Package 'ConsensusClustering'

March 5, 2024

Type Package

Title Consensus Clustering
Version 1.2.0
Description Clustering, or cluster analysis, is a widely used technique in bioinformatics to identify groups of similar biological data points. Consensus clustering is an extension to clustering algorithms that aims to construct a robust result from those clustering features that are invariant under different sources of variation. For the reference, please cite the following paper: Yousefi, Melograna, et. al., (2023) <doi:10.3389 fmicb.2023.1170391="">.</doi:10.3389>
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.3
Imports assertthat, dplyr, igraph, cluster, mvtnorm, utils, graphics, stats
NeedsCompilation no
Author Behnam Yousefi [aut, cre, cph]
Maintainer Behnam Yousefi < yousefi . bme@gmail.com>
Repository CRAN
Date/Publication 2024-03-05 11:20:03 UTC
R topics documented:
adj_conv 2 adj_mat 3 CC_cluster_count 3 cluster_relabel 4 coCluster_matrix 5 connectivity_matrix 6 consensus_matrix 6 gaussian_clusters 7 gaussian_clusters_with_param 8 gaussian_mixture_clusters 9 generate_gaussian_data 10

2 adj_conv

Index		24
	spect_clust_from_adj_mat	22
	pam_clust_from_adj_mat	
	multi_pam_gen	21
	multi_kmeans_gen	20
	multi_cluster_gen	19
	multiview_pam_gen	18
	multiview_kmeans_gen	17
	multiview_consensus_matrix	16
	multiview_cluster_gen	15
	multiview_clusters	14
	majority_voting	14
	Logit	13
	lebel_similarity	12
	indicator_matrix	12
	hir_clust_from_adj_mat	11

adj_conv

Convert adjacency function to the affinity matrix

Description

Convert adjacency function to the affinity matrix

Usage

```
adj_conv(adj.mat, alpha = 1)
```

Arguments

adj.mat Adjacency matrix. The elements must be within [-1, 1].

alpha soft threshold value (see details).

Details

 $adj = exp(-(1-adj)^2/(2*alpha^2))$ ref: Luxburg (2007), "A tutorial on spectral clustering", Stat Comput

Value

the matrix if affinity values.

adj_mat 3

Examples

```
 \begin{array}{lll} \mbox{Adj\_mat} = \mbox{rbind}(\mbox{c}(0.0,0.9,0.0), \\ \mbox{c}(0.9,0.0,0.2), \\ \mbox{c}(0.0,0.2,0.0)) \\ \mbox{adj\_conv}(\mbox{Adj\_mat}) \end{array}
```

adj_mat

Covert data matrix to adjacency matrix

Description

Covert data matrix to adjacency matrix

Usage

```
adj_mat(X, method = "euclidian")
```

Arguments

X a matrix of samples by features.

method for distance calculation: "euclidian", "cosine", "maximum", "manhattan", "canberra", "binary", "minkowski",

Value

calculated adjacency matrix from the data matrix using the specified methods

Examples

```
X = gaussian_clusters()$X
Adj = adj_mat(X, method = "euclidian")
```

CC_cluster_count

Count the number of clusters based on stability score.

Description

Count the number of clusters based on stability score.

```
CC_cluster_count(CM, plot.cdf = TRUE, plot.logit = FALSE)
```

4 cluster_relabel

Arguments

CM	list of consensus matrices each for a specific number of clusters. It can be the
	output of consensus_matrix() and multiview_consensus_matrix() func-

tions.

plot.cdf binary value to plot the cumulative distribution functions of CM (default TRUE).

plot.logit binary value to plot the logit model of cumulative distribution functions of CM

(default FALSE).

Details

Count the number of clusters given a list of consensus matrices each for a specific number of clusters. Using different methods: "LogitScore", "PAC", "deltaA", "CMavg"

Value

```
results as a list: "LogitScore", "PAC", "deltaA", "CMavg", "Kopt_LogitScore", "Kopt_PAC", "Kopt_deltaA", "Kopt_CMavg"
```

Examples

```
X = gaussian_clusters()$X
Adj = adj_mat(X, method = "euclidian")
CM = consensus_matrix(Adj, max.cluster=3, max.itter=10)
Result = CC_cluster_count(CM, plot.cdf=FALSE)
```

cluster_relabel

Relabeling clusters based on cluster similarities

Description

Relabeling clusters based on cluster similarities

Usage

```
cluster_relabel(x1, x2)
```

Arguments

x1	clustering vector 1 Zero elements are are considered as unclustered samples
x2	clustering vector 2 Zero elements are are considered as unclustered samples

Details

When performing performing several clustering, the cluster labels may no match with each other. To perform maximum voting, the clustering need to be relabels based on label similarities.

coCluster_matrix 5

Value

dataframe of relabeled clusters

Examples

```
X = gaussian_clusters()$X
x1 = kmeans(X, 5)$cluster
x2 = kmeans(X, 5)$cluster
clusters = cluster_relabel(x1, x2)
```

coCluster_matrix

Calculate the Co-cluster matrix for a given set of clustering results.

