detroit\$educ)
Develop \begin{tabular}{l} 
Demographic characteristics of developmental students at 2-year col- \\
leges and 4-year colleges
\end{tabular} leges and 4-year colleges

\section*{Description}

Data used for Exercise 8.50

\section*{Usage}

Develop

\section*{Format}

A data frame/tibble with 5656 observations on two variables
race a factor with levels African American, American Indian, Asian, Latino, and White
college a factor with levels Two-year and Four-year

\section*{Source}

Research in Development Education (1994), V. 11, 2.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~race + college, data = Develop)
T1
chisq.test(T1)
rm(T1)

```

Devmath Test scores for students who failed developmental mathematics in the fall semester 1995

\section*{Description}

Data for Exercise 6.47

\section*{Usage}

Devmath

\section*{Format}

A data frame/tibble with 40 observations on one variable
score first exam score

\section*{Source}

Data provided by Dr. Anita Kitchens.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

EDA(Devmath\$score)
t.test(Devmath\$score, mu = 80, alternative = "less")
Dice \(\quad\) Outcomes and probabilities of the roll of a pair of fair dice

\section*{Description}

Data for Exercise 3.109

\section*{Usage}

Dice

\section*{Format}

A data frame/tibble with 11 observations on two variables
\(\mathbf{x}\) possible outcomes for the sum of two dice
px probability for outcome \(x\)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

roll1 <- sample(1:6, 20000, replace = TRUE)
roll2 <- sample(1:6, 20000, replace = TRUE)
outcome <- roll1 + roll2
T1 <- table(outcome)/length(outcome)
remove(roll1, roll2, outcome)
T1
round(t(Dice), 5)
rm(roll1, roll2, T1)

```
Diesel Diesel fuel prices in 1999-2000 in nine regions of the country

\section*{Description}

Data for Exercise 2.8

\section*{Usage}

Diesel

\section*{Format}

A data frame/tibble with 650 observations on three variables
date date when price was recorded
pricepergallon price per gallon (in dollars)
location a factor with levels California, CentralAtlantic, Coast, EastCoast, Gulf, LowerAtlantic, NatAvg, NorthEast, Rocky, and WesternMountain

\section*{Source}

Energy Information Administration, National Enerfy Information Center: 1000 Independence Ave., SW, Washington, D.C., 20585.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

par(las = 2)
boxplot(pricepergallon ~ location, data = Diesel)
boxplot(pricepergallon ~ location,
data = droplevels(Diesel[Diesel$location == "EastCoast" |
 Diesel$location == "Gulf" | Diesel$location == "NatAvg" |
 Diesel$location == "Rocky" | Diesel\$location == "California",]),
col = "pink", main = "Exercise 2.8")
par(las = 1)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Diesel, aes(x = date, y = pricepergallon,
color = location)) +
geom_point() +
geom_smooth(se = FALSE) +
theme_bw() +
labs(y = "Price per Gallon (in dollars)")

End(Not run)

```
Diplomat Parking tickets issued to diplomats

\section*{Description}

Data for Exercises 1.14 and 1.37

\section*{Usage}

Diplomat

\section*{Format}

A data frame/tibble with 10 observations on three variables
country a factor with levels Brazil, Bulgaria, Egypt, Indonesia, Israel, Nigeria, Russia, S. Korea, Ukraine, and Venezuela
number total number of tickets
rate number of tickets per vehicle per month

\section*{Source}

Time, November 8, 1993. Figures are from January to June 1993.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

par(las = 2, mfrow = c(2, 2))
stripchart(number ~ country, data = Diplomat, pch = 19,
col= "red", vertical = TRUE)
stripchart(rate ~ country, data = Diplomat, pch = 19,
col= "blue", vertical = TRUE)
with(data = Diplomat,
barplot(number, names.arg = country, col = "red"))
with(data = Diplomat,
barplot(rate, names.arg = country, col = "blue"))
par(las = 1, mfrow = c(1, 1))

Not run:

library(ggplot2)
ggplot2::ggplot(data = Diplomat, aes(x = reorder(country, number),
y = number)) +
geom_bar(stat = "identity", fill = "pink", color = "black") +
theme_bw() + labs(x = "", y = "Total Number of Tickets")
ggplot2::ggplot(data = Diplomat, aes(x = reorder(country, rate),
y = rate)) +
geom_bar(stat = "identity", fill = "pink", color = "black") +
theme_bw() + labs(x = "", y = "Tickets per vehicle per month")

End(Not run)

```

Disposal Toxic intensity for manufacturing plants producing herbicidal preparations

\section*{Description}

Data for Exercise 1.127

\section*{Usage}

Disposal

\section*{Format}

A data frame/tibble with 29 observations on one variable
pounds pounds of toxic waste per \(\$ 1000\) of shipments of its products

\section*{Source}

Bureau of the Census, Reducing Toxins, Statistical Brief SB/95-3, February 1995.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
stem(Disposal\$pounds)
fivenum(Disposal\$pounds)
EDA(Disposal\$pounds)

\section*{Dogs \\ Rankings of the favorite breeds of dogs}

\section*{Description}

Data for Exercise 2.88

\section*{Usage}

Dogs

\section*{Format}

A data frame/tibble with 20 observations on three variables
breed a factor with levels Beagle, Boxer, Chihuahua, Chow, Dachshund, Dalmatian, Doberman, Huskie, Labrador, Pomeranian, Poodle, Retriever, Rotweiler, Schnauzer, Shepherd, Shetland, ShihTzu, Spaniel, Springer, and Yorkshire
ranking numeric ranking
year a factor with levels 1992, 1993, 1997, and 1998

\section*{Source}

The World Almanac and Book of Facts, 2000.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

cor(Dogs$ranking[Dogs$year == "1992"], Dogs$ranking[Dogs$year == "1993"])
cor(Dogs$ranking[Dogs$year == "1997"], Dogs$ranking[Dogs$year == "1998"])

Not run:

library(ggplot2)
ggplot2::ggplot(data = Dogs, aes(x = reorder(breed, ranking), y = ranking)) +
geom_bar(stat = "identity") +
facet_grid(year ~.) +
theme(axis.text.x = element_text(angle = 85, vjust = 0.5))

End(Not run)

```

\section*{Description}

Data for Exercise 1.20

\section*{Usage}

Domestic

\section*{Format}

A data frame/tibble with five observations on two variables
age a factor with levels \(12-19,20-24,25-34,35-49\), and 50-64
rate rate of domestic violence per 1000 women

\section*{Source}
U.S. Department of Justice.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

barplot(Domestic$rate, names.arg = Domestic$age)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Domestic, aes(x = age, y = rate)) +
geom_bar(stat = "identity", fill = "purple", color = "black") +
labs(x = "", y = "Domestic violence per 1000 women") +

```
```

 theme_bw()

End(Not run)

```

Dopamine b-hydroxylase activity of schizophrenic patients treated with an antipsychotic drug

\section*{Description}

Data for Exercises 5.14 and 7.49

\section*{Usage}

Dopamine

\section*{Format}

A data frame/tibble with 25 observations on two variables
dbh dopamine b-hydroxylase activity (units are \(\mathrm{nmol} /(\mathrm{ml})(\mathrm{h}) /(\mathrm{mg})\) of protein)
group a factor with levels nonpsychotic and psychotic

\section*{Source}
D.E. Sternberg, D.P. Van Kammen, and W.E. Bunney, "Schizophrenia: Dopamine b-Hydroxylase Activity and Treatment Respsonse," Science, 216 (1982), 1423-1425.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(dbh ~ group, data = Dopamine, col = "orange")
t.test(dbh ~ group, data = Dopamine, var.equal = TRUE)

```
Dowjones \begin{tabular}{l} 
Closing yearend Dow Jones Industrial averages from 1896 through \\
2000
\end{tabular}

\section*{Description}

Data for Exercise 1.35

\section*{Usage}

\section*{Dowjones}

\section*{Format}

A data frame/tibble with 105 observations on three variables
year date
close Dow Jones closing price
change percent change from previous year

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(close ~ year, data = Dowjones, type = "l", main = "Exercise 1.35")

Not run:

library(ggplot2)
ggplot2::ggplot(data = Dowjones, aes(x = year, y = close)) +
geom_point(size = 0.5) +
geom_line(color = "red") +
theme_bw() +
labs(y = "Dow Jones Closing Price")

End(Not run)

```
Drink \begin{tabular}{l} 
Opinion on referendum by view on moral issue of selling alcoholic \\
beverages
\end{tabular} beverages

\section*{Description}

Data for Exercise 8.53

\section*{Usage}

Drink

\section*{Format}

A data frame/tibble with 472 observations on two variables
drinking a factor with levels ok, tolerated, and immoral
referendum a factor with levels for, against, and undecided

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~drinking + referendum, data = Drink)
T1
chisq.test(T1)
rm(T1)

```
Drug Number of trials to master a task for a group of 28 subjects assigned to a control and an experimental group

\section*{Description}

Data for Example 7.15

\section*{Usage}

Drug

\section*{Format}

A data frame/tibble with 28 observations on two variables
trials number of trials to master a task
group a factor with levels control and experimental

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(trials ~ group, data = Drug,
main = "Example 7.15", col = c("yellow", "red"))
wilcox.test(trials ~ group, data = Drug)
t.test(rank(trials) ~ group, data = Drug, var.equal = TRUE)

```

Dyslexia Data on a group of college students diagnosed with dyslexia

\section*{Description}

Data for Exercise 2.90

\section*{Usage}

Dyslexia

\section*{Format}

A data frame/tibble with eight observations on seven variables
words number of words read per minute
age age of participant
gender a factor with levels female and male
handed a factor with levels left and right
weight weight of participant (in pounds)
height height of participant (in inches)
children number of children in family

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(height ~ weight, data = Dyslexia)
plot(words ~ factor(handed), data = Dyslexia,
xlab = "hand", col = "lightblue")

```
    Earthqk One hundred year record of worldwide seismic activity(1770-1869)

\section*{Description}

Data for Exercise 6.97

\section*{Usage}

Earthqk

\section*{Format}

A data frame/tibble with 100 observations on two variables
year year seimic activity recorded
severity annual incidence of sever earthquakes

\section*{Source}

Quenoille, M.H. (1952), Associated Measurements, Butterworth, London. p 279.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

EDA(Earthqk\$severity)
t.test(Earthqk\$severity, mu = 100, alternative = "greater")

\section*{Description}

Function that produces a histogram, density plot, boxplot, and Q-Q plot.

\section*{Usage}

EDA(x, trim = 0.05)

\section*{Arguments}
\(\begin{array}{ll}\mathrm{x} & \text { numeric vector. NAs and Infs are allowed but will be removed. } \\ \text { trim } & \begin{array}{l}\text { fraction (between } 0 \text { and } 0.5, \text { inclusive) of values to be trimmed from each end } \\ \text { of the ordered data. If } \operatorname{trim}=0.5, \text { the result is the median. }\end{array}\end{array}\)

\section*{Details}

Will not return command window information on data sets containing more than 5000 observations. It will however still produce graphical output for data sets containing more than 5000 observations.

\section*{Value}

Function returns various measures of center and location. The values returned for the Quartiles are based on the definitions provided in BSDA. The boxplot is based on the Quartiles returned in the commands window.

Note
Requires package e1071.

\section*{Author(s)}

Alan T. Arnholt

\section*{Examples}
```

EDA(rnorm(100))
\# Produces four graphs for the 100 randomly
\# generated standard normal variates.

``` degree

\section*{Description}

Data for Exercise 2.41

\section*{Usage}

Educat

\section*{Format}

A data frame/tibble with 51 observations on three variables
state a factor with levels Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, DC, Delaware, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missour, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin, and Wyoming
nodegree percent of the population without a high school degree
crime violent crimes per 100,000 population

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(crime ~ nodegree, data = Educat,
xlab = "Percent of population without high school degree",
ylab = "Violent Crime Rate per 100,000")

```
Eggs \(\quad\) Number of eggs versus amounts of feed supplement

\section*{Description}

Data for Exercise 9.22

\section*{Usage}

Eggs

\section*{Format}

A data frame/tibble with 12 observations on two variables
feed amount of feed supplement
eggs number of eggs per day for 100 chickens

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(eggs ~ feed, data = Eggs)
model <- lm(eggs ~ feed, data = Eggs)
abline(model, col = "red")
summary(model)
rm(model)

```
Elderly Percent of the population over the age of 65

\section*{Description}

Data for Exercise 1.92 and 2.61

\section*{Usage}

Elderly

\section*{Format}

A data frame/tibble with 51 observations on three variables
state a factor with levels Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, District of Colunbia, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missour, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin, and Wyoming
percent1985 percent of the population over the age of 65 in 1985
percent1998 percent of the population over the age of 65 in 1998

\section*{Source}
U.S. Census Bureau Internet site, February 2000.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

with(data = Elderly,
stripchart(x = list(percent1998, percent1985), method = "stack", pch = 19,
col = c("red","blue"), group.names = c("1998", "1985"))
)
with(data = Elderly, cor(percent1998, percent1985))

Not run:

library(ggplot2)
ggplot2::ggplot(data = Elderly, aes(x = percent1985, y = percent1998)) +
geom_point() +
theme_bw()

End(Not run)

```
Energy

Amount of energy consumed by homes versus their sizes

\section*{Description}

Data for Exercises 2.5, 2.24, and 2.55

\section*{Usage}

Energy

\section*{Format}

A data frame/tibble with 12 observations on two variables
size size of home (in square feet)
kilowatt killowatt-hours per month

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(kilowatt ~ size, data = Energy)
with(data = Energy, cor(size, kilowatt))
model <- lm(kilowatt ~ size, data = Energy)
plot(Energy\$size, resid(model), xlab = "size")

```
Engineer Salaries after 10 years for graduates of three different universities

\section*{Description}

Data for Example 10.7

\section*{Usage}

Engineer

\section*{Format}

A data frame/tibble with 51 observations on two variables
salary salary (in \$1000) 10 years after graduation
university a factor with levels \(A, B\), and \(C\)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(salary ~ university, data = Engineer,
main = "Example 10.7", col = "yellow")
kruskal.test(salary ~ university, data = Engineer)
anova(lm(salary ~ university, data = Engineer))
anova(lm(rank(salary) ~ university, data = Engineer))

```
Entrance \(\quad\) College entrance exam scores for 24 high school seniors

\section*{Description}

Data for Example 1.8

\section*{Usage}

Entrance

\section*{Format}

A data frame/tibble with 24 observations on one variable
score college entrance exam score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Entrance$score)
stem(Entrance$score, scale = 2)

```

\section*{Description}

Data for Exercise 1.65

\section*{Usage}

Epaminicompact

\section*{Format}

A data frame/tibble with 22 observations on ten variables
class a character variable with value MINICOMPACT CARS
manufacturer a character variable with values AUDI, BMW, JAGUAR, MERCEDES-BENZ, MITSUBISHI, and PORSCHE
carline a character variable with values 325CI CONVERTIBLE, 330CI CONVERTIBLE, 911 CARRERA 2/4, 911 TURBO, CLK320 (CABRIOLET), CLK430 (CABRIOLET), ECLIPSE SPYDER, JAGUAR XK8 CONVERTIBLE, JAGUAR XKR CONVERTIBLE, M3 CONVERTIBLE, TT COUPE, and TT COUPE QUATTRO
displ engine displacement (in liters)
cyl number of cylinders
trans a factor with levels Auto(L5), Auto(S4), Auto(S5), Manual(M5), and Manual(M6)
drv a factor with levels 4 (four wheel drive), \(F\) (front wheel drive), and \(R\) (rear wheel drive)
cty city mpg
hwy highway mpg
cmb combined city and highway mpg

\section*{Source}

EPA data.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

summary(Epaminicompact\$cty)
plot(hwy ~ cty, data = Epaminicompact)

```

\section*{Description}

Data for Exercise 5.8

\section*{Usage}

Epatwoseater

\section*{Format}

A data frame/tibble with 36 observations on ten variables
class a character variable with value TWO SEATERS
manufacturer a character variable with values ACURA, AUDI, BMW, CHEVROLET, DODGE, FERRARI, HONDA, LAMBORGHINI, MAZDA, MERCEDES-BENZ, PLYMOUTH, PORSCHE, and TOYOTA
carline a character variable with values BOXSTER, BOXSTER S, CORVETTE, DB132/144 DIABLO, FERRARI 360 MODENA/SPIDER, FERRARI 550 MARANELLO/BARCHETTA, INSIGHT, MR2 ,MX-5 MIATA, NSX, PROWLER, S2000, SL500, SL600, SLK230 KOMPRESSOR, SLK320, TT ROADSTER, TT ROADSTER QUATTRO, VIPER CONVERTIBLE, VIPER COUPE, Z3 COUPE, Z3 ROADSTER, and Z8
displ engine displacement (in liters)
cyl number of cylinders
trans a factor with levels Auto(L4), Auto(L5), Auto(S4), Auto(S5), Auto(S6), Manual(M5), and Manual (M6)
drv a factor with levels 4(four wheel drive) \(F\) (front wheel drive) \(R\) (rear wheel drive)
cty city mpg
hwy highway mpg
cmb combined city and highway mpg
@ source Environmental Protection Agency.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

summary(Epatwoseater\$cty)
plot(hwy ~ cty, data = Epatwoseater)
boxplot(cty ~ drv, data = Epatwoseater, col = "lightgreen")

```
Executiv Ages of 25 executives

\section*{Description}

Data for Exercise 1.104

\section*{Usage}

Executiv

\section*{Format}

A data frame/tibble with 25 observations on one variable age a numeric vector

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

hist(Executiv\$age, xlab = "Age of banking executives",
breaks = 5, main = "", col = "gray")

```

\section*{Description}

\section*{Data for Exercise 1.44}

\section*{Usage}

Exercise

\section*{Format}

A data frame/tibble with 30 observations on one variable
loss a numeric vector

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Exercise\$loss)

```

Fabric
Measures of softness of ten different clothing garments washed with and without a softener

\section*{Description}

Data for Example 7.21

\section*{Usage}

Fabric

\section*{Format}

A data frame/tibble with 20 observations on three variables
garment a numeric vector
softner a character variable with values with and without
softness a numeric vector

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```


Not run:

library(tidyr)
tidyr::spread(Fabric, softner, softness) -> FabricWide
wilcox.test(Pair(with, without)~1, alternative = "greater", data = FabricWide)
T7 <- tidyr::spread(Fabric, softner, softness) %>%
mutate(di = with - without, adi = abs(di), rk = rank(adi),
srk = sign(di)*rk)
T7
t.test(T7\$srk, alternative = "greater")

End(Not run)

```

\section*{Description}

Data for Exercise 5.12 and 5.111

\section*{Usage}

Faithful

\section*{Format}

A data frame/tibble with 299 observations on two variables
time a numeric vector
eruption a factor with levels 1 and 2

\section*{Source}
A. Azzalini and A. Bowman, "A Look at Some Data on the Old Faithful Geyser," Journal of the Royal Statistical Society, Series C, 39 (1990), 357-366.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

t.test(time ~ eruption, data = Faithful)
hist(Faithful$time, xlab = "wait time", main = "", freq = FALSE)
lines(density(Faithful$time))

Not run:

library(ggplot2)
ggplot2::ggplot(data = Faithful, aes(x = time, y = ..density..)) +
geom_histogram(binwidth = 5, fill = "pink", col = "black") +
geom_density() +
theme_bw() +
labs(x = "wait time")

End(Not run)

```

\section*{Description}

Data for Exercise 2.89

\section*{Usage}

Family

\section*{Format}

A data frame/tibble with 20 observations on two variables
number number in family
cost cost per person (in dollars)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(cost ~ number, data = Family)
abline(lm(cost ~ number, data = Family), col = "red")
cor(Family$cost, Family$number)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Family, aes(x = number, y = cost)) +
geom_point() +
geom_smooth(method = "lm") +
theme_bw()

End(Not run)

```

\section*{Description}

Data for Exercise 8.23

\section*{Usage}

Ferraro1

\section*{Format}

A data frame/tibble with 1000 observations on two variables
gender a factor with levels Men and Women
candidate a character vector of 1984 president and vice-president candidates

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~gender + candidate, data = Ferraro1)
T1
chisq.test(T1)
rm(T1)

```

\section*{Description}

\section*{Data for Exercise 8.23}

\section*{Usage}

Ferraro2

\section*{Format}

A data frame/tibble with 1000 observations on two variables
gender a factor with levels Men and Women
candidate a character vector of 1984 president and vice-president candidates

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~gender + candidate, data = Ferraro2)
T1
chisq.test(T1)
rm(T1)

```
Fertility Fertility rates of all 50 states and DC

\section*{Description}

Data for Exercise 1.125

\section*{Usage}

Fertility

\section*{Format}

A data frame/tibble with 51 observations on two variables
state a character variable with values Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, District of Colunbia, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland,Massachusetts, Michigan, Minnesota, Mississippi, Missour, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin, and Wyoming
rate fertility rate (expected number of births during childbearing years)

\section*{Source}

Population Reference Bureau.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Fertility$rate)
fivenum(Fertility$rate)
EDA(Fertility\$rate)

```
    Firstchi Ages of women at the birth of their first child

\section*{Description}

Data for Exercise 5.11

\section*{Usage}

Firstchi

\section*{Format}

A data frame/tibble with 87 observations on one variable
age age of woman at birth of her first child

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

EDA(Firstchi\$age)
Fish Length and number of fish caught with small and large mesh codend

\section*{Description}

Data for Exercises 5.83, 5.119, and 7.29

\section*{Usage}

Fish

\section*{Format}

A data frame/tibble with 1534 observations on two variables
codend a character variable with values smallmesh and largemesh
length length of the fish measure in centimeters

\section*{Source}
R. Millar, "Estimating the Size - Selectivity of Fishing Gear by Conditioning on the Total Catch," Journal of the American Statistical Association, 87 (1992), 962-968.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

tapply(Fish$length, Fish$codend, median, na.rm = TRUE)
SIGN.test(Fish$length[Fish$codend == "smallmesh"], conf.level = 0.99)

Not run:

dplyr::group_by(Fish, codend) %>%
summarize(MEDIAN = median(length, na.rm = TRUE))

End(Not run)

```

\section*{Description}

\section*{Data for Exercise 7.71}

\section*{Usage}

Fitness

\section*{Format}

A data frame/tibble with 18 observations on the three variables
subject a character variable indicating subject number
test a character variable with values After and Before
number a numeric vector recording the number of sit-ups performed in one minute

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```


Not run:

tidyr::spread(Fitness, test, number) -> FitnessWide
t.test(Pair(After, Before)~1, alternative = "greater", data = FitnessWide)
Wide <- tidyr::spread(Fitness, test, number) %>%
mutate(diff = After - Before)
Wide
qqnorm(Wide$diff)
qqline(Wide$diff)
t.test(Wide\$diff, alternative = "greater")

