
Package ‘Coxmos’
March 25, 2024

Title Cox MultiBlock Survival

Version 1.0.2

Maintainer Pedro Salguero García <pedrosalguerog@gmail.com>

Description This software package provides Cox survival analysis for high-
dimensional and multiblock datasets.
It encompasses a suite of functions dedicated from the classical Cox regression to newest analysis,
including Cox proportional hazards model, Stepwise Cox regression, and Elastic-
Net Cox regression,
Sparse Partial Least Squares Cox regression (sPLS-COX) incorporating three distinct strategies,
and two Multiblock-PLS Cox regression (MB-sPLS-
COX) methods. This tool is designed to adeptly handle
high-dimensional data, and provides tools for cross-
validation, plot generation, and additional resources
for interpreting results. While references are available within the corresponding functions,
key literature is mentioned below.
Terry M Therneau (2024) <https://CRAN.R-project.org/package=survival>,
Noah Simon et al. (2011) <doi:10.18637/jss.v039.i05>,
Philippe Bastien et al. (2005) <doi:10.1016/j.csda.2004.02.005>,
Philippe Bastien (2008) <doi:10.1016/j.chemolab.2007.09.009>,
Philippe Bastien et al. (2014) <doi:10.1093/bioinformatics/btu660>,
Kassu Mehari Beyene and Anouar El Ghouch (2020) <doi:10.1002/sim.8671>,
Florian Rohart et al. (2017) <doi:10.1371/journal.pcbi.1005752>.

URL https://github.com/BiostatOmics/Coxmos

BugReports https://github.com/BiostatOmics/Coxmos/issues

License CC BY 4.0

Encoding UTF-8

RoxygenNote 7.2.3

biocViews
Depends R (>= 4.1.0),

Imports caret, cowplot, furrr, future, ggrepel, ggplot2, ggpubr,
glmnet, MASS, mixOmics, progress, purrr, Rdpack, scattermore,
stats, survcomp, survival, survminer, svglite, tidyr, utils

1

https://CRAN.R-project.org/package=survival
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1016/j.csda.2004.02.005
https://doi.org/10.1016/j.chemolab.2007.09.009
https://doi.org/10.1093/bioinformatics/btu660
https://doi.org/10.1002/sim.8671
https://doi.org/10.1371/journal.pcbi.1005752
https://github.com/BiostatOmics/Coxmos
https://github.com/BiostatOmics/Coxmos/issues

2 R topics documented:

Suggests nsROC, smoothROCtime, survivalROC, risksetROC, ggforce,
knitr, RColorConesa, rmarkdown

RdMacros Rdpack

LazyData true

NeedsCompilation yes

VignetteBuilder knitr

Author Pedro Salguero García [aut, cre, rev]
(<https://orcid.org/0000-0002-1879-3374>),

Sonia Tarazona Campos [ths],
Ana Conesa Cegarra [ths],
Kassu Mehari Beyene [ctb],
Luis Meira Machado [ctb],
Marta Sestelo [ctb],
Artur Araújo [ctb]

Repository CRAN

Date/Publication 2024-03-25 20:32:38 UTC

R topics documented:
Beran . 4
cenROC . 5
cox . 7
cox.prediction . 10
coxEN . 11
coxSW . 14
CV . 17
cv.coxEN . 18
cv.isb.splsdrcox . 23
cv.isb.splsicox . 28
cv.mb.splsdacox . 32
cv.mb.splsdrcox . 37
cv.sb.splsdrcox . 41
cv.sb.splsicox . 46
cv.splsdacox_dynamic . 50
cv.splsdrcox . 54
cv.splsdrcox_dynamic . 58
cv.splsicox . 63
deleteNearZeroCoefficientOfVariation . 67
deleteNearZeroCoefficientOfVariation.mb . 68
deleteZeroOrNearZeroVariance . 69
deleteZeroOrNearZeroVariance.mb . 71
eval_Coxmos_models . 72
eval_Coxmos_model_per_variable . 74
factorToBinary . 76
getAutoKM . 77
getAutoKM.list . 79