Description

Calculate the Co-cluster matrix for a given set of clustering results.

Usage

```
coCluster_matrix(X, verbos = TRUE)
```

Arguments

X clustering matrix of Nsamples x Nclusterings. Zero elements are are considered

as unclustered samples

verbos binary value for verbosity (default = TRUE)

Details

Co-cluster matrix or consensus matrix (CM) is a method for consensus mechanism explaned in Monti et al. (2003).

Value

The normalized matrix of Co-cluster frequency of any pairs of samples (Nsamples x Nsamples)

6 consensus_matrix

connectivity_matrix

Build connectivity matrix

Description

Build connectivity matrix

Usage

```
connectivity_matrix(clusters)
```

Arguments

clusters

a vector of clusterings. Zero elements mean that the sample was absent during

clustering

Details

Connectivity matrix (M) is a binary matrix N-by-N M[i,j] = 1 if sample i and j are in the same cluster ref: Monti et al. (2003) "Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data", Machine Learning

Value

Connectivity matrix

Examples

```
con_mat = connectivity_matrix(c(1,1,1,2,2,2))
```

consensus_matrix

Calculate consensus matrix for data perturbation consensus clustering

Description

Calculate consensus matrix for data perturbation consensus clustering

gaussian_clusters 7

Usage

```
consensus_matrix(
   X,
   max.cluster = 5,
   resample.ratio = 0.7,
   max.itter = 100,
   clustering.method = "hclust",
   adj.conv = TRUE,
   verbos = TRUE
)
```

Arguments

```
X adjacency matrix a Nsample x Nsample

max.cluster maximum number of clusters

resample.ratio the data ratio to use at each itteration.

max.itter maximum number of itterations at each max.cluster

clustering.method base clustering method: c("hclust", "spectral", "pam")

adj.conv binary value to apply soft thresholding (default=TRUE)

verbos binary value for verbosity (default=TRUE)
```

Details

performs data perturbation consensus clustering and obtain consensus matrix Monti et al. (2003) consensus clustering algorithm

Value

list of consensus matrices for each k

Examples

```
X = gaussian_clusters()$X
Adj = adj_mat(X, method = "euclidian")
CM = consensus_matrix(Adj, max.cluster=3, max.itter=10, verbos = FALSE)
```

gaussian_clusters

Generate clusters of data points from Gaussian distribution with randomly generated parameters

Description

Generate clusters of data points from Gaussian distribution with randomly generated parameters

Usage

```
gaussian_clusters(
  n = c(50, 50),
  dim = 2,
  sd.max = 0.1,
  sd.noise = 0.01,
  r.range = c(0.1, 1)
)
```

Arguments

n vector of number of data points in each cluster The length of n should be equal to the number of clusters.

dim number of dimensions

sd.max maximum standard deviation of clusters

sd.noise standard deviation of the added noise

r.range the range (min, max) of distance of cluster centers from the origin

Value

a list of data points (X) and cluster labels (class)

Examples

```
data = gaussian_clusters()
X = data$X
y = data$class
```

```
gaussian_clusters_with_param
```

Generate clusters of data points from Gaussian distribution with given parameters

Description

Generate clusters of data points from Gaussian distribution with given parameters

```
gaussian_clusters_with_param(n, center, sigma)
```

Arguments

n	vector of number of data points in each cluster The length of n should be equal to the number of clusters.
center	matrix of centers Ncluster x dim
sigma	list of covariance matrices dim X dim. The length of sigma should be equal to the number of clusters.

Value

matrix of Nsamples x (dim + 1). The last column is cluster labels.

Examples

```
gaussian_mixture_clusters
```

Generate clusters of data points from Gaussian-mixture-model distributions with randomly generated parameters

Description

Generate clusters of data points from Gaussian-mixture-model distributions with randomly generated parameters

```
gaussian_mixture_clusters(
  n = c(50, 50),
  dim = 2,
  sd.max = 0.1,
  sd.noise = 0.01,
  r.range = c(0.1, 1),
  mixture.range = c(1, 4),
  mixture.sep = 0.5
)
```

Arguments

n vector of number of data points in each cluster The length of n should be equal

to the number of clusters.

dim number of dimensions

sd.max maximum standard deviation of clusters sd.noise standard deviation of the added noise

r.range the range (min, max) of distance of cluster centers from the origin

mixture.range range (min, max) of the number of Gaussian-mixtures.

mixture.sep scaler indicating the separability between the mixtures.