End(Not run)

```

\section*{Description}

Data for Statistical Insight Chapter 2

\section*{Usage}

Florida2000

\section*{Format}

A data frame/tibble with 67 observations on 12 variables
county a character variable with values ALACHUA, BAKER, BAY, BRADFORD, BREVARD, BROWARD, CALHOUN, CHARLOTTE, CITRUS, CLAY, COLLIER, COLUMBIA, DADE, DE SOTO, DIXIE, DUVAL, ESCAMBIA, FLAGLER, FRANKLIN, GADSDEN, GILCHRIST, GLADES, GULF, HAMILTON, HARDEE, HENDRY, HERNANDO, HIGHLANDS, HILLSBOROUGH, HOLMES, INDIAN RIVER, JACKSON, JEFFERSON, LAFAYETTE, LAKE, LEE, LEON, LEVY, LIBERTY, MADISON, MANATEE, MARION, MARTIN, MONROE, NASSAU, OKALOOSA, OKEECHOBEE, ORANGE, OSCEOLA, PALM BEACH, PASCO, PINELLAS, POLK, PUTNAM, SANTA ROSA, SARASOTA, SEMINOLE, ST. JOHNS, ST. LUCIE, SUMTER, SUWANNEE, TAYLOR, UNION, VOLUSIA, WAKULLA, WALTON, and WASHINGTON
gore number of votes
bush number of votes
buchanan number of votes
nader number of votes
browne number of votes
hagelin number of votes
harris number of votes
mcreynolds number of votes
moorehead number of votes
phillips number of votes
total number of votes

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(buchanan ~ total, data = Florida2000,
xlab = "Total votes cast (in thousands)",
ylab = "Votes for Buchanan")

```

Fluid Breakdown times of an insulating fluid under various levels of voltage stress

\section*{Description}

\section*{Data for Exercise 5.76}

\section*{Usage}

Fluid

\section*{Format}

A data frame/tibble with 76 observations on two variables
kilovolts a character variable showing kilowats
time breakdown time (in minutes)

\section*{Source}
E. Soofi, N. Ebrahimi, and M. Habibullah, 1995.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

DF1 <- Fluid[Fluid\$kilovolts == "34kV",]
DF1

OR

DF2 <- subset(Fluid, subset = kilovolts == "34kV")
DF2
stem(DF2$time)
SIGN.test(DF2$time)

Not run:

library(dplyr)
DF3 <- dplyr::filter(Fluid, kilovolts == "34kV")
DF3
\#\# End(Not run)

```

Food

\section*{Description}

\section*{Data for Exercise 5.106}

\section*{Usage}

Food

\section*{Format}

A data frame/tibble with 40 observations on one variable
expenditure a numeric vector recording annual food expenditure (in dollars) in the state of Ohio.

Source
Bureau of Labor Statistics.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

EDA(Food\$expenditure)

Framingh
Cholesterol values of 62 subjects in the Framingham Heart Study

\section*{Description}

Data for Exercises 1.56, 1.75, 3.69, and 5.60

\section*{Usage}

Framingh

\section*{Format}

A data frame/tibble with 62 observations on one variable
cholest a numeric vector with cholesterol values

\section*{Source}
R. D'Agostino, et al., (1990) "A Suggestion for Using Powerful and Informative Tests for Normality," The American Statistician, 44 316-321.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Framingh$cholest)
boxplot(Framingh$cholest, horizontal = TRUE)
hist(Framingh$cholest, freq = FALSE)
lines(density(Framingh$cholest))
mean(Framingh$cholest > 200 & Framingh$cholest < 240)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Framingh, aes(x = factor(1), y = cholest)) +
geom_boxplot() + \# boxplot
labs(x = "") + \# no x label
theme_bw() + \# black and white theme
geom_jitter(width = 0.2) + \# jitter points
coord_flip() \# Create horizontal plot
ggplot2::ggplot(data = Framingh, aes(x = cholest, y = ..density..)) +
geom_histogram(fill = "pink", binwidth = 15, color = "black") +
geom_density() +
theme_bw()

End(Not run)

```

\section*{Freshman}

Ages of a random sample of 30 college freshmen

\section*{Description}

Data for Exercise 6.53

\section*{Usage}

Freshman

\section*{Format}

A data frame/tibble with 30 observations on one variable age a numeric vector of ages

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

SIGN.test(Freshman\$age, md = 19)

```

Funeral Cost of funeral by region of country

\section*{Description}

Data for Exercise 8.54

\section*{Usage}

Funeral

\section*{Format}

A data frame/tibble with 400 observations on two variables
region a factor with levels Central, East, South, and West
cost a factor with levels less than expected, about what expected, and more than expected

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~region + cost, data = Funeral)
T1
chisq.test(T1)
rm(T1)

```

\section*{Description}

Data for Example 5.2

\section*{Usage}

Galaxie

\section*{Format}

A data frame/tibble with 82 observations on one variable velocity velocity measured in kilometers per second

\section*{Source}
K. Roeder, "Density Estimation with Confidence Sets Explained by Superclusters and Voids in the Galaxies," Journal of the American Statistical Association, 85 (1990), 617-624.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

EDA(Galaxie\$velocity)

```
Gallup

Results of a Gallup poll on possession of marijuana as a criminal offense conducted in 1980

\section*{Description}

Data for Exercise 2.76

\section*{Usage}

Gallup

\section*{Format}

A data frame/tibble with 1,200 observations on two variables
demographics a factor with levels National, Gender: Male Gender: Female, Education: College, Eduction: High School, Education: Grade School, Age: 18-24, Age: 25-29, Age: 30-49, Age: 50-older, Religion: Protestant, and Religion: Catholic
opinion a factor with levels Criminal, Not Criminal, and No Opinion

\section*{Source}

George H. Gallup The Gallup Opinion Index Report No. 179 (Princeton, NJ: The Gallup Poll, July 1980), p. 15.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~demographics + opinion, data = Gallup)
T1
t(T1[c(2, 3),])
barplot(t(T1[c(2, 3),]))
barplot(t(T1[c(2, 3),]), beside = TRUE)

Not run:

library(dplyr)
library(ggplot2)
dplyr::filter(Gallup, demographics == "Gender: Male" | demographics == "Gender: Female") %>%
ggplot2::ggplot(aes(x = demographics, fill = opinion)) +
geom_bar() +
theme_bw() +
labs(y = "Fraction")

End(Not run)

```
    Gasoline

\section*{Description}

Data for Exercise 1.45

\section*{Usage}

Gasoline

\section*{Format}

A data frame/tibble with 25 observations on one variable
price price for one gallon of gasoline

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Gasoline\$price)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Gasoline, aes(x = factor(1), y = price)) +
geom_violin() +
geom_jitter() +
theme_bw()

End(Not run)

```

German Number of errors in copying a German passage before and after an experimental course in German

\section*{Description}

Data for Exercise 7.60

\section*{Usage}

German

\section*{Format}

A data frame/tibble with ten observations on three variables
student a character variable indicating student number
when a character variable with values Before and After to indicate when the student received experimental instruction in German
errors the number of errors in copying a German passage

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```


Not run:

tidyr::spread(German, when, errors) -> GermanWide
t.test(Pair(After, Before) ~ 1, data = GermanWide)
wilcox.test(Pair(After, Before) ~ 1, data = GermanWide)
T8 <- tidyr::spread(German, when, errors) %>%
mutate(di = After - Before, adi = abs(di), rk = rank(adi), srk = sign(di)*rk)
T8
qqnorm(T8$di)
qqline(T8$di)
t.test(T8\$srk)

End(Not run)

```
    Golf Distances a golf ball can be driven by 20 professional golfers

\section*{Description}

\section*{Data for Exercise 5.24}

\section*{Usage}

Golf

\section*{Format}

A data frame/tibble with 20 observations on one variable
yards distance a golf ball is driven in yards

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Golf$yards)
qqnorm(Golf$yards)
qqline(Golf\$yards)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Golf, aes(sample = yards)) +
geom_qq() +
theme_bw()

End(Not run)

```

\section*{Description}

Data for Exercise 5.112

\section*{Usage}

Governor

\section*{Format}

A data frame/tibble with 50 observations on three variables
state a character variable with values Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin, and Wyoming
year a factor indicating year
salary a numeric vector with the governor's salary (in dollars)

\section*{Source}

The 2000 World Almanac and Book of Facts.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

 boxplot(salary ~ year, data = Governor)
 ## Not run:
 library(ggplot2)
 ggplot2::ggplot(data = Governor, aes(x = salary)) +
 geom_density(fill = "pink") +
 facet_grid(year ~ .) +
 theme_bw()
 ## End(Not run)
    ```
    Gpa
        High school GPA versus college GPA

\section*{Description}

Data for Example 2.13

\section*{Usage}

Gpa

\section*{Format}

A data frame/tibble with 10 observations on two variables
hsgpa high school gpa
collgpa college gpa

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(collgpa ~ hsgpa, data = Gpa)
mod <- lm(collgpa ~ hsgpa, data = Gpa)
abline(mod) \# add line
yhat <- predict(mod) \# fitted values
e <- resid(mod) \# residuals
cbind(Gpa, yhat, e) \# Table 2.1
cor(Gpa$hsgpa, Gpa$collgpa)

Not run:

```
```

 library(ggplot2)
 ggplot2::ggplot(data = Gpa, aes(x = hsgpa, y = collgpa)) +
 geom_point() +
 geom_smooth(method = "lm") +
 theme_bw()

End(Not run)

```
    Grades Test grades in a beginning statistics class

\section*{Description}

Data for Exercise 1.120

\section*{Usage}

Grades

\section*{Format}

A data frame with 29 observations on one variable grades a numeric vector containing test grades

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

hist(Grades\$grades, main = "", xlab = "Test grades", right = FALSE)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Grades, aes(x = grades, y = ..density..)) +
geom_histogram(fill = "pink", binwidth = 5, color = "black") +
geom_density(lwd = 2, color = "red") +
theme_bw()

End(Not run)

```

\section*{Description}

\section*{Data for Exercise 1.118}

\section*{Usage}

Graduate

\section*{Format}

A data frame/tibble with 12 observations on three variables
school a character variable with values Alabama, Arkansas, Auburn, Florida, Georgia, Kentucky, Louisiana St, Mississippi, Mississippi St, South Carolina, Tennessee, and Vanderbilt code a character variable with values Al, Ar, Au Fl, Ge, Ke, LSt, Mi, MSt, SC, Te, and Va percent graduation rate

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

barplot(Graduate$percent, names.arg = Graduate$school,
las = 2, cex.names = 0.7, col = "tomato")

```
Greenriv Varve thickness from a sequence through an Eocene lake deposit in the Rocky Mountains

\section*{Description}

Data for Exercise 6.57

\section*{Usage}

Greenriv

\section*{Format}

A data frame/tibble with 37 observations on one variable
thick varve thickness in millimeters

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
stem(Greenriv\$thick)
SIGN.test(Greenriv\$thick, md = 7.3, alternative = "greater")

Grnriv2 Thickness of a varved section of the Green river oil shale deposit near a major lake in the Rocky Mountains

\section*{Description}

Data for Exercises 6.45 and 6.98

\section*{Usage}

Grnriv2

\section*{Format}

A data frame/tibble with 101 observations on one variable
thick varve thickness (in millimeters)

\section*{Source}
J. Davis, Statistics and Data Analysis in Geology, 2nd Ed., Jon Wiley and Sons, New York.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Grnriv2$thick)
t.test(Grnriv2$thick, mu = 8, alternative = "less")

```

\section*{Description}

Data for Exercise 10.42

\section*{Usage}

Groupabc

\section*{Format}

A data frame/tibble with 45 observations on two variables
group a factor with levels A, B, and C
response a numeric vector

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(response ~ group, data = Groupabc,
col = c("red", "blue", "green"))
anova(lm(response ~ group, data = Groupabc))

```

\section*{Description}

Data for Exercise 10.4

\section*{Usage}

Groups

\section*{Format}

A data frame/tibble with 78 observations on two variables
group a factor with levels \(A, B\), and \(C\)
response a numeric vector

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(response ~ group, data = Groups, col = c("red", "blue", "green"))
anova(lm(response ~ group, data = Groups))

```
Gym

\section*{Description}

\section*{Data for Exercises 2.21 and 9.14}

\section*{Usage}

Gym

\section*{Format}

A data frame/tibble with eight observations on three variables
age age of child
number number of gymnastic activities successfully completed

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(number ~ age, data = Gym)
model <- lm(number ~ age, data = Gym)
abline(model, col = "red")
summary(model)

```

\section*{Description}

Data for Exercise 7.57

\section*{Usage}

Habits

\section*{Format}

A data frame/tibble with 11 observations on four variables
A study habit score
B study habit score
differ \(B\) minus \(A\)
signrks the signed-ranked-differences

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

shapiro.test(Habits$differ)
qqnorm(Habits$differ)
qqline(Habits$differ)
wilcox.test(Pair(B, A) ~ 1, data = Habits, alternative = "less")
t.test(Habits$signrks, alternative = "less")

Not run:

library(ggplot2)
ggplot2::ggplot(data = Habits, aes(x = differ)) +
geom_dotplot(fill = "blue") +
theme_bw()

End(Not run)

```

\section*{Description}

Data for Example 6.9

\section*{Usage}

Haptoglo

\section*{Format}

A data frame/tibble with eight observations on one variable concent haptoglobin concentration (in grams per liter)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
shapiro.test(Haptoglo\$concent)
t.test(Haptoglo\$concent, mu = 2, alternative = "less")

Hardware Daily receipts for a small hardware store for 31 working days

\section*{Description}

Daily receipts for a small hardware store for 31 working days

\section*{Usage}

Hardware

\section*{Format}

A data frame with 31 observations on one variable receipt a numeric vector of daily receipts (in dollars)

\section*{Source}
J.C. Miller and J.N. Miller, (1988), Statistics for Analytical Chemistry, 2nd Ed. (New York: Halsted Press).

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Hardware\$receipt)

```
\begin{tabular}{ll} 
Hardwood & \begin{tabular}{l} 
Tensile strength of Kraft paper for different percentages of hardwood \\
in the batches of pulp
\end{tabular}
\end{tabular}

\section*{Description}

Data for Example 2.18 and Exercise 9.34

\section*{Usage}

Hardwood

\section*{Format}

A data frame/tibble with 19 observations on two variables
tensile tensile strength of kraft paper (in pounds per square inch)
hardwood percent of hardwood in the batch of pulp that was used to produce the paper

\section*{Source}
G. Joglekar, et al., "Lack-of-Fit Testing When Replicates Are Not Available," The American Statistician, 43(3), (1989), 135-143.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(tensile ~ hardwood, data = Hardwood)
model <- lm(tensile ~ hardwood, data = Hardwood)
abline(model, col = "red")
plot(model, which = 1)

```
Heat Primary heating sources of homes on indian reservations versus all households

\section*{Description}

Data for Exercise 1.29

\section*{Usage}

Heat

\section*{Format}

A data frame/tibble with 301 observations on two variables
fuel a factor with levels Utility gas, LP bottled gas, Electricity, Fuel oil, Wood, and Other
location a factor with levels American Indians on reservation, All U.S. households, and American Indians not on reservations

\section*{Source}

Bureau of the Census, Housing of the American Indians on Reservations, Statistical Brief 95-11, April 1995.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~ fuel + location, data = Heat)
T1
barplot(t(T1), beside = TRUE, legend = TRUE)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Heat, aes(x = fuel, fill = location)) +

```
```

geom_bar(position = "dodge") +
labs(y = "percent") +
theme_bw() +
theme(axis.text.x = element_text(angle = 30, hjust = 1))

```
\#\# End(Not run)
    Heating Fuel efficiency ratings for three types of oil heaters

\section*{Description}

Data for Exercise 10.32

\section*{Usage}

Heating

\section*{Format}

A data frame/tibble with 90 observations on the two variables
type a factor with levels \(A, B\), and \(C\) denoting the type of oil heater
efficiency heater efficiency rating

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(efficiency ~ type, data = Heating,
col = c("red", "blue", "green"))
kruskal.test(efficiency ~ type, data = Heating)

```

Hodgkin Results of treatments for Hodgkin's disease

\section*{Description}

Data for Exercise 2.77

\section*{Usage}

Hodgkin

\section*{Format}

A data frame/tibble with 538 observations on two variables
type a factor with levels LD, LP, MC, and NS
response a factor with levels Positive, Partial, and None

\section*{Source}
I. Dunsmore, F. Daly, Statistical Methods, Unit 9, Categorical Data, Milton Keynes, The Open University, 18.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~type + response, data = Hodgkin)
T1
barplot(t(T1), legend = TRUE, beside = TRUE)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Hodgkin, aes(x = type, fill = response)) +
geom_bar(position = "dodge") +
theme_bw()

End(Not run)

```

Median prices of single-family homes in 65 metropolitan statistical areas

\section*{Description}

Data for Statistical Insight Chapter 5

\section*{Usage}

Homes

\section*{Format}

A data frame/tibble with 65 observations on the four variables
city a character variable with values Akron OH , Albuquerque NM, Anaheim CA, Atlanta GA, Baltimore MD, Baton Rouge LA, Birmingham AL, Boston MA, Bradenton FL, Buffalo NY, Charleston SC, Chicago IL, Cincinnati OH, Cleveland OH, Columbia SC, Columbus OH, Corpus Christi TX, Dallas TX, Daytona Beach FL, Denver CO, Des Moines IA, Detroit MI, El Paso TX, Grand Rapids MI, Hartford CT, Honolulu HI, Houston TX, Indianapolis IN, Jacksonville FL, Kansas City MO, Knoxville TN, Las Vegas NV, Los Angeles CA, Louisville KY, Madison WI, Memphis TN, Miami FL, Milwaukee WI, Minneapolis MN, Mobile AL, Nashville TN, New Haven CT, New Orleans LA, New York NY, Oklahoma City OK, Omaha NE, Orlando FL, Philadelphia PA, Phoenix AZ, Pittsburgh PA, Portland OR, Providence RI, Sacramento CA, Salt Lake City UT, San Antonio TX, San Diego CA, San Francisco CA, Seattle WA, Spokane WA, St Louis MO, Syracuse NY, Tampa FL, Toledo OH, Tulsa OK, and Washington DC
region a character variable with values Midwest, Northeast, South, and West
year a factor with levels 1994 and 2000
price median house price (in dollars)

\section*{Source}

National Association of Realtors.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

tapply(Homes$price, Homes$year, mean)
tapply(Homes$price, Homes$region, mean)
p2000 <- subset(Homes, year == "2000")
p1994 <- subset(Homes, year == "1994")

Not run:

```
```

library(dplyr)
library(ggplot2)
dplyr::group_by(Homes, year, region) %>%
summarize(AvgPrice = mean(price))
ggplot2::ggplot(data = Homes, aes(x = region, y = price)) +
geom_boxplot() +
theme_bw() +
facet_grid(year ~ .)

End(Not run)

```
Homework Number of hours per week spent on homework for private and public
    high school students

\section*{Description}

\section*{Data for Exercise 7.78}

\section*{Usage}

Homework

\section*{Format}

A data frame with 30 observations on two variables
school type of school either private or public
time number of hours per week spent on homework

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(time ~ school, data = Homework,
ylab = "Hours per week spent on homework")

t.test(time ~ school, data = Homework)

```

\section*{Honda}

Miles per gallon for a Honda Civic on 35 different occasions

\section*{Description}

Data for Statistical Insight Chapter 6

\section*{Usage}

Honda

\section*{Format}

A data frame/tibble with 35 observations on one variable mileage miles per gallon for a Honda Civic

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
t.test(Honda\$mileage, mu = 40, alternative = "less")
Hostile \begin{tabular}{l} 
Hostility levels of high school students from rural, suburban, and ur- \\
ban areas
\end{tabular}

\section*{Description}

Data for Example 10.6

\section*{Usage}

Hostile

\section*{Format}

A data frame/tibble with 135 observations on two variables
location a factor with the location of the high school student (Rural, Suburban, or Urban)
hostility the score from the Hostility Level Test

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(hostility ~ location, data = Hostile,
col = c("red", "blue", "green"))
kruskal.test(hostility ~ location, data = Hostile)

```
Housing Median home prices for 1984 and 1993 in 37 markets across the U.S.

\section*{Description}

Data for Exercise 5.82

\section*{Usage}

Housing

\section*{Format}

A data frame/tibble with 74 observations on three variables
city a character variable with values Albany, Anaheim, Atlanta, Baltimore, Birmingham, Boston, Chicago, Cincinnati, Cleveland, Columbus, Dallas, Denver, Detroit, Ft Lauderdale, Houston, Indianapolis, Kansas City, Los Angeles, Louisville, Memphis, Miami, Milwaukee, Minneapolis, Nashville, New York, Oklahoma City, Philadelphia, Providence, Rochester, Salt Lake City, San Antonio, San Diego, San Francisco, San Jose, St Louis, Tampa, and Washington
year a factor with levels 1984 and 1993
price median house price (in dollars)

\section*{Source}

National Association of Realtors.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

 stripchart(price ~ year, data = Housing, method = "stack",
 pch = 1, col = c("red", "blue"))

Not run:

library(ggplot2)
ggplot2::ggplot(data = Housing, aes(x = price, fill = year)) +
geom_dotplot() +
facet_grid(year ~ .) +
theme_bw()

End(Not run)

```

Hurrican Number of storms, hurricanes and El Nino effects from 1950 through 1995

\section*{Description}

Data for Exercises 1.38, 10.19, and Example 1.6

\section*{Usage}

Hurrican

\section*{Format}

A data frame/tibble with 46 observations on four variables
year a numeric vector indicating year
storms a numeric vector recording number of storms
hurrican a numeric vector recording number of hurricanes
elnino a factor with levels cold, neutral, and warm

\section*{Source}

National Hurricane Center.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~hurrican, data = Hurrican)
T1
barplot(T1, col = "blue", main = "Problem 1.38",
xlab = "Number of hurricanes",
ylab = "Number of seasons")
boxplot(storms ~ elnino, data = Hurrican,
col = c("blue", "yellow", "red"))
anova(lm(storms ~ elnino, data = Hurrican))
rm(T1)

```

Iceberg Number of icebergs sighted each month south of Newfoundland and south of the Grand Banks in 1920

\section*{Description}

Data for Exercise 2.46 and 2.60

\section*{Usage}

Iceberg

\section*{Format}

A data frame with 12 observations on three variables
month a character variable with abbreviated months of the year
Newfoundland number of icebergs sighted south of Newfoundland
Grand Banks number of icebergs sighted south of Grand Banks

\section*{Source}
N. Shaw, Manual of Meteorology, Vol. 2 (London: Cambridge University Press 1942), 7; and F. Mosteller and J. Tukey, Data Analysis and Regression (Reading, MA: Addison - Wesley, 1977).

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(Newfoundland ~ `Grand Banks`, data = Iceberg)
abline(lm(Newfoundland ~ `Grand Banks`, data = Iceberg), col = "blue")