https://orcid.org/0000-0002-1879-3374

R topics documented: 3

getCutoffAutoKM . 81
getCutoffAutoKM.list . 82
getEPV . 83
getEPV.mb . 84
getTestKM . 85
getTestKM.list . 87
loadingplot.Coxmos . 89
loadingplot.fromVector.Coxmos . 90
mb.splsdacox . 91
mb.splsdrcox . 95
norm01 . 99
NR . 99
PI . 100
plot_cox.event . 101
plot_cox.event.list . 102
plot_Coxmos.MB.PLS.model . 103
plot_Coxmos.PLS.model . 105
plot_divergent.biplot . 106
plot_evaluation . 108
plot_evaluation.list . 110
plot_events . 112
plot_forest . 113
plot_forest.list . 114
plot_LP.multipleObservations . 115
plot_LP.multipleObservations.list . 117
plot_observation.eventDensity . 118
plot_observation.eventHistogram . 120
plot_PLS_Coxmos . 121
plot_proportionalHazard . 123
plot_proportionalHazard.list . 124
plot_pseudobeta . 125
plot_pseudobeta.list . 127
plot_pseudobeta_newObservation . 129
plot_pseudobeta_newObservation.list . 131
plot_time.list . 132
predict.Coxmos . 133
print.Coxmos . 134
save_ggplot . 135
save_ggplot.svg . 136
save_ggplot_lst . 138
save_ggplot_lst.svg . 139
sb.splsdrcox . 140
sb.splsicox . 143
splsdacox_dynamic . 147
splsdrcox . 151
splsdrcox_dynamic . 154
splsicox . 159
w.starplot.Coxmos . 162

4 Beran

X_multiomic . 163
X_proteomic . 164
Y_multiomic . 164
Y_proteomic . 165

Index 166

Beran Estimation of the conditional distribution function of the response,
given the covariate under random censoring.

Description

Computes the conditional survival probability P(T > y|Z = z)

Usage

Beran(
time,
status,
covariate,
delta,
x,
y,
kernel = "gaussian",
bw,
lower.tail = FALSE

)

Arguments

time The survival time of the process.

status Censoring indicator of the total time of the process; 0 if the total time is censored
and 1 otherwise.

covariate Covariate values for obtaining estimates for the conditional probabilities.

delta Censoring indicator of the covariate.

x The first time (or covariate value) for obtaining estimates for the conditional
probabilities. If missing, 0 will be used.

y The total time for obtaining estimates for the conditional probabilities.

kernel A character string specifying the desired kernel. See details below for possible
options. Defaults to "gaussian" where the gaussian density kernel will be used.

bw A single numeric value to compute a kernel density bandwidth.

lower.tail logical; if FALSE (default), probabilities are P(T > y|Z = z) otherwise, P(T <=
y|Z = z).

cenROC 5

Details

Possible options for argument window are "gaussian", "epanechnikov", "tricube", "boxcar", "trian-
gular", "quartic" or "cosine".

Author(s)

Luis Meira-Machado and Marta Sestelo

References

R. Beran. Nonparametric regression with randomly censored survival data. Technical report, Uni-
versity of California, Berkeley, 1981.

cenROC Estimation of the time-dependent ROC curve for right censored sur-
vival data

Description

This function computes the time-dependent ROC curve for right censored survival data using the
cumulative sensitivity and dynamic specificity definitions. The ROC curves can be either empir-
ical (non-smoothed) or smoothed with/wtihout boundary correction. It also calculates the time-
dependent area under the ROC curve (AUC). Edited by Pedro Salguero to remove the PLOT argu-
ment.

Usage

cenROC(Y, M, censor, t, U = NULL, h = NULL, bw = "NR", method = "tra",
ktype = "normal", ktype1 = "normal", B = 0, alpha = 0.05, plot = FALSE)

Arguments

Y The numeric vector of event-times or observed times.

