Predicts anticancer peptides using random forests trained on the
n-gram encoded peptides. The implemented algorithm can be accessed from
both the command line and shiny-based GUI. The CancerGram model is too large
for CRAN and it has to be downloaded separately from the repository:
<https://github.com/BioGenies/CancerGramModel>. For more information see:
Burdukiewicz et al. (2020) <doi:10.3390/pharmaceutics12111045>.
Version: |
1.0.0 |
Depends: |
R (≥ 3.5.0) |
Imports: |
biogram, devtools, pbapply, ranger, shiny, stringi, dplyr |
Suggests: |
DT, ggplot2, pander, rmarkdown, shinythemes, spelling |
Published: |
2020-11-19 |
DOI: |
10.32614/CRAN.package.CancerGram |
Author: |
Michal Burdukiewicz
[cre, aut]
(<https://orcid.org/0000-0001-8926-582X>),
Katarzyna Sidorczuk
[aut]
(<https://orcid.org/0000-0001-6576-9054>),
Filip Pietluch
[ctb] (<https://orcid.org/0000-0001-6218-9804>),
Dominik Rafacz
[ctb] (<https://orcid.org/0000-0003-0925-1909>),
Mateusz Bakala
[ctb] (<https://orcid.org/0000-0002-3213-2484>),
Jadwiga SÅ‚owik
[ctb] (<https://orcid.org/0000-0003-3466-8933>) |
Maintainer: |
Michal Burdukiewicz <michalburdukiewicz at gmail.com> |
BugReports: |
https://github.com/BioGenies/CancerGram/issues |
License: |
GPL-3 |
URL: |
https://github.com/BioGenies/CancerGram |
NeedsCompilation: |
no |
Language: |
en-US |
Citation: |
CancerGram citation info |
Materials: |
README |
CRAN checks: |
CancerGram results |