```

\section*{Income}

\section*{Description}

Data for Exercise 1.33

\section*{Usage}

Income

\section*{Format}

A data frame/tibble with 51 observations on two variables
state a character variable with values Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, District of Colunbia, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missour, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin, and Wyoming
percent_change percent change in income from first quarter to the second quarter of 2000

\section*{Source}

US Department of Commerce.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

Income$class <- cut(Income$percent_change,
breaks = c(-Inf, 0.5, 1.0, 1.5, 2.0, Inf))
T1 <- xtabs(~class, data = Income)
T1
barplot(T1, col = "pink")

Not run:

library(ggplot2)
DF <- as.data.frame(T1)
DF
ggplot2::ggplot(data = DF, aes(x = class, y = Freq)) +
geom_bar(stat = "identity", fill = "purple") +
theme_bw()

```

\section*{Description}

\author{
Data for Exercise 7.41
}

\section*{Usage}

Independent

\section*{Format}

A data frame/tibble with 46 observations on two variables
score a numeric vector
group a factor with levels A and B

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

qqnorm(Independent$score[Independent$group=="A"])
qqline(Independent$score[Independent$group=="A"])
qqnorm(Independent$score[Independent$group=="B"])
qqline(Independent$score[Independent$group=="B"])
boxplot(score ~ group, data = Independent, col = "blue")
wilcox.test(score ~ group, data = Independent)

``` American indians living on reservations

\section*{Description}

Data for Exercise 2.95

\section*{Usage}

Indian

\section*{Format}

A data frame/tibble with ten observations on four variables
reservation a character variable with values Blackfeet, Fort Apache, Gila River, Hopi, Navajo, Papago, Pine Ridge, Rosebud, San Carlos, and Zuni Pueblo
percent high school percent who have graduated from high school per capita income per capita income (in dollars)
poverty rate percent poverty

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

par(mfrow = c(1, 2))
plot(`per capita income` ~ `percent high school`, data = Indian,
xlab = "Percent high school graudates", ylab = "Per capita income")
plot(`poverty rate` ~ `percent high school`, data = Indian,
xlab = "Percent high school graudates", ylab = "Percent poverty")
par(mfrow = c(1, 1))

```

\section*{Description}

Data for Exercise 1.128

\section*{Usage}

Indiapol

\section*{Format}

A data frame/tibble with 39 observations on two variables
year the year of the race
speed the winners average speed (in mph)

\section*{Source}

The World Almanac and Book of Facts, 2000, p. 1004.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(speed ~ year, data = Indiapol, type = "b")

```

\section*{Description}

Data for Exercises 7.11 and 7.36

\section*{Usage}

Indy500

\section*{Format}

A data frame/tibble with 33 observations on four variables
driver a character variable with values andretti, bachelart, boesel, brayton, c.guerrero, cheever, fabi, fernandez, ferran, fittipaldi, fox, goodyear, gordon, gugelmin, herta, james, johansson, jones, lazier, luyendyk, matsuda, matsushita, pruett, r.guerrero, rahal, ribeiro, salazar, sharp, sullivan, tracy, vasser, villeneuve, and zampedri
qualif qualifying speed (in mph)
starts number of Indianapolis 500 starts
group a numeric vector where 1 indicates the driver has 4 or fewer Indianapolis 500 starts and a 2 for drivers with 5 or more Indianapolis 500 starts

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stripchart(qualif ~ group, data = Indy500, method = "stack",
pch = 19, col = c("red", "blue"))
boxplot(qualif ~ group, data = Indy500)
t.test(qualif ~ group, data = Indy500)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Indy500, aes(sample = qualif)) +
geom_qq() +
facet_grid(group ~ .) +
theme_bw()

End(Not run)

```
Inflatio

\section*{Description}

Data for Exercises 2.12 and 2.29

\section*{Usage}

Inflatio

\section*{Format}

A data frame/tibble with 24 observations on four variables
year a numeric vector of years
pay average hourly wage for salaried employees (in dollars)
increase percent increase in hourly wage over previous year
inflation percent inflation rate

\section*{Source}

Bureau of Labor Statistics.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(increase ~ inflation, data = Inflatio)
cor(Inflatio$increase, Inflatio$inflation, use = "complete.obs")

```
    Inletoil Inlet oil temperature through a valve

\section*{Description}

Data for Exercises 5.91 and 6.48

\section*{Usage}

Inletoil

\section*{Format}

A data frame/tibble with 12 observations on one variable temp inlet oil temperature (Fahrenheit)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

hist(Inletoil$temp, breaks = 3)
 qqnorm(Inletoil$temp)
qqline(Inletoil$temp)
 t.test(Inletoil$temp)
t.test(Inletoil\$temp, mu = 98, alternative = "less")

```
    Inmate \(\quad\) Type of drug offense by race

\section*{Description}

Data for Statistical Insight Chapter 8

\section*{Usage}

Inmate

\section*{Format}

A data frame/tibble with 28,047 observations on two variables
race a factor with levels white, black, and hispanic
drug a factor with levels heroin, crack, cocaine, and marijuana

\section*{Source}
C. Wolf Harlow (1994), Comparing Federal and State Prison Inmates, NCJ-145864, U.S. Department of Justice, Bureau of Justice Statistics.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~race + drug, data = Inmate)
T1
chisq.test(T1)
rm(T1)

```

Inspect Percent of vehicles passing inspection by type inspection station

\section*{Description}

Data for Exercise 8.59

\section*{Usage}

Inspect

\section*{Format}

A data frame/tibble with 174 observations on two variables
station a factor with levels auto inspection, auto repair, car care center, gas station, new car dealer, and tire store
passed a factor with levels less than \(70 \%\), between \(70 \%\) and \(84 \%\), and more than \(85 \%\)

\section*{Source}

The Charlotte Observer, December 13, 1992.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~ station + passed, data = Inspect)
T1
barplot(T1, beside = TRUE, legend = TRUE)
chisq.test(T1)
rm(T1)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Inspect, aes(x = passed, fill = station)) +
geom_bar(position = "dodge") +
theme_bw()

End(Not run)

```

\section*{Description}

Data for Exercise 9.50

\section*{Usage}

Insulate

\section*{Format}

A data frame/tibble with ten observations on two variables
temp outside temperature (in degrees Celcius)
loss heat loss (in BTUs)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(loss ~ temp, data = Insulate)
model <- lm(loss ~ temp, data = Insulate)
abline(model, col = "blue")
summary(model)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Insulate, aes(x = temp, y = loss)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
theme_bw()

End(Not run)

```

Iqgpa GPA versus IQ for 12 individuals

\section*{Description}

Data for Exercises 9.51 and 9.52

\section*{Usage}

Iqgpa

\section*{Format}

A data frame/tibble with 12 observations on two variables
iq IQ scores
gpa Grade point average

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(gpa ~ iq, data = Iqgpa, col = "blue", pch = 19)
model <- lm(gpa ~ iq, data = Iqgpa)
summary(model)
rm(model)

```
Irises R.A. Fishers famous data on Irises

\section*{Description}

\footnotetext{
Data for Examples 1.15 and 5.19
}

\section*{Usage}

Irises

\section*{Format}

A data frame/tibble with 150 observations on five variables
sepal_length sepal length (in cm)
sepal_width sepal width (in cm)
petal_length petal length (in cm)
petal_width petal width (in cm)
species a factor with levels setosa, versicolor, and virginica

\section*{Source}

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, 179-188.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

tapply(Irises$sepal_length, Irises$species, mean)
t.test(Irises$sepal_length[Irises$species == "setosa"], conf.level = 0.99)
hist(Irises$sepal_length[Irises$species == "setosa"],
main = "Sepal length for\n Iris Setosa",
xlab = "Length (in cm)")
boxplot(sepal_length ~ species, data = Irises)

```

\section*{Description}

Data for Exercise 2.14, 2.17, 2.31, 2.33, and 2.40

\section*{Usage}

Jdpower

\section*{Format}

A data frame/tibble with 29 observations on three variables
car a factor with levels Acura, BMW, Buick, Cadillac, Chevrolet, Dodge Eagle, Ford, Geo, Honda, Hyundai, Infiniti, Jaguar, Lexus, Lincoln, Mazda, Mercedes-Benz, Mercury, Mitsubishi, Nissan, Oldsmobile, Plymouth, Pontiac, Saab, Saturn, and Subaru, Toyota Volkswagen, Volvo

1994 number of problems per 100 cars in 1994
1995 number of problems per 100 cars in 1995

\section*{Source}

USA Today, May 25, 1995.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

model <- lm(`1995` ~ `1994`, data = Jdpower)
summary(model)
plot(`1995` ~ `1994`, data = Jdpower)
abline(model, col = "red")
rm(model)

```
    Jobsat
        Job satisfaction and stress level for 9 school teachers

\section*{Description}

Data for Exercise 9.60

\section*{Usage}

Jobsat

\section*{Format}

A data frame/tibble with nine observations on two variables
wspt Wilson Stress Profile score for teachers
satisfaction job satisfaction score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(satisfaction ~ wspt, data = Jobsat)
model <- lm(satisfaction ~ wspt, data = Jobsat)
abline(model, col = "blue")
summary(model)
rm(model)

```

Kidsmoke \(\quad\) Smoking habits of boys and girls ages 12 to 18

\section*{Description}

Data for Exercise 4.85

\section*{Usage}

Kidsmoke

\section*{Format}

A data frame/tibble with 1000 observations on two variables
gender character vector with values female and male
smoke a character vector with values no and yes

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~smoke + gender, data = Kidsmoke)
T1
prop.table(T1)
prop.table(T1, 1)
prop.table(T1, 2)

```

\section*{Description}

Data for Example 5.9

\section*{Usage}

Kilowatt

\section*{Format}

A data frame/tibble with 51 observations on two variables
state a factor with levels Alabama Alaska, Arizona, Arkansas California, Colorado, Connecticut, Delaware, District of Columbia, Florida,Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa Kansas Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missour, Montana Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Virginia Washington, West Virginia, Wisconsin, and Wyoming
rate a numeric vector indicating rates for kilowatt per hour

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

EDA(Kilowatt\$rate)

Kinder
Reading scores for first grade children who attended kindergarten versus those who did not

\section*{Description}

Data for Exercise 7.68

\section*{Usage}

Kinder

\section*{Format}

A data frame/tibble with eight observations on three variables
pair a numeric indicator of pair
kinder reading score of kids who went to kindergarten
nokinder reading score of kids who did not go to kindergarten

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(Kinder$kinder, Kinder$nokinder)
diff <- Kinder$kinder - Kinder$nokinder
qqnorm(diff)
qqline(diff)
shapiro.test(diff)
t.test(diff)
rm(diff)

```
\begin{tabular}{ll} 
Laminect & \begin{tabular}{l} 
Median costs of laminectomies at hospitals across North Carolina in \\
1992
\end{tabular}
\end{tabular}

\section*{Description}

Data for Exercise 10.18

\section*{Usage}

Laminect

\section*{Format}

A data frame/tibble with 138 observations on two variables
area a character vector indicating the area of the hospital with Rural, Regional, and Metropol
cost a numeric vector indicating cost of a laminectomy

\section*{Source}

Consumer's Guide to Hospitalization Charges in North Carolina Hospitals (August 1994), North Carolina Medical Database Commission, Department of Insurance.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(cost ~ area, data = Laminect, col = topo.colors(3))

```
anova(lm(cost ~ area, data \(=\) Laminect))
\begin{tabular}{l} 
Lead \begin{tabular}{l} 
Lead levels in children's blood whose parents worked in a battery fac- \\
tory
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Data for Example 1.17

\section*{Usage}

Lead

\section*{Format}

A data frame/tibble with 66 observations on the two variables
group a character vector with values exposed and control
lead a numeric vector indicating the level of lead in children's blood (in micrograms/dl)

\section*{Source}

Morton, D. et al. (1982), "Lead Absorption in Children of Employees in a Lead-Related Industry," American Journal of Epidemiology, 155, 549-555.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(lead ~ group, data = Lead, col = topo.colors(2))

```

\section*{Description}

Data for Exercise 7.31

\section*{Usage}

Leader

\section*{Format}

A data frame/tibble with 34 observations on two variables
age a character vector indicating age with values under35 and over35
score score on a leadership exam

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(score ~ age, data = Leader, col = c("gray", "green"))
t.test(score ~ age, data = Leader)

```
Lethal

\section*{Description}

Data for Example 6.12

\section*{Usage}

Lethal

\section*{Format}

A data frame/tibble with 30 observations on one variable
survival a numeric vector indicating time surivived after injection (in seconds)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

SIGN.test(Lethal\$survival, md = 45, alternative = "less")

```

Life Life expectancy of men and women in U.S.

\section*{Description}

Data for Exercise 1.31

\section*{Usage}

Life

\section*{Format}

A data frame/tibble with eight observations on three variables
year a numeric vector indicating year
men life expectancy for men (in years)
women life expectancy for women (in years)

\section*{Source}

National Center for Health Statistics.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(men ~ year, type = "l", ylim = c(min(men, women), max(men, women)),
col = "blue", main = "Life Expectancy vs Year", ylab = "Age",
xlab = "Year", data = Life)
lines(women ~ year, col = "red", data = Life)
text(1955, 65, "Men", col = "blue")
text(1955, 70, "Women", col = "red")

```

\section*{Description}

Data for Exercise 2.4, 2.37, and 2.49

\section*{Usage}

Lifespan

\section*{Format}

A data frame/tibble with six observations two variables
heat temperature (in Celcius)
life lifespan of component (in hours)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(life ~ heat, data = Lifespan)
model <- lm(life ~ heat, data = Lifespan)
abline(model, col = "red")
resid(model)
sum((resid(model))^2)
anova(model)
rm(model)

```

\section*{Description}

Data for Exercise 2.6

\section*{Usage}

Ligntmonth

\section*{Format}

A data frame/tibble with 12 observations on four variables
month a factor with levels \(1 / 01 / 2000,10 / 01 / 2000,11 / 01 / 2000,12 / 01 / 2000,2 / 01 / 2000,3 / 01 / 2000\), \(4 / 01 / 2000,5 / 01 / 2000,6 / 01 / 2000,7 / 01 / 2000,8 / 01 / 2000\), and 9/01/2000
deaths number of deaths due to lightning strikes
injuries number of injuries due to lightning strikes
damage damage due to lightning strikes (in dollars)

\section*{Source}

Lighting Fatalities, Injuries and Damage Reports in the United States, 1959-1994, NOAA Technical Memorandum NWS SR-193, Dept. of Commerce.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(deaths ~ damage, data = Ligntmonth)
model = lm(deaths ~ damage, data = Ligntmonth)
abline(model, col = "red")
rm(model)

```
Lodge Measured traffic at three prospective locations for a motor lodge

\section*{Description}

Data for Exercise 10.33

\section*{Usage}

Lodge

\section*{Format}

A data frame/tibble with 45 observations on six variables
traffic a numeric vector indicating the amount of vehicles that passed a site in 1 hour
site a numeric vector with values 1, 2, and 3
ranks ranks for variable traffic

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(traffic ~ site, data = Lodge, col = cm.colors(3))
anova(lm(traffic ~ factor(site), data = Lodge))

```
    Longtail Long-tailed distributions to illustrate Kruskal Wallis test

\section*{Description}

Data for Exercise 10.45

\section*{Usage}

Longtail

\section*{Format}

A data frame/tibble with 60 observations on three variables
score a numeric vector
group a numeric vector with values 1,2 , and 3
ranks ranks for variable score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(score ~ group, data = Longtail, col = heat.colors(3))
kruskal.test(score ~ factor(group), data = Longtail)
anova(lm(score ~ factor(group), data = Longtail))

```

\section*{Description}

Data for Example 7.18

\section*{Usage}

Lowabil

\section*{Format}

A data frame/tibble with 12 observations on three variables
pair a numeric indicator of pair
experiment score of the child with the experimental method
control score of the child with the standard method

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

diff = Lowabil$experiment - Lowabil$control
qqnorm(diff)
qqline(diff)
shapiro.test(diff)
t.test(diff)
rm(diff)

```
Magnesiu Magnesium concentration and distances between samples

\section*{Description}

\section*{Data for Exercise 9.9}

\section*{Usage}

Magnesiu

\section*{Format}

A data frame/tibble with 20 observations on two variables
distance distance between samples
magnesium concentration of magnesium

\section*{Source}

Davis, J. (1986), Statistics and Data Analysis in Geology, 2d. Ed., John Wiley and Sons, New York, p. 146.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(magnesium ~ distance, data = Magnesiu)
model = lm(magnesium ~ distance, data = Magnesiu)
abline(model, col = "red")
summary(model)
rm(model)

```

\section*{Malpract}

Amounts awarded in 17 malpractice cases

\section*{Description}

Data for Exercise 5.73

\section*{Usage}

Malpract

\section*{Format}

A data frame/tibble with 17 observations on one variable
award malpractice reward (in \$1000)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

SIGN.test(Malpract\$award, conf.level = 0.90)

```
\begin{tabular}{ll} 
Manager & Advertised salaries offered general managers of major corporations \\
in 1995
\end{tabular} in 1995

\section*{Description}

Data for Exercise 5.81

\section*{Usage}

Manager

\section*{Format}

A data frame/tibble with 26 observations on one variable
salary random sample of advertised annual salaries of top executives (in dollars)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Manager$salary)
SIGN.test(Manager$salary)

```
Marked Percent of marked cars in 65 police departments in Florida

\section*{Description}

Data for Exercise 6.100

\section*{Usage}

Marked

\section*{Format}

A data frame/tibble with 65 observations on one variable
percent percentage of marked cars in 65 Florida police departments

\section*{Source}

Law Enforcement Management and Administrative Statistics, 1993, Bureau of Justice Statistics, NCJ-148825, September 1995, p. 147-148.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

EDA(Marked\$percent)
SIGN.test(Marked\$percent, md = 60, alternative = "greater")
t.test(Marked\$percent, mu = 60, alternative = "greater")
Math Standardized math test scores for 30 students

\section*{Description}

Data for Exercise 1.69

\section*{Usage}

Math

\section*{Format}

A data frame/tibble with 30 observations on one variable
score scores on a standardized test for 30 tenth graders

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Math$score)
hist(Math$score, main = "Math Scores", xlab = "score", freq = FALSE)
lines(density(Math$score), col = "red")
CharlieZ <- (62 - mean(Math$score))/sd(Math$score)
CharlieZ
scale(Math$score)[which(Math\$score == 62)]

```
\begin{tabular}{ll} 
Mathcomp & \begin{tabular}{l} 
Standardized math competency for a group of entering freshmen at a \\
small community college
\end{tabular}
\end{tabular}

\section*{Description}

Data for Exercise 5.26

\section*{Usage}

Mathcomp

\section*{Format}

A data frame/tibble with 31 observations one variable
score scores of 31 entering freshmen at a community college on a national standardized test

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Mathcomp$score)
EDA(Mathcomp$score)

```

\section*{Description}

Data for Exercise 9.24, Example 9.1, and Example 9.6

\section*{Usage}

Mathpro

\section*{Format}

A data frame/tibble with 51 observations on four variables
state a factor with levels Conn, D.C., Del, Ga, Hawaii, Ind, Maine, Mass, Md, N.C., N.H., N.J., N.Y., Ore, Pa, R.I., S.C., Va, and Vt
sat_math SAT math scores for high school seniors
profic math proficiency scores for eigth graders
group a numeric vector

\section*{Source}

National Assessment of Educational Progress and The College Board.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

model <- lm(sat_math ~ profic, data = Mathpro)
plot(sat_math ~ profic, data = Mathpro, ylab = "SAT", xlab = "proficiency")
abline(model, col = "red")
summary(model)
rm(model)

```

\section*{Description}

Data for Exercise 10.13

\section*{Usage}

Maze

\section*{Format}

A data frame/tibble with 32 observations on two variables
score error scores for animals running through a maze under different conditions
condition a factor with levels CondA, CondB, CondC, and CondD

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(score ~ condition, data = Maze, col = rainbow(4))
anova(lm(score ~ condition, data = Maze))

```

\section*{Description}

Data for Exercise 10.52

\section*{Usage}

Median

\section*{Format}

A data frame/tibble with 45 observations on two variables
sample a vector with values Sample1, Sample 2, and Sample 3
value a numeric vector

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(value ~ sample, data = Median, col = rainbow(3))
anova(lm(value ~ sample, data = Median))
kruskal.test(value ~ factor(sample), data = Median)

```
Mental Median mental ages of 16 girls

\section*{Description}

Data for Exercise 6.52

\section*{Usage}

Mental

\section*{Format}

A data frame/tibble with 16 observations on one variable
age mental age of 16 girls

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

\section*{Description}

Data for Example 1.9

\section*{Usage}

Mercury

\section*{Format}

A data frame/tibble with 25 observations on one variable
mercury a numeric vector measuring mercury (in parts per million)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Mercury\$mercury)

```
\[
\text { Metrent } \quad \text { Monthly rental costs in metro areas with } 1 \text { million or more persons }
\]

\section*{Description}

Data for Exercise 5.117

\section*{Usage}

Metrent

\section*{Format}

A data frame/tibble with 46 observations on one variable
rent monthly rent in dollars

\section*{Source}
U.S. Bureau of the Census, Housing in the Metropolitan Areas, Statistical Brief SB/94/19, September 1994.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
boxplot(Metrent\$rent, col = "magenta")
t.test(Metrent\$rent, conf.level = 0.99)\$conf

Miller
Miller personality test scores for a group of college students applying for graduate school

\section*{Description}

Data for Example 5.7

\section*{Usage}

Miller

\section*{Format}

A data frame/tibble with 25 observations on one variable miller scores on the Miller Personality test

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Miller$miller)
fivenum(Miller$miller)
boxplot(Miller$miller)
qqnorm(Miller$miller,col = "blue")
qqline(Miller\$miller, col = "red")

```

Miller1 Twenty scores on the Miller personality test

\section*{Description}

Data for Exercise 1.41

\section*{Usage}

Miller1

\section*{Format}

A data frame/tibble with 20 observations on one variable
miller scores on the Miller personality test