M The numeric vector of marker values for which the time-dependent ROC curves
is computed.

censor The censoring indicator, 1 if event, 0 otherwise.

t A scaler time point at which the time-dependent ROC curve is computed.

U The vector of grid points where the ROC curve is estimated. The default is a
sequence of 151 numbers between 0 and 1.

h A scaler for the bandwidth of Beran’s weight calculaions. The default is the
value obtained by using the method of Sheather and Jones (1991).

bw A character string specifying the bandwidth estimation method for the ROC
itself. The possible options are "NR" for the normal reference, the plug-in "PI"
and the cross-validation "CV". The default is the "NR" normal reference method.
The user can also introduce a numerical value.

6 cenROC

method The method of ROC curve estimation. The possible options are "emp" emperical
method; "untra" smooth without boundary correction and "tra" is smooth ROC
curve estimation with boundary correction. The default is the "tra" smooth
ROC curve estimate with boundary correction.

ktype A character string giving the type kernel distribution to be used for smoothing
the ROC curve: "normal", "epanechnikov", "biweight", or "triweight". By
default, the "normal" kernel is used.

ktype1 A character string specifying the desired kernel needed for Beran weight calcula-
tion. The possible options are "normal", "epanechnikov", "tricube", "boxcar",
"triangular", or "quartic". The defaults is "normal" kernel density.

B The number of bootstrap samples to be used for variance estimation. The default
is 0, no variance estimation.

alpha The significance level. The default is 0.05.

plot The logical parameter to see the ROC curve plot. The default is TRUE. Currently
disabled.

Details

The empirical (non-smoothed) ROC estimate and the smoothed ROC estimate with/without bound-
ary correction can be obtained using this function. The smoothed ROC curve estimators require
selecting two bandwidth parametrs: one for Beran’s weight calculation and one for smoothing the
ROC curve. For the latter, three data-driven methods: the normal reference "NR", the plug-in "PI"
and the cross-validation "CV" were implemented. To select the bandwidth parameter needed for
Beran’s weight calculation, by default, the plug-in method of Sheather and Jones (1991) is used but
it is also possible introduce a numeric value. See Beyene and El Ghouch (2020) for details.

Value

Returns the following items:

ROC The vector of estimated ROC values. These will be numeric numbers between zero

and one.

U The vector of grid points used.

AUC A data frame of dimension 1× 4. The columns are: AUC, standard error of AUC, the lower

and upper limits of bootstrap CI.

bw The computed value of bandwidth. For the empirical method this is always NA.

Dt The vector of estimated event status.

M The vector of Marker values.

Author(s)

Kassu Mehari Beyene, Catholic University of Louvain. <kasu.beyene@uclouvain.be>

Anouar El Ghouch, Catholic University of Louvain. <anouar.elghouch@uclouvain.be>

cox 7

References

Beyene, K. M. and El Ghouch A. (2020). Smoothed time-dependent ROC curves for right-censored
survival data. submitted.

Sheather, S. J. and Jones, M. C. (1991). A Reliable data-based bandwidth selection method for
kernel density estimation. Journal of the Royal Statistical Society. Series B (Methodological)
53(3): 683–690.

cox cox

Description

The cox function conducts a Cox proportional hazards regression analysis, a type of survival anal-
ysis. It is designed to handle right-censored data and is built upon the coxph function from the
survival package. The function returns an object of class "Coxmos" with the attribute model
labeled as "cox".

Usage

cox(
X,
Y,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = FALSE,
toKeep.zv = NULL,
remove_non_significant = FALSE,
alpha = 0.05,
MIN_EPV = 5,
FORCE = FALSE,
returnData = TRUE,
verbose = FALSE

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).

