ClimMobTools is the API client for the ‘ClimMob’ platform in R. ClimMob is open-source software for decentralized large-N trials using the ‘tricot’ approach1. This approach facilitates the rapid assessment of technologies in target environments. Tricot turns the research paradigm on its head: instead of a few researchers designing complicated trials to compare several technologies in search of the best solutions, it enables many participants to carry out reasonably simple experiments that, taken together, can offer even more information.
The breadwheat
dataset is a dataframe from crowdsourced
citizen science trials of bread wheat (Triticum aestivum L.)
varieties in India. This sample data is available on the ClimMob platform and can be fetched
using the getDataCM()
function from
ClimMobTools, along with an API key from the ClimMob
user’s account.
library("ClimMobTools")
library("PlackettLuce")
# the API key
key <- "d39a3c66-5822-4930-a9d4-50e7da041e77"
dat <- getDataCM(key = key,
project = "breadwheat",
userowner = "gosset",
pivot.wider = TRUE)
names(dat) <- gsub("firstassessment_|package_|lastassessment_|registration_", "",
names(dat))
The Plackett-Luce model is one approach to analyze the ClimMob
data2. We build the farmers’
rankings as an object of class rankings
from the package PlackettLuce.
We build the rankings using the function rankTricot()
.
R = rankTricot(dat,
items = c("item_A","item_B","item_C"),
input = c("overallperf_pos","overallperf_neg"))
mod = PlackettLuce(R)
summary(mod)
## Call: PlackettLuce(rankings = R)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## CSW18 0.0000 NA NA NA
## WR544 -2.7875 0.3098 -8.999 < 2e-16 ***
## PBW343 -0.2207 0.3111 -0.709 0.478083
## HP1633 -2.8714 0.3103 -9.254 < 2e-16 ***
## HW2045 -2.8517 0.3112 -9.163 < 2e-16 ***
## DBW17 -1.1265 0.2987 -3.771 0.000162 ***
## HD2985 -1.6546 0.3059 -5.409 6.32e-08 ***
## DPW621-50 -1.8793 0.3096 -6.070 1.28e-09 ***
## HD2824 -2.8177 0.3152 -8.939 < 2e-16 ***
## RAJ4120 -2.7451 0.3161 -8.683 < 2e-16 ***
## PBW550 -2.7204 0.3075 -8.847 < 2e-16 ***
## K0307 -2.9835 0.3122 -9.558 < 2e-16 ***
## HI1563 -2.9342 0.3126 -9.386 < 2e-16 ***
## PBW502 -2.5704 0.3088 -8.325 < 2e-16 ***
## HD2932 -2.1726 0.3060 -7.099 1.26e-12 ***
## K9107 0.6579 0.3528 1.864 0.062260 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual deviance: 1339.1 on 1464 degrees of freedom
## AIC: 1369.1
## Number of iterations: 20
For more analytical insights, please visit the documentation of the gosset package.