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Miller1$miller)
stem(Miller1$miller, scale = 2)

```
\begin{tabular}{ll}
\hline Moisture & \begin{tabular}{l} 
Moisture content and depth of core sample for marine muds in eastern \\
Louisiana
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Data for Exercise 9.32

\section*{Usage}

Moisture

\section*{Format}

A data frame/tibble with 16 observations on four variables
depth a numeric vector
moisture g of water per 100 g of dried sediment
lnmoist a numeric vector
depthsq a numeric vector

\section*{Source}

Davis, J. C. (1986), Statistics and Data Analysis in Geology, 2d. ed., John Wiley and Sons, New York, pp. 177, 185.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(moisture ~ depth, data = Moisture)
model <- lm(moisture ~ depth, data = Moisture)
abline(model, col = "red")
plot(resid(model) ~ depth, data = Moisture)
rm(model)

```

\section*{Description}

Data for Exercise 7.45

\section*{Usage}

Monoxide

\section*{Format}

A data frame/tibble with ten observations on two variables
company a vector with values manufacturer and competitor
emission carbon monoxide emitted

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(emission ~ company, data = Monoxide, col = topo.colors(2))
t.test(emission ~ company, data = Monoxide)
wilcox.test(emission ~ company, data = Monoxide)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Monoxide, aes(x = company, y = emission)) +
geom_boxplot() +
theme_bw()

End(Not run)

```

\section*{Movie} Moral attitude scale on 15 subjects before and after viewing a movie

\section*{Description}

Data for Exercise 7.53

\section*{Usage}

Movie

\section*{Format}

A data frame/tibble with 12 observations on three variables
before moral aptitude before viewing the movie
after moral aptitude after viewing the movie
differ a numeric vector

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

qqnorm(Movie$differ)
qqline(Movie$differ)
shapiro.test(Movie$differ)
t.test(Movie$differ, conf.level = 0.99)
wilcox.test(Movie\$differ)

```
\begin{tabular}{ll} 
Music & \begin{tabular}{l} 
Improvement scores for identical twins taught music recognition by \\
two techniques
\end{tabular}
\end{tabular}

\section*{Description}

\section*{Data for Exercise 7.59}

\section*{Usage}

Music

\section*{Format}

A data frame/tibble with 12 observations on three variables
method1 a numeric vector measuring the improvement scores on a music recognition test
method2 a numeric vector measuring the improvement scores on a music recognition test
differ method1-method2

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

qqnorm(Music$differ)
qqline(Music$differ)
shapiro.test(Music$differ)
t.test(Music$differ)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Music, aes(x = differ)) +
geom_dotplot() +
theme_bw()

End(Not run)

```

\section*{Description}

Data for Exercises 2.28, 9.19, and Example 2.8

\section*{Usage}

Name

\section*{Format}

A data frame/tibble with 42 observations on three variables
brand a factor with levels Band-Aid, Barbie, Birds Eye, Budweiser, Camel, Campbell, Carlsberg, Coca-Cola, Colgate, Del Monte, Fisher-Price, Gordon's, Green Giant, Guinness, Haagen-Dazs, Heineken, Heinz, Hennessy, Hermes, Hershey, Ivory, Jell-o, Johnnie Walker, Kellogg, Kleenex, Kraft, Louis Vuitton, Marlboro, Nescafe, Nestle, Nivea, Oil of Olay, Pampers, Pepsi-Cola, Planters, Quaker, Sara Lee, Schweppes, Smirnoff, Tampax, Winston, and Wrigley's
value value in billions of dollars
revenue revenue in billions of dollars

\section*{Source}

Financial World.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(value ~ revenue, data = Name)
model <- lm(value ~ revenue, data = Name)
abline(model, col = "red")
cor(Name$value, Name$revenue)
summary(model)
rm(model)

```

\section*{Description}

Data for Exercise 10.53

\section*{Usage}

Nascar

\section*{Format}

A data frame/tibble with 36 observations on six variables
time duration of pit stop (in seconds)
team a numeric vector representing team 1,2 , or 3
ranks a numeric vector ranking each pit stop in order of speed

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(time ~ team, data = Nascar, col = rainbow(3))
model <- lm(time ~ factor(team), data = Nascar)
summary(model)
anova(model)
rm(model)

```

\section*{Description}

Data for Example 10.3

\section*{Usage}

Nervous

\section*{Format}

A data frame/tibble with 25 observations on two variables
react a numeric vector representing reaction time
drug a numeric vector indicating each of the 4 drugs

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(react ~ drug, data = Nervous, col = rainbow(4))
model <- aov(react ~ factor(drug), data = Nervous)
summary(model)
TukeyHSD(model)
plot(TukeyHSD(model), las = 1)

```

\section*{Newsstand}

Daily profits for 20 newsstands

\section*{Description}

\section*{Data for Exercise 1.43}

\section*{Usage}

Newsstand

\section*{Format}

A data frame/tibble with 20 observations on one variable profit profit of each newsstand (in dollars)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Newsstand$profit)
stem(Newsstand$profit, scale = 3)

```

Nfldraf2 Rating, time in 40-yard dash, and weight of top defensive linemen in the 1994 NFL draft

\section*{Description}

Data for Exercise 9.63

\section*{Usage}

Nfldraf2

\section*{Format}

A data frame/tibble with 47 observations on three variables
rating rating of each player on a scale out of 10
forty forty yard dash time (in seconds)
weight weight of each player (in pounds)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(rating ~ forty, data = Nfldraf2)
summary(lm(rating ~ forty, data = Nfldraf2))

```
Nfldraft

Rating, time in 40-yard dash, and weight of top offensive linemen in the 1994 NFL draft

\section*{Description}

Data for Exercises 9.10 and 9.16

\section*{Usage}

Nfldraft

\section*{Format}

A data frame/tibble with 29 observations on three variables
rating rating of each player on a scale out of 10
forty forty yard dash time (in seconds)
weight weight of each player (in pounds)

\section*{Source}

USA Today, April 20, 1994.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(rating ~ forty, data = Nfldraft)
cor(Nfldraft$rating, Nfldraft$forty)
summary(lm(rating ~ forty, data = Nfldraft))

```
Nicotine Nicotine content versus sales for eight major brands of cigarettes

\section*{Description}

Data for Exercise 9.21

\section*{Usage}

Nicotine

\section*{Format}

A data frame/tibble with eight observations on two variables
nicotine nicotine content (in milligrams)
sales sales figures (in \(\$ 100,000\) )

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

 model <- lm(sales ~ nicotine, data = Nicotine)
 plot(sales ~ nicotine, data = Nicotine)
 abline(model, col = "red")
 summary(model)
 predict(model, newdata = data.frame(nicotine = 1),
 interval = "confidence", level = 0.99)
    ```
    normarea Normal Area

\section*{Description}

Function that computes and draws the area between two user specified values in a user specified normal distribution with a given mean and standard deviation

\section*{Usage}
normarea(lower = -Inf, upper = Inf, m, sig)

\section*{Arguments}
lower the lower value
upper the upper value
\(\mathrm{m} \quad\) the mean for the population
sig the standard deviation of the population

\section*{Author(s)}

Alan T. Arnholt

\section*{Examples}
```

normarea(70, 130, 100, 15)
\# Finds and P(70< X < 130) given X is N(100,15).

```
```

 nsize Required Sample Size
    ```

\section*{Description}

Function to determine required sample size to be within a given margin of error.

\section*{Usage}
```

nsize(b, sigma $=$ NULL, $p=0.5$, conf.level $=0.95$, type = "mu")

```

\section*{Arguments}
\begin{tabular}{ll}
b & the desired bound. \\
sigma & population standard deviation. Not required if using type "pi". \\
p & \begin{tabular}{l} 
estimate for the population proportion of successes. Not required if using type \\
"mu".
\end{tabular} \\
conf.level & \begin{tabular}{l} 
confidence level for the problem, restricted to lie between zero and one. \\
character string, one of "mu" or "pi", or just the initial letter of each, indicating \\
tye
\end{tabular} \\
& \begin{tabular}{l} 
the appropriate parameter. Default value is "mu".
\end{tabular}
\end{tabular}

\section*{Details}

Answer is based on a normal approximation when using type "pi".

\section*{Value}

Returns required sample size.

\section*{Author(s)}

Alan T. Arnholt

\section*{Examples}
```

nsize(b=.03, p=708/1200, conf.level=.90, type="pi")
\# Returns the required sample size (n) to estimate the population
\# proportion of successes with a 0.9 confidence interval
\# so that the margin of error is no more than 0.03 when the
\# estimate of the population propotion of successes is 708/1200.
\# This is problem 5.38 on page 257 of Kitchen's BSDA.
nsize(b=.15, sigma=.31, conf.level=.90, type="mu")
\# Returns the required sample size (n) to estimate the population
\# mean with a 0.9 confidence interval so that the margin
\# of error is no more than 0.15. This is Example 5.17 on page
\# 261 of Kitchen's BSDA.

```
```

ntester Normality Tester

```

\section*{Description}

Q-Q plots of randomly generated normal data of the same size as the tested data are generated and ploted on the perimeter of the graph while a Q-Q plot of the actual data is depicted in the center of the graph.

\section*{Usage}
ntester(actual.data)

\section*{Arguments}
actual.data a numeric vector. Missing and infinite values are allowed, but are ignored in the calculation. The length of actual. data must be less than 5000 after dropping nonfinite values.

\section*{Details}

Q-Q plots of randomly generated normal data of the same size as the tested data are generated and ploted on the perimeter of the graph sheet while a Q-Q plot of the actual data is depicted in the center of the graph. The p-values are calculated form the Shapiro-Wilk W-statistic. Function will only work on numeric vectors containing less than or equal to 5000 observations.

\section*{Author(s)}

Alan T. Arnholt

\section*{References}

Shapiro, S.S. and Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52: 591-611.

\section*{Examples}
```

ntester(rexp(50,1))
\# Q-Q plot of random exponential data in center plot
\# surrounded by 8 Q-Q plots of randomly generated
\# standard normal data of size 50.

```

Orange Price of oranges versus size of the harvest

\section*{Description}

Data for Exercise 9.61

\section*{Usage}

Orange

\section*{Format}

A data frame/tibble with six observations on two variables
harvest harvest in millions of boxes
price average price charged by California growers for a 75-pound box of navel oranges

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(price ~ harvest, data = Orange)
model <- lm(price ~ harvest, data = Orange)
abline(model, col = "red")
summary(model)
rm(model)

```
    Orioles \(\quad\) Salaries of members of the Baltimore Orioles baseball team

\section*{Description}
\[
\text { Data for Example } 1.3
\]

\section*{Usage}

Orioles

\section*{Format}

A data frame/tibble with 27 observations on three variables
first name a factor with levels Albert, Arthur, B. J., Brady, Cal, Charles, dl-Delino, dl-Scott, Doug, Harold, Heathcliff, Jeff, Jesse, Juan, Lenny, Mike, Rich, Ricky, Scott, Sidney, Will, and Willis
last name a factor with levels Amaral, Anderson, Baines, Belle, Bones, Bordick, Clark, Conine, Deshields, Erickson, Fetters, Garcia, Guzman, Johns, Johnson, Kamieniecki, Mussina, Orosco, Otanez, Ponson, Reboulet, Rhodes, Ripken Jr., Slocumb, Surhoff,Timlin, and Webster
1999salary a numeric vector containing each player's salary (in dollars)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stripchart(Orioles\$`1999salary`, method = "stack", pch = 19)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Orioles, aes(x = `1999salary`)) +
geom_dotplot(dotsize = 0.5) +
labs(x = "1999 Salary") +
theme_bw()

End(Not run)

```

Oxytocin Arterial blood pressure of 11 subjects before and after receiving oxytocin

\section*{Description}

Data for Exercise 7.86

\section*{Usage}

Oxytocin

\section*{Format}

A data frame/tibble with 11 observations on three variables
subject a numeric vector indicating each subject
before mean arterial blood pressure of subject before receiving oxytocin
after mean arterial blood pressure of subject after receiving oxytocin

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

diff = Oxytocin$after - Oxytocin$before
qqnorm(diff)
qqline(diff)
shapiro.test(diff)
t.test(diff)
rm(diff)

```
Parented \(\quad\)\begin{tabular}{l} 
Education backgrounds of parents of entering freshmen at a state uni- \\
versity
\end{tabular} versity

\section*{Description}

Data for Exercise 1.32

\section*{Usage}

Parented

\section*{Format}

A data frame/tibble with 200 observations on two variables
education a factor with levels 4yr college degree, Doctoral degree, Grad degree, H.S grad or less, Some college, and Some grad school
parent a factor with levels mother and father

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~ education + parent, data = Parented)
T1
barplot(t(T1), beside = TRUE, legend = TRUE, col = c("blue", "red"))
rm(T1)

Not run:

library(ggplot2)

```
```

ggplot2::ggplot(data = Parented, aes(x = education, fill = parent)) +
geom_bar(position = "dodge") +
theme_bw() +
theme(axis.text.x = element_text(angle = 85, vjust = 0.5)) +
scale_fill_manual(values = c("pink", "blue")) +
labs(x = "", y = "")

End(Not run)

```
Patrol

Years of experience and number of tickets given by patrolpersons in New York City

\section*{Description}

Data for Example 9.3

\section*{Usage}

Patrol

\section*{Format}

A data frame/tibble with ten observations on three variables
tickets number of tickets written per week
years patrolperson's experience (in years)
log_tickets natural log of tickets

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

model <- lm(tickets ~ years, data = Patrol)
summary(model)
confint(model, level = 0.98)

```

\section*{Pearson Karl Pearson's data on heights of brothers and sisters}

\section*{Description}

Data for Exercise 2.20

\section*{Usage}

Pearson

\section*{Format}

A data frame/tibble with 11 observations on three variables
family number indicating family of brother and sister pair
brother height of brother (in inches)
sister height of sister (in inches)

\section*{Source}

Pearson, K. and Lee, A. (1902-3), On the Laws of Inheritance in Man, Biometrika, 2, 357.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(brother ~ sister, data = Pearson, col = "lightblue")
cor(Pearson$brother, Pearson$sister)

```

\section*{Description}

Data for Exercise 6.95

\section*{Usage}

Phone

\section*{Format}

A data frame/tibble with 20 observations on one variable
time duration of long distance phone call (in minutes)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

qqnorm(Phone$time)
qqline(Phone$time)
shapiro.test(Phone$time)
SIGN.test(Phone$time, md = 5, alternative = "greater")

```
    Poison Number of poisonings reported to 16 poison control centers

\section*{Description}

Data for Exercise 1.113

\section*{Usage}

Poison

\section*{Format}

A data frame/tibble with 226,361 observations on one variable
type a factor with levels Alcohol, Cleaning agent, Cosmetics, Drugs, Insecticides, and Plants

\section*{Source}

Centers for Disease Control, Atlanta, Georgia.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~type, data = Poison)
T1
par(mar = c(5.1 + 2, 4.1, 4.1, 2.1))
barplot(sort(T1, decreasing = TRUE), las = 2, col = rainbow(6))
par(mar = c(5.1, 4.1, 4.1, 2.1))
rm(T1)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Poison, aes(x = type, fill = type)) +
geom_bar() +
theme_bw() +
theme(axis.text.x = element_text(angle = 85, vjust = 0.5)) +
guides(fill = FALSE)

End(Not run)

```
    Politic Political party and gender in a voting district

\section*{Description}

Data for Example 8.3

\section*{Usage}

Politic

\section*{Format}

A data frame/tibble with 250 observations on two variables
party a factor with levels republican, democrat, and other
gender a factor with levels female and male

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~party + gender, data = Politic)
T1
chisq.test(T1)
rm(T1)

``` city

\section*{Description}

Data for Exercise 5.59

\section*{Usage}

Pollutio

\section*{Format}

A data frame/tibble with 15 observations on one variable
inde air pollution index

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
stem(Pollutio\$inde)
t.test(Pollutio\$inde, conf.level = 0.98)\$conf
\begin{tabular}{ll} 
Porosity & \begin{tabular}{l} 
Porosity measurements on 20 samples of Tensleep Sandstone, Pennsyl- \\
vanian from Bighorn Basin in Wyoming
\end{tabular}
\end{tabular}

\section*{Description}

Data for Exercise 5.86

\section*{Usage}

Porosity

\section*{Format}

A data frame/tibble with 20 observations on one variable
porosity porosity measurement (percent)

\section*{Source}

Davis, J. C. (1986), Statistics and Data Analysis in Geology, 2nd edition, pages 63-65.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
stem(Porosity\$porosity)
fivenum(Porosity\$porosity)
boxplot(Porosity\$porosity, col = "lightgreen")

\section*{Poverty Percent poverty and crime rate for selected cities}

\section*{Description}

Data for Exercise 9.11 and 9.17

\section*{Usage}

Poverty

\section*{Format}

A data frame/tibble with 20 observations on four variables
city a factor with levels Atlanta, Buffalo, Cincinnati, Cleveland, Dayton, O, Detroit, Flint, Mich, Fresno, C, Gary, Ind, Hartford, C, Laredo, Macon, Ga, Miami, Milwaukee, New Orleans, Newark, NJ, Rochester, NY, Shreveport, St. Louis, and Waco, Tx
poverty percent of children living in poverty
crime crime rate (per 1000 people)
population population of city

\section*{Source}

Children's Defense Fund and the Bureau of Justice Statistics.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(poverty ~ crime, data = Poverty)
model <- lm(poverty ~ crime, data = Poverty)
abline(model, col = "red")
summary(model)
rm(model)

```

\section*{Description}

Data for Exercise 2.2 and 2.38

\section*{Usage}

Precinct

\section*{Format}

A data frame/tibble with eight observations on two variables
rate robbery rate (per 1000 people)
income percent with low income

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(rate ~ income, data = Precinct)
model <- (lm(rate ~ income, data = Precinct))
abline(model, col = "red")
rm(model)

```

\section*{Description}

Data for Exercise 5.10 and 5.22

\section*{Usage}

Prejudic

\section*{Format}

A data frame with 25 observations on one variable
prejud racial prejudice score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Prejudic$prejud)
EDA(Prejudic$prejud)

```

\section*{Description}

Data for Exercise 1.126

\section*{Usage}

Presiden

\section*{Format}

A data frame/tibble with 43 observations on five variables
first_initial a factor with levels A., B., C., D., F., G., G. W., H., J., L., M., R., T., U., W., and Z.
last_name a factor with levels Adams, Arthur, Buchanan, Bush, Carter, Cleveland, Clinton, Coolidge, Eisenhower, Fillmore, Ford, Garfield, Grant, Harding, Harrison, Hayes, Hoover, Jackson, Jefferson, Johnson, Kennedy, Lincoln, Madison, McKinley, Monroe, Nixon, Pierce, Polk, Reagan, Roosevelt, Taft, Taylor, Truman, Tyler, VanBuren, Washington, and Wilson
birth_state a factor with levels ARK, CAL, CONN, GA, IA, ILL, KY, MASS, MO, NC, NEB, NH, NJ, NY, OH, PA, SC, TEX, VA, and VT
inaugural_age President's age at inauguration
death_age President's age at death

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

pie(xtabs(~birth_state, data = Presiden))
stem(Presiden$inaugural_age)
stem(Presiden$death_age)
par(mar = c(5.1, 4.1 + 3, 4.1, 2.1))
stripchart(x=list(Presiden$inaugural_age, Presiden$death_age),
method = "stack", col = c("green","brown"), pch = 19, las = 1)
par(mar = c(5.1, 4.1, 4.1, 2.1))

```

Press Degree of confidence in the press versus education level for 20 randomly selected persons

\section*{Description}

Data for Exercise 9.55

\section*{Usage}

Press

\section*{Format}

A data frame/tibble with 20 observations on two variables
education_yrs years of education
confidence degree of confidence in the press (the higher the score, the more confidence)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(confidence ~ education_yrs, data = Press)
model <- lm(confidence ~ education_yrs, data = Press)
abline(model, col = "purple")
summary(model)
rm(model)

```
\begin{tabular}{ll} 
Prognost & \begin{tabular}{l} 
Klopfer's prognostic rating scale for subjects receiving behavior mod- \\
ification therapy
\end{tabular}
\end{tabular}

\section*{Description}

Data for Exercise 6.61

\section*{Usage}

Prognost

\section*{Format}

A data frame/tibble with 15 observations on one variable
kprs_score Kloper's Prognostic Rating Scale score

\section*{Source}

Newmark, C., et al. (1973), Predictive Validity of the Rorschach Prognostic Rating Scale with Behavior Modification Techniques, Journal of Clinical Psychology, 29, 246-248.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

\section*{EDA(Prognost\$kprs_score)}
t.test(Prognost\$kprs_score, mu = 9)

\section*{Description}

Data for Exercise 10.17

\section*{Usage}

Program

\section*{Format}

A data frame/tibble with 44 observations on two variables
method a character variable with values method1, method2, method 3 , and method4
score standardized test score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(score ~ method, col = c("red", "blue", "green", "yellow"), data = Program)
anova(lm(score ~ method, data = Program))
TukeyHSD(aov(score ~ method, data = Program))
par(mar = c(5.1, 4.1 + 4, 4.1, 2.1))
plot(TukeyHSD(aov(score ~ method, data = Program)), las = 1)
par(mar = c(5.1, 4.1, 4.1, 2.1))

```
Psat PSAT scores versus SAT scores

\section*{Description}

Data for Exercise 2.50

\section*{Usage}

Psat

\section*{Format}

A data frame/tibble with seven observations on the two variables
```

psat PSAT score

```
sat SAT score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

model <- lm(sat ~ psat, data = Psat)
par(mfrow = c(1, 2))
plot(Psat\$psat, resid(model))
plot(model, which = 1)
rm(model)
par(mfrow = c(1, 1))

```
Psych Correct responses for 24 students in a psychology experiment

\section*{Description}

Data for Exercise 1.42

\section*{Usage}

Psych

\section*{Format}

A data frame/tibble with 23 observations on one variable
score number of correct repsonses in a psychology experiment

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Psych$score)
EDA(Psych$score)

```
\begin{tabular}{ll}
\hline Puerto & \begin{tabular}{l} 
Weekly incomes of a random sample of 50 Puerto Rican families in \\
Miami
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Data for Exercise 5.22 and 5.65

\section*{Usage}

Puerto

\section*{Format}

A data frame/tibble with 50 observations on one variable
income weekly family income (in dollars)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
stem(Puerto\$income)
boxplot(Puerto\$income, col = "purple")
t.test(Puerto\$income, conf.level = .90)\$conf

Quail Plasma LDL levels in two groups of quail

\section*{Description}

Data for Exercise 1.53, 1.77, 1.88, 5.66, and 7.50

\section*{Usage}

Quail

\section*{Format}

A data frame/tibble with 40 observations on two variables
group a character variable with values placebo and treatment
level low-density lipoprotein (LDL) cholestrol level

\section*{Source}
J. McKean, and T. Vidmar (1994), "A Comparison of Two Rank-Based Methods for the Analysis of Linear Models," The American Statistician, 48, 220-229.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(level ~ group, data = Quail, horizontal = TRUE, xlab = "LDL Level",
col = c("yellow", "lightblue"))