8 cox

remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

FORCE Logical. In case the MIN_EPV is not meet, it allows to compute the model
(default: FALSE).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

The Cox proportional hazards regression model is a linear model that describes the relationship
between the hazard rate and one or more predictor variables. The function provided here offers
several preprocessing steps to ensure the quality and robustness of the model.

The function allows for the centering and scaling of predictor variables, which can be essential for
the stability and interpretability of the model. It also provides options to remove variables with
near-zero or zero variance, which can be problematic in regression analyses. Such variables offer
little to no information and can lead to overfitting.

Another notable feature is the ability to remove non-significant predictors from the final model
through a backward selection process. This ensures that only variables that contribute significantly
to the model are retained.

The function also checks for the minimum number of events per variable (EPV) to ensure the
robustness of the model. If the specified EPV is not met, the function can either halt the computation
or proceed based on user preference.

It’s important to note that while this function is tailored for standard Cox regression, it might not be
suitable for high-dimensional data. In such cases, users are advised to consider alternative methods
like coxEN() or PLS-based Cox methods.

Value

Instance of class "Coxmos" and model "cox". The class contains the following elements:

X: List of normalized X data information.

cox 9

• (data): normalized X matrix

• (x.mean): mean values for X matrix

• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

• (data): normalized Y matrix

• (y.mean): mean values for Y matrix

• (y.sd): standard deviation for Y matrix

survival_model: List of survival model information

• fit: coxph object.

• AIC: AIC of cox model.

• BIC: BIC of cox model.

• lp: linear predictors for train data.

• coef: Coefficients for cox model.

• YChapeau: Y Chapeau residuals.

• Yresidus: Y residuals.

call: call function

X_input: X input matrix

Y_input: Y input matrix

nsv: Variables removed by remove_non_significant if any.

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

removed_variables_correlation: Variables removed by being high correlated with other vari-
ables.

class: Model class.

time: time consumed for running the cox analysis.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Cox D (1972). “Regression models and life tables (with discussion.” Royal Statistical Society.
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x. Concato J, Peduzzi P, Holford TR,
Feinstein AR (1995). “Importance of events per independent variable in proportional hazards anal-
ysis I. Background, goals, and general strategy.” Journal of Clinical Epidemiology. doi:10.1016/
08954356(95)005102, https://pubmed.ncbi.nlm.nih.gov/8543963/. Therneau TM (2024). A
Package for Survival Analysis in R. R package version 3.5-8, https://CRAN.R-project.org/
package=survival.

https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1016/0895-4356%2895%2900510-2
https://doi.org/10.1016/0895-4356%2895%2900510-2
https://pubmed.ncbi.nlm.nih.gov/8543963/
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival

10 cox.prediction

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:10]
Y <- Y_proteomic
cox(X, Y, x.center = TRUE, x.scale = TRUE)

cox.prediction cox.prediction

Description

The cox.prediction function facilitates Cox predictions based on a given Coxmos model, specifi-
cally tailored for raw data input. It seamlessly integrates the generation of a score matrix, especially
when a PLS Survival analysis has been executed, and subsequently conducts the Cox prediction.
The function offers flexibility in prediction types and methods, catering to diverse analytical re-
quirements.

Usage

cox.prediction(model, new_data, time = NULL, type = "lp", method = "cox")

Arguments

model Coxmos model.

new_data Numeric matrix or data.frame. New explanatory variables (raw data). Qualita-
tive variables must be transform into binary variables.

time Numeric. Time point where the AUC will be evaluated (default: NULL).

type Character. Prediction type: "lp", "risk", "expected" or "survival" (default: "lp").

method Character. Prediction method. It can be compute by using the cox model "cox"
or by using W.star "W.star" (default: "cox").

Details

The function initiates by determining the prediction method specified by the user. If the "cox"
method is chosen, the function computes the score matrix using the predict.Coxmos function.
This score matrix serves as a foundation for subsequent predictions. It’s imperative to note that for
prediction types "expected" and "survival", a specific time point must be provided to ensure accurate
predictions. The function then leverages the predict function from the Cox model to compute the
desired prediction metric.