Value

a list of data points (X) and cluster labels (class)

Examples

```
data = gaussian_mixture_clusters()
X = data$X
y = data$class
```

generate_gaussian_data

Generate a set of data points from Gaussian distribution

Description

Generate a set of data points from Gaussian distribution

Usage

```
generate_gaussian_data(n, center = 0, sigma = 1, label = NA)
```

Arguments

n number of generated data points center data center of desired dimension

sigma covariance matrix label cluster label

Value

Generated data points from Gaussian distribution with given parameters

Examples

```
generate_gaussian_data(10, center=c(0,0), sigma=diag(c(1,1)), label=1)
```

```
hir_clust_from_adj_mat
```

Hierarchical clustering from adjacency matrix

Description

Hierarchical clustering from adjacency matrix

Usage

```
hir_clust_from_adj_mat(
  adj.mat,
  k = 2,
  alpha = 1,
  adj.conv = TRUE,
  method = "ward.D"
)
```

Arguments

```
adj.mat adjacency matrix
k number of clusters (default=2)
alpha soft threshold (considered if adj.conv = TRUE) (default=1)
adj.conv binary value to apply soft thresholding (default=TRUE)
method distance method (default: ward.D)
```

Details

apply PAM (k-medoids) clustering on the adjacency matrix

Value

vector of clusters

12 lebel_similarity

indicator_matrix

Build indicator matrix

Description

Build indicator matrix

Usage

```
indicator_matrix(clusters)
```

Arguments

clusters

a vector of clusterings. Zero elements mean that the sample was absent during

clustering

Details

Indicator matrix (I) is a binary matrix N-by-N I[i,j] = 1 if sample i and j co-exist for clustering ref: Monti et al. (2003) "Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data", Machine Learning

Value

Indicator matrix

Examples

```
ind_mat = indicator_matrix(c(1,1,1,0,0,1))
```

lebel_similarity

Similarity between different clusters

Description

Similarity between different clusters

Usage

```
lebel_similarity(x1, x2)
```

Arguments

x1 clustering vector 1 Zero elements are are considered as unclustered samples

x2 clustering vector 2 Zero elements are are considered as unclustered samples

Logit 13

Details

When performing performing several clustering, the cluster labels may no match with each other. To find correspondences between clusters, the similarity between different labels need to be calculated.

Value

matrix of similarities between clustering labels

Examples

```
X = gaussian_clusters()$X
x1 = kmeans(X, 5)$cluster
x2 = kmeans(X, 5)$cluster
Sim = lebel_similarity(x1, x2)
```

Logit

Logit function

Description

Logit function

Usage

```
Logit(x)
```

Arguments

Х

numerical scaler input

Value

```
Logit(x) = log(1*x/(1-x))
```

```
y = Logit(0.5)
```

14 multiview_clusters

majority_voting

Consensus mechanism based on majority voting

Description

Consensus mechanism based on majority voting

Usage

```
majority_voting(X)
```

Arguments

Χ

clustering matrix of Nsamples x Nclusterings. Zero elements are are considered as unclustered samples

Details

Perform majority voting as a consensus mechanism.

Value

the vector of consensus clustering result

Examples

```
X = gaussian_clusters()$X
x1 = kmeans(X, 5)$cluster
x2 = kmeans(X, 5)$cluster
x3 = kmeans(X, 5)$cluster
clusters = majority_voting(cbind(x1,x2,x3))
```

multiview_clusters

Generate multiview clusters from Gaussian distributions with randomly generated parameters

Description

Generate multiview clusters from Gaussian distributions with randomly generated parameters

multiview_cluster_gen 15

Usage

```
multiview_clusters(
  n = c(50, 50),
  hidden.dim = 2,
  observed.dim = c(2, 2, 3),
  sd.max = 0.1,
  sd.noise = 0.01,
  hidden.r.range = c(0.1, 1)
)
```

Arguments

n vector of number of data points in each cluster The length of n should be equal

to the number of clusters.

hidden.dim scaler value of dimensions of the hidden state

observed.dim vector of number of dimensions of the generate clusters. The length of observed.dim

should be equal to the number of clusters.

sd.max maximum standard deviation of clusters sd.noise standard deviation of the added noise

hidden.r.range the range (min, max) of distance of cluster centers from the origin in the hidden

space.