```
    Quality Quality control test scores on two manufacturing processes

\section*{Description}

\section*{Data for Exercise 7.81}

\section*{Usage}

Quality

\section*{Format}

A data frame/tibble with 15 observations on two variables process a character variable with values Process1 and Process2
score results of a quality control test

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(score ~ process, data = Quality, col = "lightgreen")
t.test(score ~ process, data = Quality)

```
Rainks \begin{tabular}{l} 
Rainfall in an area of west central Kansas and four surrounding coun- \\
ties
\end{tabular}

\section*{Description}

Data for Exercise 9.8

\section*{Usage}

Rainks

\section*{Format}

A data frame/tibble with 35 observations on five variables
rain rainfall (in inches)
\(\mathbf{x 1}\) rainfall (in inches)
\(\mathbf{x} 2\) rainfall (in inches)
x3 rainfall (in inches)
x4 rainfall (in inches)

\section*{Source}
R. Picard, K. Berk (1990), Data Splitting, The American Statistician, 44, (2), 140-147.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

cor(Rainks)
model <- lm(rain ~ x2, data = Rainks)
summary(model)

```

\section*{Description}

Data for Exercise 9.36 and Example 9.8

\section*{Usage}

Randd

\section*{Format}

A data frame/tibble with 12 observations on two variables
rd research and development expenditures (in million dollars)
sales sales (in million dollars)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(sales ~ rd, data = Randd)
model <- lm(sales ~ rd, data = Randd)
abline(model, col = "purple")
summary(model)
plot(model, which = 1)
rm(model)

```

\section*{Description}

Data for Exercise 1.52, 1.76, 5.62, and 6.44

\section*{Usage}

Rat

\section*{Format}

A data frame/tibble with 20 observations on one variable
survival_time survival time in weeks for rats exposed to a high level of radiation

\section*{Source}
J. Lawless, Statistical Models and Methods for Lifetime Data (New York: Wiley, 1982).

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

hist(Rat$survival_time)
qqnorm(Rat$survival_time)
qqline(Rat$survival_time)
summary(Rat$survival_time)
t.test(Rat$survival_time)
t.test(Rat$survival_time, mu = 100, alternative = "greater")

```
Ratings Grade point averages versus teacher's ratings

\section*{Description}

Data for Example 2.6

\section*{Usage}

Ratings

\section*{Format}

A data frame/tibble with 250 observations on two variables
rating character variable with students' ratings of instructor (A-F)
gpa students' grade point average

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(gpa ~ rating, data = Ratings, xlab = "Student rating of instructor",
ylab = "Student GPA")

Not run:

library(ggplot2)
ggplot2::ggplot(data = Ratings, aes(x = rating, y = gpa, fill = rating)) +
geom_boxplot() +
theme_bw() +
theme(legend.position = "none") +
labs(x = "Student rating of instructor", y = "Student GPA")

End(Not run)

```
    Reaction Threshold reaction time for persons subjected to emotional stress

\section*{Description}

Data for Example 6.11

\section*{Usage}

Reaction

\section*{Format}

A data frame/tibble with 12 observations on one variable
time threshold reaction time (in seconds) for persons subjected to emotional stress

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
Reading Standardized reading scores for 30 fifth graders

\section*{Description}

Data for Exercise 1.72 and 2.10

\section*{Usage}

Reading

\section*{Format}

A data frame/tibble with 30 observations on four variables
score standardized reading test score
sorted sorted values of score
trimmed trimmed values of sorted
winsoriz winsorized values of score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
hist(Reading\$score, main = "Exercise 1.72",
col = "lightgreen", xlab = "Standardized reading score")
summary (Reading\$score)
sd(Reading\$score)

Readiq
Reading scores versus IQ scores

\section*{Description}

Data for Exercises 2.10 and 2.53

\section*{Usage}

Readiq

\section*{Format}

A data frame/tibble with 14 observations on two variables
reading reading achievement score
iq IQ score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(reading ~ iq, data = Readiq)
model <- lm(reading ~ iq, data = Readiq)
abline(model, col = "purple")
predict(model, newdata = data.frame(iq = c(100, 120)))
residuals(model)[c(6, 7)]
rm(model)

```

\section*{Description}

Data for Exercise 8.20

\section*{Usage}

Referend

\section*{Format}

A data frame with 237 observations on two variables
choice a factor with levels \(A, B\), and \(C\)
response a factor with levels for, against, and undecided

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~choice + response, data = Referend)
T1
chisq.test(T1)
chisq.test(T1)\$expected

```

\section*{Description}

Data for Exercise 10.26

\section*{Usage}

Region

\section*{Format}

A data frame/tibble with 48 observations on three variables
pollution pollution index
region region of a county (west, central, and east)
ranks ranked values of pollution

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(pollution ~ region, data = Region, col = "gray")
anova(lm(pollution ~ region, data = Region))

```

\section*{Description}

Data for Exercise 2.3, 2.39, and 2.54

\section*{Usage}

Register

\section*{Format}

A data frame/tibble with nine observations on two variables
age age of cash register (in years)
cost maintenance cost of cash register (in dollars)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(cost ~ age, data = Register)
model <- lm(cost ~ age, data = Register)
abline(model, col = "red")
predict(model, newdata = data.frame(age = c(5, 10)))
plot(model, which = 1)
rm(model)

``` atrists

\section*{Description}

Data for Exercise 7.61

\section*{Usage}

Rehab

\section*{Format}

A data frame/tibble with 20 observations on four variables
inmate inmate identification number
psych1 rating from first psychiatrist on the inmates rehabilative potential
psych2 rating from second psychiatrist on the inmates rehabilative potential
differ psych1-psych2

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
boxplot(Rehab\$differ)
qqnorm(Rehab\$differ)
qqline(Rehab\$differ)
t.test(Rehab\$differ)
Remedial
Math placement test score for 35 freshmen females and 42 freshmen
males

\section*{Description}

Data for Exercise 7.43

\section*{Usage}

Remedial

\section*{Format}

A data frame/tibble with 84 observations on two variables
gender a character variable with values female and male
score math placement score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(score ~ gender, data = Remedial,
col = c("purple", "blue"))
t.test(score ~ gender, data = Remedial, conf.level = 0.98)
t.test(score ~ gender, data = Remedial, conf.level = 0.98)\$conf
wilcox.test(score ~ gender, data = Remedial,
conf.int = TRUE, conf.level = 0.98)

```
Rentals Weekly rentals for 45 apartments

\section*{Description}

Data for Exercise 1.122

\section*{Usage}

Rentals

\section*{Format}

A data frame/tibble with 45 observations on one variable
rent weekly apartment rental price (in dollars)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Rentals$rent)
sum(Rentals$rent < mean(Rentals$rent) - 3*sd(Rentals$rent) |
Rentals$rent > mean(Rentals$rent) + 3*sd(Rentals\$rent))

```

\section*{Description}

Data for Exercise 5.77

\section*{Usage}

Repair

\section*{Format}

A data frame/tibble with 22 observations on one variable
time time to repair a wrecked in car (in hours)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Repair$time)
SIGN.test(Repair$time, conf.level = 0.98)

```

Retail Length of employment versus gross sales for 10 employees of a large retail store

\section*{Description}

Data for Exercise 9.59

\section*{Usage}

Retail

\section*{Format}

A data frame/tibble with 10 observations on two variables
months length of employment (in months)
sales employee gross sales (in dollars)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(sales ~ months, data = Retail)
model <- lm(sales ~ months, data = Retail)
abline(model, col = "blue")
summary(model)

```
Ronbrown1
\begin{tabular}{l} 
Oceanography data obtained at site 1 by scientist aboard the ship Ron \\
Brown
\end{tabular}

\section*{Description}

Data for Exercise 2.9

\section*{Usage}

Ronbrown1

\section*{Format}

A data frame/tibble with 75 observations on two variables
depth ocen depth (in meters)
temperature ocean temperature (in Celsius)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(temperature ~ depth, data = Ronbrown1, ylab = "Temperature")

```

\section*{Description}

Data for Exercise 2.56 and Example 2.4

\section*{Usage}

Ronbrown2

\section*{Format}

A data frame/tibble with 150 observations on three variables
depth ocean depth (in meters)
temperature ocean temperature (in Celcius)
salinity ocean salinity level

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(salinity ~ depth, data = Ronbrown2)
model <- lm(salinity ~ depth, data = Ronbrown2)
summary(model)
plot(model, which = 1)
rm(model)

```
Rural Social adjustment scores for a rural group and a city group of children

\section*{Description}

Data for Example 7.16

\section*{Usage}

Rural

\section*{Format}

A data frame/tibble with 33 observations on two variables
score child's social adjustment score
area character variable with values city and rural

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(score ~ area, data = Rural)
wilcox.test(score ~ area, data = Rural)

Not run:

library(dplyr)
Rural <- dplyr::mutate(Rural, r = rank(score))
Rural
t.test(r ~ area, data = Rural)
\#\# End(Not run)

```
    Salary Starting salaries for 25 new PhD psychologist

\section*{Description}

Data for Exercise 3.66

\section*{Usage}

Salary

\section*{Format}

A data frame/tibble with 25 observations on one variable salary starting salary for Ph.D. psycholgists (in dollars)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

qqnorm(Salary\$salary, pch = 19, col = "purple")

```
qqline(Salary\$salary, col = "blue")

\section*{Description}

Data for Exercise 5.27 and 5.64

\section*{Usage}

Salinity

\section*{Format}

A data frame/tibble with 48 observations on one variable
salinity surface-water salinity value

\section*{Source}
J. Davis, Statistics and Data Analysis in Geology, 2nd ed. (New York: John Wiley, 1986).

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Salinity$salinity)
qqnorm(Salinity$salinity, pch = 19, col = "purple")
qqline(Salinity$salinity, col = "blue")
t.test(Salinity$salinity, conf.level = 0.99)
t.test(Salinity$salinity, conf.level = 0.99)$conf

```

\section*{Description}

Data for Statistical Insight Chapter 9

\section*{Usage}

Sat

\section*{Format}

A data frame/tibble with 102 observations on seven variables
state U.S. state
verbal verbal SAT score
math math SAT score
total combined verbal and math SAT score
percent percent of high school seniors taking the SAT
expend state expenditure per student (in dollars)
year year

\section*{Source}

The 2000 World Almanac and Book of Facts, Funk and Wagnalls Corporation, New Jersey.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

Sat94 <- Sat[Sat$year == 1994,]
Sat94
Sat99 <- subset(Sat, year == 1999)
Sat99
stem(Sat99$total)
plot(total ~ percent, data = Sat99)
model <- lm(total ~ percent, data = Sat99)
abline(model, col = "blue")
summary(model)
rm(model)

```

Saving Problem asset ration for savings and loan companies in California, New York, and Texas

\section*{Description}

Data for Exercise 10.34 and 10.49

\section*{Usage}

Saving

\section*{Format}

A data frame/tibble with 65 observations on two variables
par problem-asset-ratio for Savings \& Loans that were listed as being financially troubled in 1992 state U.S. state

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(par ~ state, data = Saving, col = "red")
boxplot(par ~ state, data = Saving, log = "y", col = "red")
model <- aov(par ~ state, data = Saving)
summary(model)
plot(TukeyHSD(model))
kruskal.test(par ~ factor(state), data = Saving)

```
Scales

Readings obtained from a 100 pound weight placed on four brands of bathroom scales

\section*{Description}

Data for Exercise 1.89

\section*{Usage}

Scales

\section*{Format}

A data frame/tibble with 20 observations on two variables
brand variable indicating brand of bathroom scale ( \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), or D )
reading recorded value (in pounds) of a 100 pound weight

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(reading ~ brand, data = Scales, col = rainbow(4),
ylab = "Weight (lbs)")

Not run:

library(ggplot2)
ggplot2::ggplot(data = Scales, aes(x = brand, y = reading, fill = brand)) +
geom_boxplot() +
labs(y = "weight (lbs)") +
theme_bw() +
theme(legend.position = "none")

End(Not run)

```

Schizop2 Exam scores for 17 patients to assess the learning ability of schizophrenics after taking a specified does of a tranquilizer

\section*{Description}

Data for Exercise 6.99

\section*{Usage}

Schizop2

\section*{Format}

A data frame/tibble with 17 observations on one variable
score schizophrenics score on a second standardized exam

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

hist(Schizop2$score, xlab = "score on standardized test after a tranquilizer",
main = "Exercise 6.99", breaks = 10, col = "orange")
EDA(Schizop2$score)
SIGN.test(Schizop2\$score, md = 22, alternative = "greater")

```

\section*{Description}

Data for Example 6.10

\section*{Usage}

Schizoph

\section*{Format}

A data frame/tibble with 13 observations on one variable
score schizophrenics score on a standardized exam one hour after recieving a specified dose of a tranqilizer.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

hist(Schizoph$score, xlab = "score on standardized test",
main = "Example 6.10", breaks = 10, col = "orange")
EDA(Schizoph$score)
t.test(Schizoph\$score, mu = 20)

```

\section*{Description}

Data for Exercise 8.24

\section*{Usage}

Seatbelt

\section*{Format}

A data frame/tibble with 86,759 observations on two variables
seatbelt a factor with levels No and Yes
injuries a factor with levels None, Minimal, Minor, or Major indicating the extent of the drivers injuries

\section*{Source}

Jobson, J. (1982), Applied Multivariate Data Analysis, Springer-Verlag, New York, p. 18.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~seatbelt + injuries, data = Seatbelt)
T1
chisq.test(T1)
rm(T1)

```
Selfdefe \(\quad\)\begin{tabular}{l} 
Self-confidence scores for 9 women before and after instructions on \\
self-defense
\end{tabular}

\section*{Description}

Data for Example 7.19

\section*{Usage}

Selfdefe

\section*{Format}

A data frame/tibble with nine observations on three variables
woman number identifying the woman
before before the course self-confidence score
after after the course self-confidence score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

Selfdefe$differ <- Selfdefe$after - Selfdefe$before
Selfdefe
t.test(Selfdefe$differ, alternative = "greater")

```
Senior \(\quad\)\begin{tabular}{l} 
Reaction times of 30 senior citizens applying for drivers license re- \\
newals
\end{tabular}

\section*{Description}

Data for Exercise 1.83 and 3.67

\section*{Usage}

Senior

\section*{Format}

A data frame/tibble with 31 observations on one variable
reaction reaction time for senior citizens applying for a driver's license renewal

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Senior$reaction)
fivenum(Senior$reaction)
boxplot(Senior\$reaction, main = "Problem 1.83, part d",
horizontal = TRUE, col = "purple")

```
Sentence Sentences of 41 prisoners convicted of a homicide offense

\section*{Description}

Data for Exercise 1.123

\section*{Usage}

Sentence

\section*{Format}

A data frame/tibble with 41 observations on one variable
months sentence length (in months) for prisoners convicted of homocide

\section*{Source}
U.S. Department of Justice, Bureau of Justice Statistics, Prison Sentences and Time Served for Violence, NCJ-153858, April 1995.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Sentence$months)
ll <- mean(Sentence$months)-2*sd(Sentence$months)
ul <- mean(Sentence$months)+2*sd(Sentence\$months)
limits <- c(ll, ul)
limits
rm(ul, ll, limits)

```
Shkdrug Effects of a drug and electroshock therapy on the ability to solve simple
tasks

\section*{Description}

Data for Exercises 10.11 and 10.12

\section*{Usage}

Shkdrug

\section*{Format}

A data frame/tibble with 64 observations on two variables
treatment type of treament Drug/NoS, Drug/Shk, NoDg/NoS, or NoDrug/S
response number of tasks completed in a 10-minute period

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(response ~ treatment, data = Shkdrug, col = "gray")
model <- lm(response ~ treatment, data = Shkdrug)
anova(model)
rm(model)

```

Shock Effect of experimental shock on time to complete difficult task

\section*{Description}

Data for Exercise 10.50

\section*{Usage}

Shock

\section*{Format}

A data frame/tibble with 27 observations on two variables
group grouping variable with values of Group1 (no shock), Group2 (medium shock), and Group3 (severe shock)
attempts number of attempts to complete a task

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(attempts ~ group, data = Shock, col = "violet")
model <- lm(attempts ~ group, data = Shock)
anova(model)
rm(model)

```

\section*{Description}

Data for Exercise 9.58

\section*{Usage}

Shoplift

\section*{Format}

A data frame/tibble with eight observations on two variables
sales sales (in 1000 dollars)
loss loss (in 100 dollars)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(loss ~ sales, data = Shoplift)
model <- lm(loss ~ sales, data = Shoplift)
summary(model)
rm(model)

```
Short
James Short's measurements of the parallax of the sun

\section*{Description}

Data for Exercise 6.65

\section*{Usage}

Short

\section*{Format}

A data frame/tibble with 158 observations on two variables
sample sample number
parallax parallax measurements (seconds of a degree)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

hist(Short$parallax, main = "Problem 6.65",
xlab = "", col = "orange")
SIGN.test(Short$parallax, md = 8.798)
t.test(Short\$parallax, mu = 8.798)

```

Shuttle Number of people riding shuttle versus number of automobiles in the downtown area

\section*{Description}

Data for Exercise 9.20

\section*{Usage}

Shuttle

\section*{Format}

A data frame/tibble with 15 observations on two variables
users number of shuttle riders
autos number of automobiles in the downtown area

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(autos ~ users, data = Shuttle)
model <- lm(autos ~ users, data = Shuttle)
summary(model)
rm(model)

```
SIGN.test Sign Test

\section*{Description}

This function will test a hypothesis based on the sign test and reports linearly interpolated confidence intervals for one sample problems.

\section*{Usage}
```

SIGN.test(
x,
y = NULL,
md = 0,
alternative = "two.sided",
conf.level = 0.95,
)

```

\section*{Arguments}
x
y optional numeric vector; NAs and Infs are allowed but will be removed.
md a single number representing the value of the population median specified by the null hypothesis
alternative is a character string, one of "greater", "less", or "two.sided", or the initial letter of each, indicating the specification of the alternative hypothesis. For onesample tests, alternative refers to the true median of the parent population in relation to the hypothesized value of the median.
conf.level confidence level for the returned confidence interval, restricted to lie between zero and one
... further arguments to be passed to or from methods

\section*{Details}

Computes a "Dependent-samples Sign-Test" if both x and y are provided. If only x is provided, computes the "Sign-Test".

\section*{Value}

A list of class htest_S, containing the following components:
statistic the \(S\)-statistic (the number of positive differences between the data and the hypothesized median), with names attribute " \(S\) ".
\(p\).value the \(p\)-value for the test
```

conf.int is a confidence interval (vector of length 2) for the true median based on linear
interpolation. The confidence level is recorded in the attribute conf.level.
When the alternative is not "two.sided", the confidence interval will be half-
infinite, to reflect the interpretation of a confidence interval as the set of all
values k for which one would not reject the null hypothesis that the true mean
or difference in means is k. Here infinity will be represented by Inf.
estimate is avector of length 1 , giving the sample median; this estimates the correspond-
ing population parameter. Component estimate has a names attribute describ-
ing its elements.
null.value is the value of the median specified by the null hypothesis. This equals the
input argument md. Component null. value has a names attribute describing its
elements.
alternative records the value of the input argument alternative: "greater", "less", or
"two.sided"
data. name a character string (vector of length 1) containing the actual name of the input
vector x
Confidence.Intervals
a 3 by 3 matrix containing the lower achieved confidence interval, the interpolated confidence interval, and the upper achived confidence interval

```

\section*{Null Hypothesis}

For the one-sample sign-test, the null hypothesis is that the median of the population from which \(x\) is drawn is md. For the two-sample dependent case, the null hypothesis is that the median for the differences of the populations from which \(x\) and \(y\) are drawn is \(m d\). The alternative hypothesis indicates the direction of divergence of the population median for \(x\) from md (i.e., "greater", "less", "two.sided".)

\section*{Note}

The reported confidence interval is based on linear interpolation. The lower and upper confidence levels are exact.

\section*{Author(s)}

Alan T. Arnholt

\section*{References}

Gibbons, J.D. and Chakraborti, S. (1992). Nonparametric Statistical Inference. Marcel Dekker Inc., New York.

Kitchens, L.J.(2003). Basic Statistics and Data Analysis. Duxbury.
Conover, W. J. (1980). Practical Nonparametric Statistics, 2nd ed. Wiley, New York.
Lehmann, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden and Day, San Francisco.

\section*{See Also}
z.test, zsum.test, tsum.test

\section*{Examples}
```

x <- c(7.8, 6.6, 6.5, 7.4, 7.3, 7., 6.4, 7.1, 6.7, 7.6, 6.8)
SIGN.test(x, md = 6.5)
\# Computes two-sided sign-test for the null hypothesis
\# that the population median for 'x' is 6.5. The alternative
\# hypothesis is that the median is not 6.5. An interpolated 95%
\# confidence interval for the population median will be computed.
reaction <- c(14.3, 13.7, 15.4, 14.7, 12.4, 13.1, 9.2, 14.2,
14.4, 15.8, 11.3, 15.0)
SIGN.test(reaction, md = 15, alternative = "less")
\# Data from Example 6.11 page 330 of Kitchens BSDA.
\# Computes one-sided sign-test for the null hypothesis
\# that the population median is 15. The alternative
\# hypothesis is that the median is less than 15.
\# An interpolated upper 95% upper bound for the population
\# median will be computed.