Alternatively, if the "W.star" method is selected, the function computes the prediction values based
on the W* matrix and the Cox model’s coefficients. This involves normalization of the input data,
ensuring it aligns with the training data’s distribution. The normalization process considers mean
and standard deviation values from the model, ensuring consistency in predictions. The resultant
prediction values are then computed as a linear combination of the normalized data and the derived
coefficients.

coxEN 11

It’s worth noting that the function is meticulously designed to handle potential inconsistencies or
missing components in the model, ensuring robustness in predictions and minimizing potential
errors during execution.

Value

Return the "lp", "risk", "expected" or "survival" metric for test data using the specific Coxmos
model.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]

X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]

model_icox <- splsicox(X_train, Y_train, n.comp = 2)
cox.prediction(model = model_icox, new_data = X_test, type = "lp")

coxEN coxEN

Description

This function performs a cox elastic net model (based on glmnet R package). The function returns
a Coxmos model with the attribute model as "coxEN".

Usage

coxEN(
X,
Y,
EN.alpha = 0.5,
max.variables = 15,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = FALSE,
toKeep.zv = NULL,
remove_non_significant = FALSE,

12 coxEN

alpha = 0.05,
MIN_EPV = 5,
returnData = TRUE,
verbose = FALSE

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

EN.alpha Numeric. Elastic net mixing parameter. If EN.alpha = 1 is the lasso penalty,
and EN.alpha = 0 the ridge penalty (default: 0.5). NOTE: When ridge penalty is
used, EVP and max.variables will not be used.

max.variables Numeric. Maximum number of variables you want to keep in the cox model. If
MIN_EPV is not meet, the value will be change automatically (default: 20).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

The coxEN function is designed to handle survival data using the elastic net regularization. The
function is particularly useful when dealing with high-dimensional datasets where the number of

coxEN 13

predictors exceeds the number of observations. The elastic net regularization combines the strengths
of both lasso and ridge regression. The EN.alpha parameter controls the balance between lasso and
ridge penalties. It’s important to note that when using the ridge penalty (EN.alpha = 0), the EVP
and max.variables parameters will not be considered.

Value

Instance of class "Coxmos" and model "coxEN". The class contains the following elements: X: List
of normalized X data information.

• (data): normalized X matrix
• (x.mean): mean values for X matrix
• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

• (data): normalized X matrix
• (y.mean): mean values for Y matrix
• (y.sd): standard deviation for Y matrix’

survival_model: List of survival model information.

• fit: coxph object.
• AIC: AIC of cox model.
• BIC: BIC of cox model.
• lp: linear predictors for train data.
• coef: Coefficients for cox model.
• YChapeau: Y Chapeau residuals.
• Yresidus: Y residuals.

opt.lambda: Optimal lambda computed by the model with maximum % Var from glmnet function.

EN.alpha: EN.alpha selected

n.var: Number of variables selected

call: call function

X_input: X input matrix

Y_input: Y input matrix

convergence_issue: If any convergence issue has been found.

alpha: alpha value selected

selected_variables_cox: Variables selected to enter the cox model.

nsv: Variables removed by cox alpha cutoff.

removed_variables_correlation: Variables removed by being high correlated with other vari-
ables.

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

class: Model class.

time: time consumed for running the cox analysis.

14 coxSW

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Simon N, Friedman JH, Friedman JH, Hastie T, Tibshirani R (2011). “Regularization Paths for
Cox’s Proportional Hazards Model via Coordinate Descent.” Journal of Statistical Software. doi:10.18637/
jss.v039.i05, https://pubmed.ncbi.nlm.nih.gov/27065756/.