Value

```
a list of data points (X) and cluster labels (class)
```

Examples

```
data = multiview_clusters()
```

multiview_cluster_gen Multiview cluster generation

Description

Multiview cluster generation

```
multiview_cluster_gen(
   X,
   func,
   rep = 10,
   param,
   is.distance = FALSE,
   sample.set = NA
)
```

Arguments

of X is equal to Nviews

func custom function that accepts X and a parameter that return a vector of clusterings.

cluster_func <- function(X, param)</pre>

rep number of repeats
param vector of parameters

is.distance binary balue indicating if the input X[i] is distance

sample.set vector of samples the clustering is being applied on. can be names or indices. if

sample.set is NA, it considers all the datasets have the same samples with the

same order

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then clustering is applied and result is returned.

Value

matrix of clusterings Nsample x (Nrepeat x Nviews)

Examples

```
data = multiview_clusters (n = c(40,40,40), hidden.dim = 2, observed.dim = c(2,2,2),
sd.max = .1, sd.noise = 0, hidden.r.range = c(.5,1))
X_observation = data[["observation"]]
cluster_func = function(X,rep,param){return(multi_kmeans_gen(X,rep=rep,range.k=param))}
Clusters = multiview_cluster_gen(X_observation, func = cluster_func, rep = 10, param = c(2,4))
```

multiview_consensus_matrix

Calculate consensus matrix for multi-data consensus clustering

Description

Calculate consensus matrix for multi-data consensus clustering

```
multiview_consensus_matrix(
    X,
    max.cluster = 5,
    sample.set = NA,
    clustering.method = "hclust",
    adj.conv = TRUE,
    verbos = TRUE
)
```

multiview_kmeans_gen

Arguments

X list of adjacency matrices for different cohorts (or views).

max.cluster maximum number of clusters

sample.set vector of samples the clustering is being applied on. sample.set can be names

or indices. if sample.set is NA, it considers that all the datasets have the same

17

samples with the same order.

clustering.method

base clustering method: c("hclust", "spectral", "pam")

adj.conv binary value to apply soft threshold (default=TRUE)

verbos binary value for verbosity (default=TRUE)

Details

performs multi-data consensus clustering and obtain consensus matrix Monti et al. (2003) consensus clustering algorithm

Value

description list of consensus matrices for each k

Examples

```
data = multiview_clusters (n = c(40,40,40), hidden.dim = 2, observed.dim = c(2,2,2),
sd.max = .1, sd.noise = 0, hidden.r.range = c(.5,1))
X_observation = data[["observation"]]
Adj = list()
for (i in 1:length(X_observation))
   Adj[[i]] = adj_mat(X_observation[[i]], method = "euclidian")
CM = multiview_consensus_matrix(Adj, max.cluster = 4, verbos = FALSE)
```

multiview_kmeans_gen Multiview K-means generation

Description

Multiview K-means generation

```
multiview_kmeans_gen(X, rep = 10, range_k = c(2, 5), method = "random")
```

18 multiview_pam_gen

Arguments

X	List of input data matrices of Sample x feature. The length of X is equal to Nviews
rep	number of repeats
range.k	vector of minimum and maximum values for k c(min, max)
method	method for the choice of k at each repeat c("random", "silhouette")

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then k-means clustering is applied and result is returned.

Value

```
matrix of clusterings Nsample x (Nrepeat x Nviews)
```

Examples

```
data = multiview_clusters (n = c(40,40,40), hidden.dim = 2, observed.dim = c(2,2,2), sd.max = .1, sd.noise = 0, hidden.r.range = c(.5,1))

X_observation = data[["observation"]]

Clusters = multiview_kmeans_gen(X_observation)
```

multiview_pam_gen

Multiview PAM (K-medoids) generation

Description

Multiview PAM (K-medoids) generation

```
multiview_pam_gen(
   X,
   rep = 10,
   range.k = c(2, 5),
   is.distance = FALSE,
   method = "random",
   sample.set = NA
)
```

multi_cluster_gen 19

Arguments

X List of input data matrices of Sample x feature or distance matrices. The length

of X is equal to Nviews

rep number of repeats

range.k vector of minimum and maximum values for k c(min, max)

is.distance binary balue indicating if the input X is distance

method method for the choice of k at each repeat c("random", "silhouette")

sample.set vector of samples the clustering is being applied on. can be names or indices. if

sample. set is NA, it considers all the datasets have the same samples with the

same order

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then PAM clustering is applied and result is returned.