```
    Simpson
    Grade point averages of men and women participating in various
    sports-an illustration of Simpson's paradox

\section*{Description}

Data for Example 1.18

\section*{Usage}

Simpson

\section*{Format}

A data frame/tibble with 100 observations on three variables
gpa grade point average
sport sport played (basketball, soccer, or track)
gender athlete sex (male, female)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(gpa ~ gender, data = Simpson, col = "violet")
boxplot(gpa ~ sport, data = Simpson, col = "lightgreen")

Not run:

library(ggplot2)
ggplot2::ggplot(data = Simpson, aes(x = gender, y = gpa, fill = gender)) +
geom_boxplot() +
facet_grid(.~sport) +
theme_bw()

End(Not run)

```
    Situp Maximum number of situps by participants in an exercise class

\section*{Description}

Data for Exercise 1.47

\section*{Usage}

Situp

\section*{Format}

A data frame/tibble with 20 observations on one variable
number maximum number of situps completed in an exercise class after 1 month in the program

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Situp$number)
hist(Situp$number, breaks = seq(0, 70, 10), right = FALSE)
hist(Situp$number, breaks = seq(0, 70, 10), right = FALSE,
 freq = FALSE, col = "pink", main = "Problem 1.47",
 xlab = "Maximum number of situps")
lines(density(Situp$number), col = "red")

```

\section*{Description}

Data for Exercise 7.65

\section*{Usage}

Skewed

\section*{Format}

A data frame/tibble with 21 observations on two variables

C1 values from a sample of size 16 from a particular population
C2 values from a sample of size 14 from a particular population

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
boxplot(Skewed\$C1, Skewed\$C2, col = c("pink", "lightblue"))
wilcox.test(Skewed\$C1, Skewed\$C2)
\begin{tabular}{ll}
\hline Skin & \begin{tabular}{l} 
Survival times of closely and poorly matched skin grafts on burn pa- \\
tients
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Data for Exercise 5.20

\section*{Usage}

Skin

\section*{Format}

A data frame/tibble with 11 observations on four variables
patient patient identification number
close graft survival time in days for a closely matched skin graft on the same burn patient
poor graft survival time in days for a poorly matched skin graft on the same burn patient
differ difference between close and poor (in days)

\section*{Source}
R. F. Woolon and P. A. Lachenbruch, "Rank Tests for Censored Matched Pairs," Biometrika, 67(1980), 597-606.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Skin$differ)
boxplot(Skin$differ, col = "pink")
summary(Skin\$differ)

```

Slc Sodium-lithium countertransport activity on 190 individuals from six large English kindred

\section*{Description}

Data for Exercise 5.116

\section*{Usage}

Slc

\section*{Format}

A data frame/tibble with 190 observations on one variable
slc Red blood cell sodium-lithium countertransport

\section*{Source}

Roeder, K., (1994), "A Graphical Technique for Determining the Number of Components in a Mixture of Normals," Journal of the American Statistical Association, 89, 497-495.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

EDA(Slc$slc)
hist(Slc$slc, freq = FALSE, xlab = "sodium lithium countertransport",
main = "", col = "lightblue")
lines(density(Slc\$slc), col = "purple")

```

Smokyph Water pH levels of 75 water samples taken in the Great Smoky Mountains

\section*{Description}

Data for Exercises 6.40, 6.59, 7.10, and 7.35

\section*{Usage}

Smokyph

\section*{Format}

A data frame/tibble with 75 observations on three variables
waterph water sample pH level
code charater variable with values low (elevation below 0.6 miles), and high (elevation above 0.6 miles)
elev elevation in miles

\section*{Source}

Schmoyer, R. L. (1994), Permutation Tests for Correlation in Regression Errors, Journal of the American Statistical Association, 89, 1507-1516.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

summary(Smokyph$waterph)
tapply(Smokyph$waterph, Smokyph$code, mean)
stripchart(waterph ~ code, data = Smokyph, method = "stack",
 pch = 19, col = c("red", "blue"))
 t.test(Smokyph$waterph, mu = 7)
SIGN.test(Smokyph\$waterph, md = 7)
t.test(waterph ~ code, data = Smokyph, alternative = "less")
t.test(waterph ~ code, data = Smokyph, conf.level = 0.90)
\#\# Not run:
library(ggplot2)
ggplot2::ggplot(data = Smokyph, aes(x = waterph, fill = code)) +
geom_dotplot() +
facet_grid(code ~ .) +
guides(fill = FALSE)

End(Not run)

```
Snore \(\quad\) Snoring versus heart disease

\section*{Description}

Data for Exercise 8.21

\section*{Usage}

Snore

\section*{Format}

A data frame/tibble with 2,484 observations on two variables
snore factor with levels nonsnorer, ocassional snorer, nearly every night, and snores every night
heartdisease factor indicating whether the indiviudal has heart disease (no or yes)

\section*{Source}

Norton, P. and Dunn, E. (1985), Snoring as a Risk Factor for Disease, British Medical Journal, 291, 630-632.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~ heartdisease + snore, data = Snore)
T1
chisq.test(T1)
rm(T1)

```
    Snow
    Concentration of microparticles in snowfields of Greenland and
    Antarctica

\section*{Description}

\section*{Data for Exercise 7.87}

\section*{Usage}

Snow

\section*{Format}

A data frame/tibble with 34 observations on two variables
concent concentration of microparticles from melted snow (in parts per billion)
site location of snow sample (Antarctica or Greenland)

\section*{Source}

Davis, J., Statistics and Data Analysis in Geology, John Wiley, New York.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(concent ~ site, data = Snow, col = c("lightblue", "lightgreen"))

```
Soccer Weights of 25 soccer players

\section*{Description}

Data for Exercise 1.46

\section*{Usage}

Soccer

\section*{Format}

A data frame/tibble with 25 observations on one variable
weight soccer players weight (in pounds)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Soccer$weight, scale = 2)
hist(Soccer$weight, breaks = seq(110, 210, 10), col = "orange",
main = "Problem 1.46 \n Weights of Soccer Players",
xlab = "weight (lbs)", right = FALSE)

```

\section*{Social} Median income level for 25 social workers from North Carolina

\section*{Description}

Data for Exercise 6.63

\section*{Usage}

Social

\section*{Format}

A data frame/tibble with 25 observations on one variable
income annual income (in dollars) of North Carolina social workers with less than five years experience.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

SIGN.test(Social\$income, md = 27500, alternative = "less")

```

Sophomor Grade point averages, SAT scores and final grade in college algebra for 20 sophomores

\section*{Description}

Data for Exercise 2.42

\section*{Usage}

Sophomor

\section*{Format}

A data frame/tibble with 20 observations on four variables
student identification number
gpa grade point average
sat SAT math score
exam final exam grade in college algebra

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

cor(Sophomor)
plot(exam ~ gpa, data = Sophomor)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Sophomor, aes(x = gpa, y = exam)) +
geom_point()
ggplot2::ggplot(data = Sophomor, aes(x = sat, y = exam)) +
geom_point()

End(Not run)

```

\section*{South}

\section*{Description}

Data for Exercise 1.84

\section*{Usage}

South

\section*{Format}

A data frame/tibble with 31 observations on one variable rate murder rate per 100,000 people

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(South\$rate, col = "gray", ylab = "Murder rate per 100,000 people")

```
Speed Speed reading scores before and after a course on speed reading

\section*{Description}

Data for Exercise 7.58

\section*{Usage}

Speed

\section*{Format}

A data frame/tibble with 15 observations on four variables
before reading comprehension score before taking a speed-reading course
after reading comprehension score after taking a speed-reading course
differ after - before (comprehension reading scores)
signranks signed ranked differences

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
t.test(Speed\$differ, alternative = "greater")
t.test(Speed\$signranks, alternative = "greater")
wilcox.test(Pair(Speed\$after, Speed\$before) ~ 1, data = Speed, alternative = "greater")

Spellers Standardized spelling test scores for two fourth grade classes

\section*{Description}

Data for Exercise 7.82

\section*{Usage}

Spellers

\section*{Format}

A data frame/tibble with ten observations on two variables
teacher character variable with values Fourth and Colleague
score score on a standardized spelling test

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(score ~ teacher, data = Spellers, col = "pink")
t.test(score ~ teacher, data = Spellers)

```
Spelling \begin{tabular}{l} 
Spelling scores for 9 eighth graders before and after a 2-week course \\
of instruction
\end{tabular}

\section*{Description}

Data for Exercise 7.56

\section*{Usage}

Spelling

\section*{Format}

A data frame/tibble with nine observations on three variables
before spelling score before a 2-week course of instruction
after spelling score after a 2-week course of instruction
differ after - before (spelling score)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

qqnorm(Spelling$differ)
qqline(Spelling$differ)
shapiro.test(Spelling$differ)
t.test(Spelling$differ)

```
\begin{tabular}{l} 
Sports \(\quad\) Favorite sport by gender \\
\hline
\end{tabular}

\section*{Description}

Data for Exercise 8.32

\section*{Usage}

Sports

\section*{Format}

A data frame/tibble with 200 observations on two variables
gender a factor with levels male and female
sport a factor with levels football, basketball, baseball, and tennis

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~gender + sport, data = Sports)
T1
chisq.test(T1)
rm(T1)

```
Spouse Convictions in spouse murder cases by gender

\section*{Description}

Data for Exercise 8.33

\section*{Usage}

Spouse

\section*{Format}

A data frame/tibble with 540 observations on two variables
result a factor with levels not prosecuted, pleaded guilty, convicted, and acquited spouse a factor with levels husband and wife

\section*{Source}

Bureau of Justice Statistics (September 1995), Spouse Murder Defendants in Large Urban Counties, Executive Summary, NCJ-156831.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~result + spouse, data = Spouse)
T1
chisq.test(T1)
rm(T1)

```
    SRS
    Simple Random Sampling

\section*{Description}

Computes all possible samples from a given population using simple random sampling.

\section*{Usage}

SRS(POPvalues, n)

\section*{Arguments}

POPvalues vector containing the poulation values.
\(\mathrm{n} \quad\) the sample size.

\section*{Value}

Returns a matrix containing the possible simple random samples of size \(n\) taken from a population POPvalues.

\section*{Author(s)}

Alan T. Arnholt

\section*{See Also}

Combinations

\section*{Examples}
```

SRS(c(5, 8, 3), 2)
\# The rows in the matrix list the values for the 3 possible
\# simple random samples of size 2 from the population of 5,8, and 3.

```

\section*{Description}

\section*{Data for Exercise 6.93}

\section*{Usage}

Stable

\section*{Format}

A data frame/tibble with nine observations on one variable
time time (in seconds) for horse to run 1 mile

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

SIGN.test(Stable\$time, md = 98.5, alternative = "greater")
\[
\text { Stamp } \quad \text { Thicknesses of } 1872 \text { Hidalgo stamps issued in Mexico }
\]

\section*{Description}

Data for Statistical Insight Chapter 1 and Exercise 5.110

\section*{Usage}

Stamp

\section*{Format}

A data frame/tibble with 485 observations on one variable
thickness stamp thickness (in mm)

\section*{Source}

Izenman, A., Sommer, C. (1988), Philatelic Mixtures and Multimodal Densities, Journal of the American Statistical Association, 83, 941-953.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
hist(Stamp\$thickness, freq = FALSE, col = "lightblue", main = "", xlab = "stamp thickness (mm)")
lines(density(Stamp\$thickness), col = "blue")
t.test(Stamp\$thickness, conf.level = 0.99)

Statclas Grades for two introductory statistics classes

\section*{Description}

Data for Exercise 7.30

\section*{Usage}

Statclas

\section*{Format}

A data frame/tibble with 72 observations on two variables
class class meeting time ( 9 am or 2 pm )
score grade for an introductory statistics class

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

str(Statclas)
boxplot(score ~ class, data = Statclas, col = "red")
t.test(score ~ class, data = Statclas)

```

Statelaw Operating expenditures per resident for each of the state law enforcement agencies

\section*{Description}

Data for Exercise 6.62

\section*{Usage}

Statelaw

\section*{Format}

A data frame/tibble with 50 observations on two variables
state U.S. state
cost dollars spent per resident on law enforcement

\section*{Source}

Bureau of Justice Statistics, Law Enforcement Management and Administrative Statistics, 1993, NCJ-148825, September 1995, page 84.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

EDA(Statelaw\$cost)
SIGN.test(Statelaw\$cost, md = 8, alternative = "less")
Statisti \(\quad\) Test scores for two beginning statistics classes

\section*{Description}

Data for Exercises 1.70 and 1.87

\section*{Usage}

Statisti

\section*{Format}

A data frame/tibble with 62 observations on two variables
class character variable with values Cl ass1 and Class2
score test score for an introductory statistics test

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(score ~ class, data = Statisti, col = "violet")
tapply(Statisti$score, Statisti$class, summary, na.rm = TRUE)

Not run:

library(dplyr)
dplyr::group_by(Statisti, class) %>%
summarize(Mean = mean(score, na.rm = TRUE),
Median = median(score, na.rm = TRUE),
SD = sd(score, na.rm = TRUE),
RS = IQR(score, na.rm = TRUE))

End(Not run)

```
Step STEP science test scores for a class of ability-grouped students

\section*{Description}

Data for Exercise 6.79

\section*{Usage}

Step

\section*{Format}

A data frame/tibble with 12 observations on one variable
score State test of educational progress (STEP) science test score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

EDA(Step$score)
t.test(Step$score, mu = 80, alternative = "less")
wilcox.test(Step\$score, mu = 80, alternative = "less")

```

Stress Short-term memory test scores on 12 subjects before and after a stressful situation

\section*{Description}

Data for Example 7.20

\section*{Usage}

Stress

\section*{Format}

A data frame/tibble with 12 observations on two variables
prestress short term memory score before being exposed to a stressful situation
poststress short term memory score after being exposed to a stressful situation

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

diff <- Stress$prestress - Stress$poststress
qqnorm(diff)
qqline(diff)
t.test(diff)

Not run:

wilcox.test(Pair(Stress$prestress, Stress$poststress)~1, data = Stress)

End(Not run)

```

Study
Number of hours studied per week by a sample of 50 freshmen

\section*{Description}

Data for Exercise 5.25

\section*{Usage}

Study

\section*{Format}

A data frame/tibble with 50 observations on one variable
hours number of hours a week freshmen reported studying for their courses

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Study$hours)
hist(Study$hours, col = "violet")
summary(Study\$hours)

```
Submarin Number of German submarines sunk by U.S. Navy in World War II

\section*{Description}

Data for Exercises 2.16, 2.45, and 2.59

\section*{Usage}

Submarin

\section*{Format}

A data frame/tibble with 16 observations on three variables
month month
reported number of submarines reported sunk by U.S. Navy
actual number of submarines actually sunk by U.S. Navy

\section*{Source}
F. Mosteller, S. Fienberg, and R. Rourke, Beginning Statistics with Data Analysis (Reading, MA: Addison-Wesley, 1983).

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

model <- lm(actual ~ reported, data = Submarin)
summary(model)
plot(actual ~ reported, data = Submarin)
abline(model, col = "red")
rm(model)

```

\section*{Description}

Data for Exercise 5.19

\section*{Usage}

Subway

\section*{Format}

A data frame/tibble with 30 observations on one variable
time time (in minutes) it takes a subway to travel from the airport to downtown

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

hist(Subway$time, main = "Exercise 5.19",
xlab = "Time (in minutes)", col = "purple")
summary(Subway$time)

```

\section*{Description}

Data for Example 1.7

\section*{Usage}

Sunspot

\section*{Format}

A data frame/tibble with 301 observations on two variables
year year
sunspots average number of sunspots for the year

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(sunspots ~ year, data = Sunspot, type = "l")

Not run:

library(ggplot2)
lattice::xyplot(sunspots ~ year, data = Sunspot,
main = "Yearly sunspots", type = "l")
lattice::xyplot(sunspots ~ year, data = Sunspot, type = "l",
main = "Yearly sunspots", aspect = "xy")
ggplot2::ggplot(data = Sunspot, aes(x = year, y = sunspots)) +
geom_line() +
theme_bw()

End(Not run)

```

\section*{Description}

\section*{Data for Exercise 1.54}

\section*{Usage}

Superbowl

\section*{Format}

A data frame/tibble with 35 observations on five variables
winning_team name of Suberbowl winning team
winner_score winning score for the Superbowl
losing_team name of Suberbowl losing team
loser_score score of losing teama numeric vector
victory_margin winner_score - loser_score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
stem(Superbowl\$victory_margin)

Supercar Top speeds attained by five makes of supercars

\section*{Description}

Data for Statistical Insight Chapter 10

\section*{Usage}

Supercar

\section*{Format}

A data frame/tibble with 30 observations on two variables
speed top speed (in miles per hour) of car without redlining
car name of sports car

Source
Car and Drvier (July 1995).

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(speed ~ car, data = Supercar, col = rainbow(6),
ylab = "Speed (mph)")
summary(aov(speed ~ car, data = Supercar))
anova(lm(speed ~ car, data = Supercar))

```

Tablrock Ozone concentrations at Mt. Mitchell, North Carolina

\section*{Description}

Data for Exercise 5.63

\section*{Usage}

Tablrock

\section*{Format}

A data frame/tibble with 719 observations on the following 17 variables.
day date
hour time of day
ozone ozone concentration
tmp temperature (in Celcius)
vdc a numeric vector
wd a numeric vector
ws a numeric vector
amb a numeric vector
dew a numeric vector
so2 a numeric vector
no a numeric vector
no2 a numeric vector
nox a numeric vector
co a numeric vector
co2 a numeric vector
gas a numeric vector
air a numeric vector

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

summary(Tablrock$ozone)
boxplot(Tablrock$ozone)
qqnorm(Tablrock$ozone)
qqline(Tablrock$ozone)
par(mar = c(5.1 - 1, 4.1 + 2, 4.1 - 2, 2.1))
boxplot(ozone ~ day, data = Tablrock,
horizontal = TRUE, las = 1, cex.axis = 0.7)
par(mar = c(5.1, 4.1, 4.1, 2.1))

Not run:

library(ggplot2)
ggplot2::ggplot(data = Tablrock, aes(sample = ozone)) +
geom_qq() +
theme_bw()
ggplot2::ggplot(data = Tablrock, aes(x = as.factor(day), y = ozone)) +
geom_boxplot(fill = "pink") +
coord_flip() +
labs(x = "") +
theme_bw()

End(Not run)

```

\section*{Description}

Data for Exercise 5.114

\section*{Usage}

Teacher

\section*{Format}

A data frame/tibble with 51 observations on three variables
state U.S. state
year academic year
salary avaerage salary (in dollars)

\section*{Source}

National Education Association.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

par(mfrow = c(3, 1))
hist(Teacher$salary[Teacher$year == "1973-74"],
main = "Teacher salary 1973-74", xlab = "salary",
xlim = range(Teacher$salary, na.rm = TRUE))
hist(Teacher$salary[Teacher$year == "1983-84"],
 main = "Teacher salary 1983-84", xlab = "salary",
 xlim = range(Teacher$salary, na.rm = TRUE))
hist(Teacher$salary[Teacher$year == "1993-94"],
main = "Teacher salary 1993-94", xlab = "salary",
xlim = range(Teacher\$salary, na.rm = TRUE))
par(mfrow = c(1, 1))

Not run:

library(ggplot2)
ggplot2::ggplot(data = Teacher, aes(x = salary)) +
geom_histogram(fill = "purple", color = "black") +
facet_grid(year ~ .) +
theme_bw()

```

\section*{Description}

Data for Exercise 6.56

\section*{Usage}

Tenness

\section*{Format}

A data frame/tibble with 20 observations on one variable
score Tennessee Self-Concept Scale score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

hist(Tenness$score, freq= FALSE, main = "", col = "green",
xlab = "Tennessee Self-Concept Scale score")
lines(density(Tenness$score))

Not run:

library(ggplot2)
ggplot2::ggplot(data = Tenness, aes(x = score, y = ..density..)) +
geom_histogram(binwidth = 2, fill = "purple", color = "black") +
geom_density(color = "red", fill = "pink", alpha = 0.3) +
theme_bw()

End(Not run)

```

\section*{Description}

Data for Example 7.11

\section*{Usage}

Tensile

\section*{Format}

A data frame/tibble with 72 observations on two variables
tensile plastic bag tensile strength (pounds per square inch)
run factor with run number (1 or 2 )

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(tensile ~ run, data = Tensile,
col = c("purple", "cyan"))
t.test(tensile ~ run, data = Tensile)

```

\section*{Test1 Grades on the first test in a statistics class}

\section*{Description}

Data for Exercise 5.80

\section*{Usage}

Test1

\section*{Format}

A data frame/tibble with 25 observations on one variable
score score on first statistics exam

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Test1$score)
boxplot(Test1$score, col = "purple")

```
Thermal Heat loss of thermal pane windows versus outside temperature

\section*{Description}

\section*{Data for Example 9.5}

\section*{Usage}

Thermal

\section*{Format}

A data frame/tibble with 12 observations on the two variables
temp temperature (degrees Celcius)
loss heat loss (BTUs)

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

model <- lm(loss ~ temp, data = Thermal)
summary(model)
plot(loss ~ temp, data = Thermal)
abline(model, col = "red")
rm(model)

```

Tiaa 1999-2000 closing prices for TIAA-CREF stocks

\section*{Description}

Data for your enjoyment

\section*{Usage}

Tiaa

\section*{Format}

A data frame/tibble with 365 observations on four variables
crefstk closing price (in dollars)
crefgwt closing price (in dollars)
tiaa closing price (in dollars)
date day of the year

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

 data(Tiaa)
    ```

Ticket Time to complete an airline ticket reservation

\section*{Description}

Data for Exercise 5.18

\section*{Usage}

Ticket

\section*{Format}

A data frame/tibble with 20 observations on one variable
time time (in seconds) to check out a reservation

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

EDA(Ticket\$time)

Toaster Consumer Reports (Oct 94) rating of toaster ovens versus the cost

\section*{Description}

Data for Exercise 9.36

\section*{Usage}

Toaster

\section*{Format}

A data frame/tibble with 17 observations on three variables
toaster name of toaster
score Consumer Reports score
cost price of toaster (in dollars)

\section*{Source}

Consumer Reports (October 1994).

