Overview

ClimMobTools is the API client for the ‘ClimMob’ platform in R. ClimMob is open-source software for decentralized large-N trials using the ‘tricot’ approach1. This approach facilitates the rapid assessment of technologies in target environments. Tricot turns the research paradigm on its head: instead of a few researchers designing complicated trials to compare several technologies in search of the best solutions, it enables many participants to carry out reasonably simple experiments that, taken together, can offer even more information.

Usage

The breadwheat dataset is a dataframe from crowdsourced citizen science trials of bread wheat (Triticum aestivum L.) varieties in India. This sample data is available on the ClimMob platform and can be fetched using the getDataCM() function from ClimMobTools, along with an API key from the ClimMob user’s account.

library("ClimMobTools")
library("PlackettLuce")

# the API key
key <- "d39a3c66-5822-4930-a9d4-50e7da041e77"

dat <- getDataCM(key = key,
                 project = "breadwheat",
                 userowner = "gosset",
                 pivot.wider = TRUE)


names(dat) <- gsub("firstassessment_|package_|lastassessment_|registration_", "",
                   names(dat))

Tricot data into rankings

The Plackett-Luce model is one approach to analyze the ClimMob data2. We build the farmers’ rankings as an object of class rankings from the package PlackettLuce. We build the rankings using the function rankTricot().

R = rankTricot(dat, 
                items = c("item_A","item_B","item_C"), 
                input = c("overallperf_pos","overallperf_neg"))

mod = PlackettLuce(R)

summary(mod)
## Call: PlackettLuce(rankings = R)
## 
## Coefficients:
##           Estimate Std. Error z value Pr(>|z|)    
## CSW18       0.0000         NA      NA       NA    
## WR544      -2.7875     0.3098  -8.999  < 2e-16 ***
## PBW343     -0.2207     0.3111  -0.709 0.478083    
## HP1633     -2.8714     0.3103  -9.254  < 2e-16 ***
## HW2045     -2.8517     0.3112  -9.163  < 2e-16 ***
## DBW17      -1.1265     0.2987  -3.771 0.000162 ***
## HD2985     -1.6546     0.3059  -5.409 6.32e-08 ***
## DPW621-50  -1.8793     0.3096  -6.070 1.28e-09 ***
## HD2824     -2.8177     0.3152  -8.939  < 2e-16 ***
## RAJ4120    -2.7451     0.3161  -8.683  < 2e-16 ***
## PBW550     -2.7204     0.3075  -8.847  < 2e-16 ***
## K0307      -2.9835     0.3122  -9.558  < 2e-16 ***
## HI1563     -2.9342     0.3126  -9.386  < 2e-16 ***
## PBW502     -2.5704     0.3088  -8.325  < 2e-16 ***
## HD2932     -2.1726     0.3060  -7.099 1.26e-12 ***
## K9107       0.6579     0.3528   1.864 0.062260 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual deviance:  1339.1 on 1464 degrees of freedom
## AIC:  1369.1 
## Number of iterations: 20

For more analytical insights, please visit the documentation of the gosset package.

References

1.
van Etten, J., Beza, E., Calderer, L., Van Duijvendijk, K., et al. First experiences with a novel farmer citizen science approach: crowdsourcing participatory variety selection through on-farm triadic comparisons of technologies (tricot). Experimental Agriculture 55, 275–296 (2019).
2.
Turner, H. L., Etten, J. van, Firth, D. & Kosmidis, I. Modelling rankings in R: the PlackettLuce package. Computational Statistics (2020). doi:10.1007/s00180-020-00959-3