Value

matrix of clusterings Nsample x (Nrepeat x Nviews)

Examples

```
data = multiview_clusters (n = c(40,40,40), hidden.dim = 2, observed.dim = c(2,2,2), sd.max = .1, sd.noise = 0, hidden.r.range = c(.5,1))

X_observation = data[["observation"]]

Clusters = multiview_pam_gen(X_observation)
```

multi_cluster_gen

Multiple cluster generation

Description

Multiple cluster generation

Usage

```
multi_cluster_gen(X, func, rep = 10, param, method = "random")
```

Arguments

X input data Nsample x Nfeatures or a distance matrix

func custom function that accepts X and a parameter that return a vector of clusterings.

cluster_func <- function(X, param)</pre>

rep number of repeats
param vector of parameters

method method for the choice of k at each repeat c("random", "silhouette")

20 multi_kmeans_gen

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then clustering is applied and result is returned.

Value

matrix of clusterings Nsample x Nrepeat

Examples

```
X = gaussian_clusters()$X
cluster_func = function(X, k){return(stats::kmeans(X, k)$cluster)}
Clusters = multi_cluster_gen(X, cluster_func, param = c(2,3))
```

multi_kmeans_gen

Multiple K-means generation

Description

Multiple K-means generation

Usage

```
multi_kmeans_gen(X, rep = 10, range.k = c(2, 5), method = "random")
```

Arguments

X input data Nsample x Nfeatures

rep number of repeats

range.k vector of minimum and maximum values for k c(min, max)

method method for the choice of k at each repeat c("random", "silhouette")

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then k-means clustering is applied and result is returned.

Value

matrix of clusterings Nsample x Nrepeat

```
X = gaussian_clusters()$X
Clusters = multi_kmeans_gen(X)
```

multi_pam_gen 21

multi_pam_gen

Multiple PAM (K-medoids) generation

Description

Multiple PAM (K-medoids) generation

Usage

```
multi_pam_gen(
   X,
   rep = 10,
   range.k = c(2, 5),
   is.distance = FALSE,
   method = "random"
)
```

Arguments

X input data Nsample x Nfeatures or distance matrix.

rep number of repeats

range.k vector of minimum and maximum values for k c(min, max)

is.distance binary balue indicating if the input X is distance

method method for the choice of k at each repeat c("random", "silhouette")

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then PAM clustering is applied and result is returned.

Value

matrix of clusterings Nsample x Nrepeat

```
X = gaussian_clusters()$X
Clusters = multi_pam_gen(X)
```

```
pam_clust_from_adj_mat
```

PAM (k-medoids) clustering from adjacency matrix

Description

PAM (k-medoids) clustering from adjacency matrix

Usage

```
pam_clust_from_adj_mat(adj.mat, k = 2, alpha = 1, adj.conv = TRUE)
```

Arguments

```
adj.mat adjacency matrix
```

k number of clusters (default=2)

alpha soft threshold (considered if adj.conv = TRUE) (default=1)
adj.conv binary value to apply soft thresholding (default=TRUE)

Details

apply PAM (k-medoids) clustering on the adjacency matrix

Value

vector of clusters

Examples

```
spect_clust_from_adj_mat
```

Spectral clustering from adjacency matrix

Description

Spectral clustering from adjacency matrix

Usage

```
spect_clust_from_adj_mat(
  adj.mat,
  k = 2,
  max.eig = 10,
  alpha = 1,
  adj.conv = TRUE,
  do.plot = FALSE
)
```

Arguments

```
adj.mat adjacency matrix
k number of clusters (default=2)
max.eig maximum number of eigenvectors in use (dafaut = 10).
alpha soft threshold (considered if adj.conv = TRUE) (default = 1)
adj.conv binary value to apply soft thresholding (default = TRUE)
do.plot binary value to do plot (dafaut = FALSE)
```

Details

apply PAM (k-medoids) clustering on the adjacency matrix

Value

vector of clusters

Index

```
adj_conv, 2
adj_mat, 3
CC_cluster_count, 3
cluster_relabel, 4
coCluster_matrix, 5
connectivity_matrix, 6
consensus_matrix, 6
gaussian_clusters, 7
gaussian_clusters_with_param, 8
gaussian_mixture_clusters, 9
{\tt generate\_gaussian\_data, 10}
hir\_clust\_from\_adj\_mat, 11
indicator_matrix, 12
lebel\_similarity, 12
Logit, 13
majority_voting, 14
multi_cluster_gen, 19
multi_kmeans_gen, 20
multi_pam_gen, 21
multiview_cluster_gen, 15
multiview\_clusters, 14
multiview_consensus_matrix, 16
multiview_kmeans_gen, 17
multiview_pam_gen, 18
pam_clust_from_adj_mat, 22
spect_clust_from_adj_mat, 22
```