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(cost ~ score, data = Toaster)
model <- lm(cost ~ score, data = Toaster)
summary(model)
names(summary(model))
summary(model)\$r.squared
plot(model, which = 1)

```

\section*{Description}

Data for Exercise 2.78

\section*{Usage}

Tonsils

\section*{Format}

A data frame/tibble with 1,398 observations on two variables
size a factor with levels Normal, Large, and Very Large
status a factor with levels Carrier and Non-carrier

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~size + status, data = Tonsils)
T1
prop.table(T1, 1)
prop.table(T1, 1)[2, 1]
barplot(t(T1), legend = TRUE, beside = TRUE, col = c("red", "green"))

Not run:

library(dplyr)
library(ggplot2)
NDF <- dplyr::count(Tonsils, size, status)
ggplot2::ggplot(data = NDF, aes(x = size, y = n, fill = status)) +
geom_bar(stat = "identity", position = "dodge") +
scale_fill_manual(values = c("red", "green")) +
theme_bw()

End(Not run)

``` county population from the court files of the nation's largest counties

\section*{Description}

Data for Exercise 5.13

\section*{Usage}

Tort

\section*{Format}

A data frame/tibble with 45 observations on five variables
county U.S. county
months average number of months to process a tort
population population of the county
torts number of torts
rate rate per 10,000 residents

\section*{Source}
U.S. Department of Justice, Tort Cases in Large Counties, Bureau of Justice Statistics Special Report, April 1995.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

\section*{Description}

Data for Exercises 1.55, 5.08, 5.109, 8.58, and 10.35

\section*{Usage}

Toxic

\section*{Format}

A data frame/tibble with 51 observations on five variables
state U.S. state
region U.S. region
sites number of commercial hazardous waste sites
minority percent of minorities living in communities with commercial hazardous waste sites
percent a numeric vector

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

hist(Toxic$sites, col = "red")
hist(Toxic$minority, col = "blue")
qqnorm(Toxic$minority)
qqline(Toxic$minority)
boxplot(sites ~ region, data = Toxic, col = "lightgreen")
tapply(Toxic$sites, Toxic$region, median)
kruskal.test(sites ~ factor(region), data = Toxic)

```

\section*{Description}

Data for Exercises 2.97, 5.115, and 9.62

\section*{Usage}

Track

\section*{Format}

A data frame with 55 observations on eight variables
country athlete's country
\(\mathbf{1 0 0 m}\) time in seconds for 100 m
200m time in seconds for 200 m
400 m time in seconds for 400 m
\(\mathbf{8 0 0 m}\) time in minutes for 800 m
1500 m time in minutes for 1500 m
3000 m time in minutes for 3000 m
marathon time in minutes for marathon

\section*{Source}

Dawkins, B. (1989), "Multivariate Analysis of National Track Records," The American Statistician, 43(2), 110-115.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(`200m` ~ `100m`, data = Track)
plot(`400m` ~ `100m`, data = Track)
plot(`400m` ~ `200m`, data = Track)
cor(Track[, 2:8])

```

\section*{Description}

Data for Exercise 1.36

\section*{Usage}

Track15

\section*{Format}

A data frame/tibble with 26 observations on two variables
year Olympic year
time Olympic winning time (in seconds) for the 1500-meter run

\section*{Source}

The World Almanac and Book of Facts, 2000.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(time~ year, data = Track15, type = "b", pch = 19,
ylab = "1500m time in seconds", col = "green")

```
\begin{tabular}{l}
\hline Treatments \(\quad\) Illustrates analysis of variance for three treatment groups \\
\hline
\end{tabular}

\section*{Description}

Data for Exercise 10.44

\section*{Usage}

Treatments

\section*{Format}

A data frame/tibble with 24 observations on two variables
score score from an experiment
group factor with levels 1,2 , and 3

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(score ~ group, data = Treatments, col = "violet")
summary(aov(score ~ group, data = Treatments))
summary(lm(score ~ group, data = Treatments))
anova(lm(score ~ group, data = Treatments))

```
Trees Number of trees in 20 grids

\section*{Description}

Data for Exercise 1.50

\section*{Usage}

Trees

\section*{Format}

A data frame/tibble with 20 observations on one variable number number of trees in a grid

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Trees$number)
hist(Trees$number, main = "Exercise 1.50", xlab = "number",
col = "brown")

```

\section*{Description}

Data for Example 10.2

\section*{Usage}

Trucks

\section*{Format}

A data frame/tibble with 15 observations on two variables
mpg miles per gallon
truck a factor with levels chevy, dodge, and ford

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(mpg ~ truck, data = Trucks, horizontal = TRUE, las = 1)
summary(aov(mpg ~ truck, data = Trucks))

```
tsum.test Summarized t-test

\section*{Description}

Performs a one-sample, two-sample, or a Welch modified two-sample t-test based on user supplied summary information. Output is identical to that produced with \(t\). test.

\section*{Usage}
```

tsum.test(
mean.x,
s.x = NULL,
n.x = NULL,
mean.y = NULL,
s.y = NULL,
n.y = NULL,
alternative = "two.sided",
mu = 0,
var.equal = FALSE,
conf.level = 0.95
)

```

\section*{Arguments}
\begin{tabular}{ll} 
mean.x & a single number representing the sample mean of \(x\) \\
s.x & a single number representing the sample standard deviation for \(x\) \\
mean.y & a single number representing the sample size for \(x\) \\
s.y & a single number representing the sample mean of y
\end{tabular}\(\quad\)\begin{tabular}{l} 
a single number representing the sample standard deviation for \(y\) \\
alternative \\
a single number representing the sample size for \(y\) \\
is a character string, one of "greater", "less" or "two. sided", or just the \\
initial letter of each, indicating the specification of the alternative hypothesis.
\end{tabular}

\section*{Details}

If \(y\) is NULL, a one-sample \(t\)-test is carried out with \(x\). If \(y\) is not NULL, either a standard or Welch modified two-sample t-test is performed, depending on whether var. equal is TRUE or FALSE.

\section*{Value}

A list of class htest, containing the following components:
statistic the t -statistic, with names attribute " t "
parameters is the degrees of freedom of the \(t\)-distribution associated with statistic. Component parameters has names attribute "df".
p .value the p -value for the test.
conf.int is a confidence interval (vector of length 2) for the true mean or difference in means. The confidence level is recorded in the attribute conf.level. When alternative is not "two.sided", the confidence interval will be half-infinite, to reflect the interpretation of a confidence interval as the set of all values \(k\) for which one would not reject the null hypothesis that the true mean or difference in means is \(k\). Here infinity will be represented by Inf.
estimate vector of length 1 or 2, giving the sample mean(s) or mean of differences; these estimate the corresponding population parameters. Component estimate has a names attribute describing its elements.
null.value the value of the mean or difference in means specified by the null hypothesis. This equals the input argument mu. Component null.value has a names attribute describing its elements.
alternative records the value of the input argument alternative: "greater", "less" or "two.sided".
data. name a character string (vector of length 1) containing the names \(x\) and \(y\) for the two summarized samples.

\section*{Null Hypothesis}

For the one-sample t -test, the null hypothesis is that the mean of the population from which x is drawn is mu. For the standard and Welch modified two-sample \(t\)-tests, the null hypothesis is that the population mean for x less that for y is mu .
The alternative hypothesis in each case indicates the direction of divergence of the population mean for \(x\) (or difference of means for \(x\) and \(y\) ) from mu (i.e., "greater", "less", or "two.sided").

\section*{Author(s)}

Alan T. Arnholt

\section*{References}

Kitchens, L.J. (2003). Basic Statistics and Data Analysis. Duxbury.
Hogg, R. V. and Craig, A. T. (1970). Introduction to Mathematical Statistics, 3rd ed. Toronto, Canada: Macmillan.

Mood, A. M., Graybill, F. A. and Boes, D. C. (1974). Introduction to the Theory of Statistics, 3rd ed. New York: McGraw-Hill.

Snedecor, G. W. and Cochran, W. G. (1980). Statistical Methods, 7th ed. Ames, Iowa: Iowa State University Press.

\section*{See Also}
z.test, zsum.test

\section*{Examples}
```

tsum.test(mean.x=5.6, s.x=2.1, n.x=16, mu=4.9, alternative="greater")
\# Problem 6.31 on page 324 of BSDA states: The chamber of commerce
\# of a particular city claims that the mean carbon dioxide
\# level of air polution is no greater than 4.9 ppm. A random
\# sample of 16 readings resulted in a sample mean of 5.6 ppm,
\# and s=2.1 ppm. One-sided one-sample t-test. The null
\# hypothesis is that the population mean for 'x' is 4.9.
\# The alternative hypothesis states that it is greater than 4.9.
x <- rnorm(12)
tsum.test(mean(x), sd(x), n.x=12)
\# Two-sided one-sample t-test. The null hypothesis is that
\# the population mean for ' }x\mathrm{ ' is zero. The alternative
\# hypothesis states that it is either greater or less
\# than zero. A confidence interval for the population mean
\# will be computed. Note: above returns same answer as:
t.test(x)
x<- c(7.8, 6.6, 6.5, 7.4, 7.3, 7.0, 6.4, 7.1, 6.7, 7.6, 6.8)
y<- c(4.5, 5.4, 6.1, 6.1, 5.4, 5.0, 4.1, 5.5)
tsum.test(mean(x), s.x=sd(x), n.x=11 ,mean(y), s.y=sd(y), n.y=8, mu=2)
\# Two-sided standard two-sample t-test. The null hypothesis
\# is that the population mean for 'x' less that for 'y' is 2.
\# The alternative hypothesis is that this difference is not 2.
\# A confidence interval for the true difference will be computed.
\# Note: above returns same answer as:
t.test(x, y)
tsum.test(mean(x), s.x=sd(x), n.x=11, mean(y), s.y=sd(y), n.y=8, conf.level=0.90)
\# Two-sided standard two-sample t-test. The null hypothesis
\# is that the population mean for 'x' less that for 'y' is zero.
\# The alternative hypothesis is that this difference is not
\# zero. A 90% confidence interval for the true difference will
\# be computed. Note: above returns same answer as:
t.test(x, y, conf.level=0.90)

```

\section*{Description}

Data for Examples 2.1 and 2.7

\section*{Usage}

Tv

\section*{Format}

A data frame/tibble with 53 observations on three variables
state U.S. state
percent percent of students who watch more than six hours of TV a day
test state average on national math test

\section*{Source}

Educational Testing Services.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(test ~ percent, data = Tv, col = "blue")
cor(Tv$test, Tv$percent)

```
\begin{tabular}{l} 
Twin \begin{tabular}{l} 
Intelligence test scores for identical twins in which one twin is given \(a\) \\
drug
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Data for Exercise 7.54

\section*{Usage}

Twin

\section*{Format}

A data frame/tibble with nine observations on three variables
twinA score on intelligence test without drug
twinB score on intelligence test after taking drug
differ twinA - twinB

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

qqnorm(Twin$differ)
qqline(Twin$differ)
shapiro.test(Twin$differ)
t.test(Twin$differ)

```

Undergrad Data set describing a sample of undergraduate students

\section*{Description}

Data for Exercise 1.15

\section*{Usage}

Undergrad

\section*{Format}

A data frame/tibble with 100 observations on six variables
gender character variable with values Female and Male
major college major
class college year group classification
gpa grade point average
sat Scholastic Assessment Test score
drops number of courses dropped

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stripchart(gpa ~ class, data = Undergrad, method = "stack",
col = c("blue","red","green","lightblue"),
pch = 19, main = "GPA versus Class")
stripchart(gpa ~ gender, data = Undergrad, method = "stack",
col = c("red", "blue"), pch = 19,
main = "GPA versus Gender")
stripchart(sat ~ drops, data = Undergrad, method = "stack",
col = c("blue", "red", "green", "lightblue"),
pch = 19, main = "SAT versus Drops")
stripchart(drops ~ gender, data = Undergrad, method = "stack",
col = c("red", "blue"), pch = 19, main = "Drops versus Gender")

Not run:

library(ggplot2)
ggplot2::ggplot(data = Undergrad, aes(x = sat, y = drops, fill = factor(drops))) +
facet_grid(drops ~.) +
geom_dotplot() +
guides(fill = FALSE)

End(Not run)

```

Vacation Number of days of paid holidays and vacation leave for sample of 35 textile workers

\section*{Description}

Data for Exercise 6.46 and 6.98

\section*{Usage}

Vacation

\section*{Format}

A data frame/tibble with 35 observations on one variable
number number of days of paid holidays and vacation leave taken

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(Vacation$number, col = "violet")
hist(Vacation$number, main = "Exercise 6.46", col = "blue",
xlab = "number of days of paid holidays and vacation leave taken")
t.test(Vacation\$number, mu = 24)

```
    Vaccine \(\quad\) Reported serious reactions due to vaccines in 11 southern states

\section*{Description}

Data for Exercise 1.111

\section*{Usage}

Vaccine

\section*{Format}

A data frame/tibble with 11 observations on two variables
state U.S. state
number number of reported serious reactions per million doses of a vaccine

\section*{Source}

Center for Disease Control, Atlanta, Georgia.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Vaccine$number, scale = 2)
fn <- fivenum(Vaccine$number)
fn
iqr <- IQR(Vaccine\$number)
iqr

```

\section*{Vehicle Fatality ratings for foreign and domestic vehicles}

\section*{Description}

Data for Exercise 8.34

\section*{Usage}

Vehicle

\section*{Format}

A data frame/tibble with 151 observations on two variables
make a factor with levels domestic and foreign
rating a factor with levels Much better than average, Above average, Average, Below average, and Much worse than average

\section*{Source}

Insurance Institute for Highway Safety and the Highway Loss Data Institute, 1995.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~make + rating, data = Vehicle)
T1
chisq.test(T1)

```
Verbal \begin{tabular}{l} 
Verbal test scores and number of library books checked out for 15 \\
eighth graders
\end{tabular}

\section*{Description}

Data for Exercise 9.30

\section*{Usage}

Verbal

\section*{Format}

A data frame/tibble with 15 observations on two variables
number number of library books checked out
verbal verbal test score

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(verbal ~ number, data = Verbal)
abline(lm(verbal ~ number, data = Verbal), col = "red")
summary(lm(verbal ~ number, data = Verbal))

```

Victoria Number of sunspots versus mean annual level of Lake Victoria Nyanza from 1902 to 1921

\section*{Description}

Data for Exercise 2.98

\section*{Usage}

Victoria

\section*{Format}

A data frame/tibble with 20 observations on three variables
year year
level mean annual level of Lake Victoria Nyanza
sunspot number of sunspots

\section*{Source}
N. Shaw, Manual of Meteorology, Vol. 1 (London: Cambridge University Press, 1942), p. 284; and F. Mosteller and J. W. Tukey, Data Analysis and Regression (Reading, MA: Addison-Wesley, 1977).

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(level ~ sunspot, data = Victoria)
model <- lm(level ~ sunspot, data = Victoria)
summary(model)
rm(model)

```
Viscosit Viscosity measurements of a substance on two different days

\section*{Description}

Data for Exercise 7.44

\section*{Usage}

Viscosit

\section*{Format}

A data frame/tibble with 11 observations on two variables
first viscosity measurement for a certain substance on day one
second viscosity measurement for a certain substance on day two

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(Viscosit$first, Viscosit$second, col = "blue")
t.test(Viscosit$first, Viscosit$second, var.equal = TRUE)

```
Visual \begin{tabular}{l} 
Visual acuity of a group of subjects tested under a specified dose of a \\
drug
\end{tabular}

\section*{Description}

Data for Exercise 5.6

\section*{Usage}

Visual

\section*{Format}

A data frame/tibble with 18 observations on one variable visual visual acuity measurement

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

stem(Visual$visual)
boxplot(Visual$visual, col = "purple")

```
Vocab \begin{tabular}{l} 
Reading scores before and after vocabulary training for 14 employees \\
who did not complete high school
\end{tabular}

\section*{Description}

Data for Exercise 7.80

\section*{Usage}

Vocab

\section*{Format}

A data frame/tibble with 14 observations on two variables
first reading test score before formal vocabulary training
second reading test score after formal vocabulary training

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
t.test(Pair(Vocab\$first, Vocab\$second) ~ 1)
Wastewat \(\quad\)\begin{tabular}{l} 
Volume of injected waste water from Rocky Mountain Arsenal and \\
number of earthquakes near Denver
\end{tabular}

\section*{Description}

Data for Exercise 9.18

\section*{Usage}

Wastewat

\section*{Format}

A data frame/tibble with 44 observations on two variables
gallons injected water (in million gallons)
number number of earthqueakes detected in Denver

\section*{Source}

Davis, J. C. (1986), Statistics and Data Analysis in Geology, 2 ed., John Wiley and Sons, New York, p. 228, and Bardwell, G. E. (1970), Some Statistical Features of the Relationship between Rocky Mountain Arsenal Waste Disposal and Frequency of Earthquakes, Geological Society of America, Engineering Geology Case Histories, 8, 33-337.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(number ~ gallons, data = Wastewat)
model <- lm(number ~ gallons, data = Wastewat)
summary(model)
anova(model)
plot(model, which = 2)

```
Weather94 Weather casualties in 1994

\section*{Description}

Data for Exercise 1.30

\section*{Usage}

Weather94

\section*{Format}

A data frame/tibble with 388 observations on one variable
type factor with levels Extreme Temp, Flash Flood, Fog, High Wind, Hurricane, Lighting, Other, River Flood, Thunderstorm, Tornado, and Winter Weather

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

T1 <- xtabs(~type, data = Weather94)
T1
par(mar = c(5.1 + 2, 4.1-1, 4.1-2, 2.1))
barplot(sort(T1, decreasing = TRUE), las = 2, col = rainbow(11))
par(mar = c(5.1, 4.1, 4.1, 2.1))

Not run:

library(ggplot2)
T2 <- as.data.frame(T1)
T2
ggplot2::ggplot(data =T2, aes(x = reorder(type, Freq), y = Freq)) +
geom_bar(stat = "identity", fill = "purple") +
theme_bw() +
theme(axis.text.x = element_text(angle = 55, vjust = 0.5)) +
labs(x = "", y = "count")

End(Not run)

``` duction workers

\section*{Description}

Data for Exercise 2.11

\section*{Usage}

Wheat

\section*{Format}

A data frame/tibble with 19 observations on three variables
year year
earnings national weekly earnings (in dollars) for production workers
price price for a bushel of wheat (in dollars)

\section*{Source}

The World Almanac and Book of Facts, 2000.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

par(mfrow = c(1, 2))
plot(earnings ~ year, data = Wheat)
plot(price ~ year, data = Wheat)
par(mfrow = c(1, 1))

```

\section*{Description}

Data for Exercise 9.34

\section*{Usage}

Windmill

\section*{Format}

A data frame/tibble with 25 observations on two variables
velocity wind velocity (miles per hour)
output power generated (DC volts)

\section*{Source}

Joglekar, et al. (1989), Lack of Fit Testing when Replicates Are Not Available, The American Statistician, 43,(3), 135-143.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

summary(lm(output ~ velocity, data = Windmill))
anova(lm(output ~ velocity, data = Windmill))

```
Window Wind leakage for storm windows exposed to a 50 mph wind

\section*{Description}

Data for Exercise 6.54

\section*{Usage}

Window

\section*{Format}

A data frame/tibble with nine observations on two variables
window window number
leakage percent leakage from a 50 mph wind

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}

SIGN.test(Window\$leakage, \(m d=0.125\), alternative \(=\) "greater")

\section*{Description}

Data for Exercise 9.23

\section*{Usage}

Wins

\section*{Format}

A data frame with 12 observations on nine variables
team name of team
wins number of wins
batavg batting average
rbi runs batted in
stole bases stole
strkout number of strikeots
caught number of times caught stealing
errors number of errors
era earned run average

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(wins ~ era, data = Wins)

Not run:

library(ggplot2)
ggplot2::ggplot(data = Wins, aes(x = era, y = wins)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
theme_bw()

End(Not run)

```
    Wool Strength tests of two types of wool fabric

\section*{Description}

Data for Exercise 7.42

\section*{Usage}

Wool

\section*{Format}

A data frame/tibble with 20 observations on two variables
type type of wool (Type I, Type 2)
strength strength of wool

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

boxplot(strength ~ type, data = Wool, col = c("blue", "purple"))
t.test(strength ~ type, data = Wool, var.equal = TRUE)

```

\section*{Description}

Data for Exercise 2.7

\section*{Usage}

Yearsunspot

\section*{Format}

A data frame/tibble with 252 observations on two variables
number average number of sunspots
year date

\section*{Source}

NASA/Marshall Space Flight Center, Huntsville, AL 35812.

\section*{References}

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

\section*{Examples}
```

plot(number ~ year, data = Yearsunspot)

```
\begin{tabular}{ll}
\hline z.test \(\quad\) Z-test \\
\hline
\end{tabular}

\section*{Description}

This function is based on the standard normal distribution and creates confidence intervals and tests hypotheses for both one and two sample problems.

\section*{Usage}
```

 z.test (
 x ,
 \(y=N U L L\),
 alternative = "two.sided",
 mu = 0,
 sigma. \(x=\) NULL,
 sigma. \(y=\) NULL,
 conf.level \(=0.95\)
)
    ```

\section*{Arguments}
x
y numeric vector; NAs and Infs are allowed but will be removed.
alternative character string, one of "greater", "less" or "two. sided", or the initial letter of each, indicating the specification of the alternative hypothesis. For onesample tests, alternative refers to the true mean of the parent population in relation to the hypothesized value mu. For the standard two-sample tests, alternative refers to the difference between the true population mean for x and that for y , in relation to mu.
mu a single number representing the value of the mean or difference in means specified by the null hypothesis
sigma. \(\mathrm{x} \quad\) a single number representing the population standard deviation for x
sigma.y a single number representing the population standard deviation for \(y\)
conf.level confidence level for the returned confidence interval, restricted to lie between zero and one

\section*{Details}

If y is NULL, a one-sample z -test is carried out with x . If y is not NULL, a standard two-sample z-test is performed.

\section*{Value}

A list of class htest, containing the following components:
statistic the z -statistic, with names attribute " z "
\(p\). value the \(p\)-value for the test
conf.int is a confidence interval (vector of length 2 ) for the true mean or difference in means. The confidence level is recorded in the attribute conf.level. When alternative is not "two.sided", the confidence interval will be half-infinite, to reflect the interpretation of a confidence interval as the set of all values k for which one would not reject the null hypothesis that the true mean or difference in means is \(k\). Here infinity will be represented by Inf.
\begin{tabular}{ll} 
estimate & \begin{tabular}{l} 
vector of length 1 or 2, giving the sample mean(s) or mean of differences; these \\
estimate the corresponding population parameters. Component estimate has a \\
names attribute describing its elements.
\end{tabular} \\
null.value & \begin{tabular}{l} 
is the value of the mean or difference in means specified by the null hypothe- \\
sis. This equals the input argument mu. Component null.value has a names \\
attribute describing its elements.
\end{tabular} \\
alternative \(\quad\)\begin{tabular}{l} 
records the value of the input argument alternative: "greater", "less" or \\
"two.sided". \\
data.name
\end{tabular}\(\quad\)\begin{tabular}{l} 
a character string (vector of length 1) containing the actual names of the input \\
vectors \(x\) and \(y\)
\end{tabular}
\end{tabular}

\section*{Null Hypothesis}

For the one-sample z-test, the null hypothesis is that the mean of the population from which x is drawn is mu. For the standard two-sample z-tests, the null hypothesis is that the population mean for x less that for y is mu .

The alternative hypothesis in each case indicates the direction of divergence of the population mean for \(x\) (or difference of means for \(x\) and \(y\) ) from mu (i.e., "greater", "less", "two.sided").

\section*{Author(s)}

Alan T. Arnholt

\section*{References}

Kitchens, L.J. (2003). Basic Statistics and Data Analysis. Duxbury.
Hogg, R. V. and Craig, A. T. (1970). Introduction to Mathematical Statistics, 3rd ed. Toronto, Canada: Macmillan.

Mood, A. M., Graybill, F. A. and Boes, D. C. (1974). Introduction to the Theory of Statistics, 3rd ed. New York: McGraw-Hill.

Snedecor, G. W. and Cochran, W. G. (1980). Statistical Methods, 7th ed. Ames, Iowa: Iowa State University Press.

\section*{See Also}
zsum.test, tsum.test

\section*{Examples}
```

x <- rnorm(12)
z.test(x, sigma.x=1)
\# Two-sided one-sample z-test where the assumed value for
\# sigma.x is one. The null hypothesis is that the population
\# mean for 'x' is zero. The alternative hypothesis states
\# that it is either greater or less than zero. A confidence
\# interval for the population mean will be computed.

```
```

x <- c(7.8, 6.6, 6.5, 7.4, 7.3, 7., 6.4, 7.1, 6.7, 7.6, 6.8)
y <- c(4.5, 5.4, 6.1, 6.1, 5.4, 5., 4.1, 5.5)
z.test(x, sigma.x=0.5, y, sigma.y=0.5, mu=2)
\# Two-sided standard two-sample z-test where both sigma.x
\# and sigma.y are both assumed to equal 0.5. The null hypothesis
\# is that the population mean for 'x' less that for 'y' is 2.
\# The alternative hypothesis is that this difference is not 2.
\# A confidence interval for the true difference will be computed.
z.test(x, sigma.x=0.5, y, sigma.y=0.5, conf.level=0.90)
\# Two-sided standard two-sample z-test where both sigma.x and
\# sigma.y are both assumed to equal 0.5. The null hypothesis
\# is that the population mean for 'x' less that for 'y' is zero.
\# The alternative hypothesis is that this difference is not
\# zero. A 90% confidence interval for the true difference will
\# be computed.
rm(x, y)

```
zsum.test Summarized z-test

\section*{Description}

This function is based on the standard normal distribution and creates confidence intervals and tests hypotheses for both one and two sample problems based on summarized information the user passes to the function. Output is identical to that produced with z. test.

\section*{Usage}
```

zsum.test(
mean. x,
sigma. $x=$ NULL,
$n . x=N U L L$,
mean. $y=$ NULL,
sigma. y = NULL,
$\mathrm{n} . \mathrm{y}=\mathrm{NULL}$,
alternative = "two.sided",
mu = 0,
conf.level = 0.95
)

```

\section*{Arguments}
mean. \(x \quad a \operatorname{single}\) number representing the sample mean of \(x\)
sigma. \(x \quad a \operatorname{single}\) number representing the population standard deviation for \(x\)
\(n . x \quad a \quad\) single number representing the sample size for \(x\)
mean. \(y \quad\) a single number representing the sample mean of \(y\)
```

sigma.y a single number representing the population standard deviation for y
n.y a single number representing the sample size for y
alternative is a character string, one of "greater", "less" or "two.sided", or the ini-
tial letter of each, indicating the specification of the alternative hypothesis. For
one-sample tests, alternative refers to the true mean of the parent popula-
tion in relation to the hypothesized value mu. For the standard two-sample tests,
alternative refers to the difference between the true population mean for x
and that for y, in relation to mu.
mu a single number representing the value of the mean or difference in means spec-
ified by the null hypothesis
conf.level confidence level for the returned confidence interval, restricted to lie between
zero and one

```

\section*{Details}

If \(y\) is NULL, a one-sample z-test is carried out with \(x\). If \(y\) is not NULL, a standard two-sample z-test is performed.

\section*{Value}

A list of class htest, containing the following components:
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
statistic \\
p.value
\end{tabular} & the z -statistic, with names attribute z . the p-value for the test \\
\hline conf.int & is a confidence interval (vector of length 2 ) for the true mean or difference in means. The confidence level is recorded in the attribute conf.level. When alternative is not "two.sided", the confidence interval will be half-infinite, to reflect the interpretation of a confidence interval as the set of all values \(k\) for which one would not reject the null hypothesis that the true mean or difference in means is \(k\). Here, infinity will be represented by Inf. \\
\hline estimate & vector of length 1 or 2 , giving the sample mean(s) or mean of differences; these estimate the corresponding population parameters. Component estimate has a names attribute describing its elements. \\
\hline null.value & the value of the mean or difference in means specified by the null hypothesis. This equals the input argument mu. Component null.value has a names attribute describing its elements. \\
\hline alternative & records the value of the input argument alternative: "greater", "less" or "two.sided". \\
\hline data. name & a character string (vector of length 1) containing the names \(x\) and \(y\) for the two summarized samples \\
\hline
\end{tabular}

\section*{Null Hypothesis}

For the one-sample z-test, the null hypothesis is that the mean of the population from which x is drawn is mu. For the standard two-sample z-tests, the null hypothesis is that the population mean for x less that for y is mu .
The alternative hypothesis in each case indicates the direction of divergence of the population mean for \(x\) (or difference of means of \(x\) and \(y\) ) from mu (i.e., "greater", "less", "two.sided" ).

\section*{Author(s)}

Alan T. Arnholt

\section*{References}

Kitchens, L. J. (2003). Basic Statistics and Data Analysis. Duxbury.
Hogg, R. V. and Craig, A. T. (1970). Introduction to Mathematical Statistics, 3rd ed. Toronto, Canada: Macmillan.

Mood, A. M., Graybill, F. A. and Boes, D. C. (1974). Introduction to the Theory of Statistics, 3rd ed. New York: McGraw-Hill.

Snedecor, G. W. and Cochran, W. G. (1980). Statistical Methods, 7th ed. Ames, Iowa: Iowa State University Press.

\section*{See Also}
z.test, tsum.test

\section*{Examples}
```

zsum.test(mean. $x=56 / 30$, sigma. $x=2$, $n . x=30$, alternative="greater", mu=1.8)
\# Example 9.7 part a. from PASWR.
$x<-$ rnorm(12)
zsum. test(mean(x), sigma. $x=1, n . x=12$)
\# Two-sided one-sample z-test where the assumed value for
\# sigma.x is one. The null hypothesis is that the population
\# mean for ' x ' is zero. The alternative hypothesis states
\# that it is either greater or less than zero. A confidence
\# interval for the population mean will be computed.
\# Note: returns same answer as:
z.test(x, sigma. $x=1$)
\#
$x<-c(7.8,6.6,6.5,7.4,7.3,7.0,6.4,7.1,6.7,7.6,6.8)$
$y<-c(4.5,5.4,6.1,6.1,5.4,5.0,4.1,5.5)$
zsum.test(mean (x), sigma. $x=0.5, n . x=11$, mean (y), sigma. $y=0.5, n . y=8, m u=2$)
\# Two-sided standard two-sample z-test where both sigma.x
\# and sigma.y are both assumed to equal 0.5. The null hypothesis
\# is that the population mean for 'x' less that for 'y' is 2.
\# The alternative hypothesis is that this difference is not 2.
\# A confidence interval for the true difference will be computed.
\# Note: returns same answer as:
z.test(x, sigma. $x=0.5, y$, sigma. $y=0.5$)
\#
zsum. test(mean (x), sigma. $x=0.5, n . x=11$, mean (y), sigma. $y=0.5, n . y=8$,
conf.level=0.90)
\# Two-sided standard two-sample z-test where both sigma.x and
\# sigma.y are both assumed to equal 0.5. The null hypothesis
\# is that the population mean for 'x' less that for 'y' is zero.
\# The alternative hypothesis is that this difference is not
\# zero. A 90\% confidence interval for the true difference will

```
\# be computed. Note: returns same answer as:
\(z\). test ( \(x\), sigma. \(x=0.5, y\), sigma. \(y=0.5\), conf.level=0.90)
rm( \(x, y\) )

\section*{Index}
\begin{tabular}{|c|c|}
\hline * datasets & Bookstor, 38 \\
\hline Abbey, 9 & Brain, 39 \\
\hline Abc, 10 & Bumpers, 40 \\
\hline Abilene, 10 & Bus, 41 \\
\hline Ability, 11 & Bypass, 41 \\
\hline Abortion, 12 & Cabinets, 42 \\
\hline Absent, 13 & Cancer, 43 \\
\hline Achieve, 14 & Carbon, 44 \\
\hline Adsales, 14 & Cat, 45 \\
\hline Aggress, 15 & Censored, 45 \\
\hline Aid, 16 & Challeng, 46 \\
\hline Aids, 17 & Chemist, 47 \\
\hline Airdisasters, 18 & Chesapea, 48 \\
\hline Airline, 19 & Chevy, 49 \\
\hline Alcohol, 20 & Chicken, 50 \\
\hline Allergy, 20 & Chipavg, 50 \\
\hline Anesthet, 21 & Chips, 51 \\
\hline Anxiety, 22 & Cigar, 52 \\
\hline Apolipop, 22 & Cigarett, 53 \\
\hline Append, 23 & Citrus, 55 \\
\hline Appendec, 24 & Clean, 56 \\
\hline Aptitude, 25 & Coaxial, 57 \\
\hline Archaeo, 25 & Coffee, 58 \\
\hline Arthriti, 26 & Coins, 58 \\
\hline Artifici, 27 & Commute, 60 \\
\hline Asprin, 28 & Concept, 61 \\
\hline Asthmati, 28 & Concrete, 61 \\
\hline Attorney, 29 & Corn, 62 \\
\hline Autogear, 30 & Correlat, 63 \\
\hline Backtoback, 31 & Counsel, 64 \\
\hline Bbsalaries, 31 & Cpi, 64 \\
\hline Bigten, 32 & Crime, 65 \\
\hline Biology, 33 & Darwin, 66 \\
\hline Birth, 34 & Dealers, 67 \\
\hline Blackedu, 35 & Defectiv, 67 \\
\hline Blood, 35 & Degree, 68 \\
\hline Board, 36 & Delay, 69 \\
\hline Bones, 37 & Depend, 70 \\
\hline Books, 38 & Detroit, 70 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Develop, 71 & Greenriv, 112 \\
\hline Devmath, 72 & Grnriv2, 113 \\
\hline Dice, 72 & Groupabc, 114 \\
\hline Diesel, 73 & Groups, 114 \\
\hline Diplomat, 74 & Gym, 115 \\
\hline Disposal, 75 & Habits, 116 \\
\hline Dogs, 76 & Haptoglo, 117 \\
\hline Domestic, 77 & Hardware, 117 \\
\hline Dopamine, 78 & Hardwood, 118 \\
\hline Dowjones, 79 & Heat, 119 \\
\hline Drink, 80 & Heating, 120 \\
\hline Drug, 80 & Hodgkin, 121 \\
\hline Dyslexia, 81 & Homes, 122 \\
\hline Earthqk, 82 & Homework, 123 \\
\hline Educat, 84 & Honda, 124 \\
\hline Eggs, 85 & Hostile, 124 \\
\hline Elderly, 85 & Housing, 125 \\
\hline Energy, 86 & Hurrican, 126 \\
\hline Engineer, 87 & Iceberg, 127 \\
\hline Entrance, 88 & Income, 128 \\
\hline Epaminicompact, 89 & Independent, 129 \\
\hline Epatwoseater, 90 & Indian, 130 \\
\hline Executiv, 91 & Indiapol, 131 \\
\hline Exercise, 91 & Indy500, 131 \\
\hline Fabric, 92 & Inflatio, 132 \\
\hline Faithful, 93 & Inletoil, 133 \\
\hline Family, 94 & Inmate, 134 \\
\hline Ferraro1, 95 & Inspect, 135 \\
\hline Ferraro2, 95 & Insulate, 136 \\
\hline Fertility, 96 & Iqgpa, 137 \\
\hline Firstchi, 97 & Irises, 137 \\
\hline Fish, 98 & Jdpower, 138 \\
\hline Fitness, 99 & Jobsat, 139 \\
\hline Florida2000, 100 & Kidsmoke, 140 \\
\hline Fluid, 101 & Kilowatt, 141 \\
\hline Food, 102 & Kinder, 141 \\
\hline Framingh, 102 & Laminect, 142 \\
\hline Freshman, 103 & Lead, 143 \\
\hline Funeral, 104 & Leader, 144 \\
\hline Galaxie, 105 & Lethal, 144 \\
\hline Gallup, 105 & Life, 145 \\
\hline Gasoline, 106 & Lifespan, 146 \\
\hline German, 107 & Ligntmonth, 146 \\
\hline Golf, 108 & Lodge, 147 \\
\hline Governor, 109 & Longtail, 148 \\
\hline Gpa, 110 & Lowabil, 149 \\
\hline Grades, 111 & Magnesiu, 149 \\
\hline Graduate, 112 & Malpract, 150 \\
\hline
\end{tabular}

Manager, 151
Marked, 151
Math, 152
Mathcomp, 153
Mathpro, 154
Maze, 155
Median, 155
Mental, 156
Mercury, 157
Metrent, 157
Miller, 158
Miller1, 159
Moisture, 159
Monoxide, 160
Movie, 161
Music, 162
Name, 163
Nascar, 164
Nervous, 164
Newsstand, 165
Nfldraf2, 166
Nfldraft, 166
Nicotine, 167
Orange, 171
Orioles, 171
Oxytocin, 172
Parented, 173
Patrol, 174
Pearson, 175
Phone, 175
Poison, 176
Politic, 177
Pollutio, 178
Porosity, 178
Poverty, 179
Precinct, 180
Prejudic, 181
Presiden, 181
Press, 182
Prognost, 183
Program, 184
Psat, 184
Psych, 185
Puerto, 186
Quail, 186
Quality, 187
Rainks, 188
Randd, 189

Rat, 189
Ratings, 190
Reaction, 191
Reading, 192
Readiq, 192
Referend, 193
Region, 194
Register, 195
Rehab, 195
Remedial, 196
Rentals, 197
Repair, 198
Retail, 198
Ronbrown1, 199
Ronbrown2, 200
Rural, 200
Salary, 201
Salinity, 202
Sat, 203
Saving, 204
Scales, 204
Schizop2, 205
Schizoph, 206
Seatbelt, 207
Selfdefe, 208
Senior, 208
Sentence, 209
Shkdrug, 210
Shock, 211
Shoplift, 211
Short, 212
Shuttle, 213
Simpson, 216
Situp, 217
Skewed, 218
Skin, 218
Slc, 219
Smokyph, 220
Snore, 221
Snow, 222
Soccer, 223
Social, 223
Sophomor, 224
South, 225
Speed, 225
Spellers, 226
Spelling, 227
Sports, 227
\begin{tabular}{|c|c|}
\hline Spouse, 228 & Wool, 270 \\
\hline Stable, 230 & Yearsunspot, 271 \\
\hline Stamp, 230 & * distribution \\
\hline Statclas, 231 & CIsim, 54 \\
\hline Statelaw, 232 & Combinations, 59 \\
\hline Statisti, 232 & normarea, 168 \\
\hline Step, 233 & ntester, 170 \\
\hline Stress, 234 & SRS, 229 \\
\hline Study, 235 & * htest \\
\hline Submarin, 235 & tsum.test, 253 \\
\hline Subway, 236 & z.test, 271 \\
\hline Sunspot, 237 & zsum.test, 274 \\
\hline Superbowl, 238 & * univar \\
\hline Supercar, 238 & EDA, 83 \\
\hline Tablrock, 239 & nsize, 169 \\
\hline Teacher, 241 & \\
\hline Tenness, 242 & Abbey, 9 \\
\hline Tensile, 243 & Abc, 10 \\
\hline Test1, 243 & Abilene, 10 \\
\hline Thermal, 244 & Ability, 11 \\
\hline Tiaa, 245 & Abortion, 12 \\
\hline Ticket, 245 & Absent, 13 \\
\hline Toaster, 246 & Achieve, 14 \\
\hline Tonsils, 247 & Adsales, 14 \\
\hline Tort, 248 & Aggress, 15 \\
\hline Toxic, 249 & Aid, 16 \\
\hline Track, 250 & Aids, 17 \\
\hline Track15, 251 & Airline 19 \\
\hline Treatments, 251 & Alcohol, 20 \\
\hline Trees, 252 & Allergy, 20 \\
\hline Trucks, 253 & Anesthet, 21 \\
\hline Tv, 257 & Anxiety, 22 \\
\hline Twin, 257 & Apolipop, 22 \\
\hline Undergrad, 258 & Append, 23 \\
\hline Vacation, 259 & Appendec, 24 \\
\hline Vaccine, 260 & Aptitude, 25 \\
\hline Vehicle, 261 & Archaeo, 25 \\
\hline Verbal, 261 & Arthriti, 26 \\
\hline Victoria, 262 & Artifici, 27 \\
\hline Viscosit, 263 & Asprin, 28 \\
\hline Visual, 264 & Asthmati, 28 \\
\hline Vocab, 264 & Attorney, 29 \\
\hline Wastewat, 265 & Autogear, 30 \\
\hline Weather94, 266 & \\
\hline Wheat, 267 & Backtoback, 31 \\
\hline Windmill, 268 & Bbsalaries, 31 \\
\hline Window, 268 & Bigten, 32 \\
\hline Wins, 269 & Biology, 33 \\
\hline
\end{tabular}

Birth, 34
Blackedu, 35
Blood, 35
Board, 36
Bones, 37
Books, 38
Bookstor, 38
Brain, 39
Bumpers, 40
Bus, 41
Bypass, 41
Cabinets, 42
Cancer, 43
Carbon, 44
Cat, 45
Censored, 45
Challeng, 46
Chemist, 47
Chesapea, 48
Chevy, 49
Chicken, 50
Chipavg, 50
Chips, 51
Cigar, 52
Cigarett, 53
CIsim, 54
Citrus, 55
Clean, 56
Coaxial, 57
Coffee, 58
Coins, 58
Combinations, 59, 229
Commute, 60
Concept, 61
Concrete, 61
Corn, 62
Correlat, 63
Counsel, 64
Cpi, 64
Crime, 65

Darwin, 66
Dealers, 67
Defectiv, 67
Degree, 68
Delay, 69
Depend, 70
Detroit, 70

Develop, 71
Devmath, 72
Dice, 72
Diesel, 73
Diplomat, 74
Disposal, 75
Dogs, 76
Domestic, 77
Dopamine, 78
Dowjones, 79
Drink, 80
Drug, 80
Dyslexia, 81
Earthqk, 82
EDA, 83
Educat, 84
Eggs, 85
Elderly, 85
Energy, 86
Engineer, 87
Entrance, 88
Epaminicompact, 89
Epatwoseater, 90
Executiv, 91
Exercise, 91
Fabric, 92
Faithful, 93
Family, 94
Ferraro1, 95
Ferraro2, 95
Fertility, 96
Firstchi, 97
Fish, 98
Fitness, 99
Florida2000, 100
Fluid, 101
Food, 102
Framingh, 102
Freshman, 103
Funeral, 104
Galaxie, 105
Gallup, 105
Gasoline, 106
German, 107
Golf, 108
Governor, 109

Gpa, 110
Grades, 111
Graduate, 112
Greenriv, 112
Grnriv2, 113
Groupabc, 114
Groups, 114
Gym, 115
Habits, 116
Haptoglo, 117
Hardware, 117
Hardwood, 118
Heat, 119
Heating, 120
Hodgkin, 121
Homes, 122
Homework, 123
Honda, 124
Hostile, 124
Housing, 125
Hurrican, 126
Iceberg, 127
Income, 128
Independent, 129
Indian, 130
Indiapol, 131
Indy500, 131
Inflatio, 132
Inletoil, 133
Inmate, 134
Inspect, 135
Insulate, 136
Iqgpa, 137
Irises, 137
Jdpower, 138
Jobsat, 139
Kidsmoke, 140
Kilowatt, 141
Kinder, 141
Laminect, 142
Lead, 143
Leader, 144
Lethal, 144
Life, 145

Lifespan, 146
Ligntmonth, 146
Lodge, 147
Longtail, 148
Lowabil, 149
Magnesiu, 149
Malpract, 150
Manager, 151
Marked, 151
Math, 152
Mathcomp, 153
Mathpro, 154
Maze, 155
Median, 155
Mental, 156
Mercury, 157
Metrent, 157
Miller, 158
Miller1, 159
Moisture, 159
Monoxide, 160
Movie, 161
Music, 162

Name, 163
Nascar, 164
Nervous, 164
Newsstand, 165
Nfldraf2, 166
Nfldraft, 166
Nicotine, 167
normarea, 168
nsize, 169
ntester, 170
Orange, 171
Orioles, 171
Oxytocin, 172
Parented, 173
Patrol, 174
Pearson, 175
Phone, 175
Poison, 176
Politic, 177
Pollutio, 178
Porosity, 178
Poverty, 179

Precinct, 180
Prejudic, 181
Presiden, 181
Press, 182
Prognost, 183
Program, 184
Psat, 184
Psych, 185
Puerto, 186
Quail, 186
Quality, 187
Rainks, 188
Randd, 189
Rat, 189
Ratings, 190
Reaction, 191
Reading, 192
Readiq, 192
Referend, 193
Region, 194
Register, 195
Rehab, 195
Remedial, 196
Rentals, 197
Repair, 198
Retail, 198
Ronbrown1, 199
Ronbrown2, 200
Rural, 200
Salary, 201
Salinity, 202
Sat, 203
Saving, 204
Scales, 204
Schizop2, 205
Schizoph, 206
Seatbelt, 207
Selfdefe, 208
Senior, 208
Sentence, 209
Shkdrug, 210
Shock, 211
Shoplift, 211
Short, 212
Shuttle, 213
SIGN. test, 214

Simpson, 216
Situp, 217
Skewed, 218
Skin, 218
Slc, 219
Smokyph, 220
Snore, 221
Snow, 222
Soccer, 223
Social, 223
Sophomor, 224
South, 225
Speed, 225
Spellers, 226
Spelling, 227
Sports, 227
Spouse, 228
SRS, 59, 229
Stable, 230
Stamp, 230
Statclas, 231
Statelaw, 232
Statisti, 232
Step, 233
Stress, 234
Study, 235
Submarin, 235
Subway, 236
Sunspot, 237
Superbowl, 238
Supercar, 238
Tablrock, 239
Teacher, 241
Tenness, 242
Tensile, 243
Test1, 243
Thermal, 244
Tiaa, 245
Ticket, 245
Toaster, 246
Tonsils, 247
Tort, 248
Toxic, 249
Track, 250
Track15, 251
Treatments, 251
Trees, 252
Trucks, 253
tsum.test, 216, 253, 273, 276
Tv, 257
Twin, 257
Undergrad, 258
Vacation, 259
Vaccine, 260
Vehicle, 261
Verbal, 261
Victoria, 262
Viscosit, 263
Visual, 264
Vocab, 264
Wastewat, 265
Weather94, 266
Wheat, 267
Windmill, 268
Window, 268
Wins, 269
Wool, 270
Yearsunspot, 271
z.test, 216, 256, 271, 276
zsum. test, 216, 256, 273, 274```