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
coxEN(X, Y, EN.alpha = 0.75, x.center = TRUE, x.scale = TRUE, remove_non_significant = TRUE)

coxSW coxSW

Description

The coxSW function conducts a stepwise Cox regression analysis on survival data, leveraging the
capabilities of the My.stepwise R package. The primary objective of this function is to identify
the most significant predictors for survival data by iteratively adding or removing predictors based
on their statistical significance in the model. The resulting model is of class "Coxmos" with an
attribute model labeled as "coxSW".

Usage

coxSW(
X,
Y,
max.variables = 20,
BACKWARDS = TRUE,
alpha_ENT = 0.1,
alpha_OUT = 0.15,
toKeep.sw = NULL,
initialModel = NULL,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = FALSE,
toKeep.zv = NULL,
remove_non_significant = FALSE,
alpha = 0.05,
MIN_EPV = 5,

https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.18637/jss.v039.i05
https://pubmed.ncbi.nlm.nih.gov/27065756/

coxSW 15

returnData = TRUE,
verbose = FALSE

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

max.variables Numeric. Maximum number of variables you want to keep in the cox model. If
MIN_EPV is not meet, the value will be change automatically (default: 20).

BACKWARDS Logical. If BACKWARDS = TRUE, backward strategy is performed (default:
TRUE).

alpha_ENT Numeric. Maximum P-Value for a variable to enter the model (default: 0.10).

alpha_OUT Numeric. Minimum P-Value for a variable to leave the model (default: 0.15).

toKeep.sw Character vector. Name of variables in X to not be deleted by Step-wise selec-
tion (default: NULL).

initialModel Character vector. Name of variables in X to include in the initial model (default:
NULL).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

16 coxSW

Details

The coxSW function employs a stepwise regression technique tailored for survival data. This method
is particularly beneficial when dealing with a plethora of predictors, and there’s a necessity to distill
the model to its most impactful variables. The stepwise procedure can be configured to operate in
forward, backward, or a hybrid mode, contingent on the parameters specified by the user.

During the iterative process, variables are evaluated for inclusion or exclusion based on predefined
significance levels (alpha_ENT for entry and alpha_OUT for removal). This ensures that the model
retains only those predictors that meet the significance criteria, thereby enhancing the model’s in-
terpretability and predictive power.

Additionally, the function offers several preprocessing options, such as centering and scaling of the
predictor matrix, removal of variables with near-zero or zero variance, and the ability to enforce the
inclusion of specific variables in the model. These preprocessing steps are crucial for ensuring the
robustness and stability of the resulting Cox regression model.

It’s worth noting that the function is equipped to handle both numeric and binary categorical predic-
tors. However, it’s imperative that categorical variables are appropriately transformed into binary
format before analysis. The outcome or response variable should comprise two columns: "time"
representing the survival time and "event" indicating the occurrence of the event of interest.

Value

Instance of class "Coxmos" and model "coxSW". The class contains the following elements:

X: List of normalized X data information.

• (data): normalized X matrix

• (x.mean): mean values for X matrix

• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

• (data): normalized Y matrix

• (y.mean): mean values for Y matrix

• (y.sd): standard deviation for Y matrix

survival_model: List of survival model information

• fit: coxph object.

• AIC: AIC of cox model.

• BIC: BIC of cox model.

• lp: linear predictors for train data.

• coef: Coefficients for cox model.

• YChapeau: Y Chapeau residuals.

• Yresidus: Y residuals.

CV 17

call: call function

X_input: X input matrix

Y_input: Y input matrix

nsv: Variables removed by remove_non_significant if any.

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

removed_variables_correlation: Variables removed by being high correlated with other vari-
ables.

class: Model class.

time: time consumed for running the cox analysis.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Efroymson MA (1960). “Multiple Regression Analysis.” Mathematical Methods for Digital Com-
puters. Company ISC (2017). “My.stepwise: Stepwise Variable Selection Procedures for Regres-
sion Analysis.” https://cran.r-project.org/package=My.stepwise.

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:10]
Y <- Y_proteomic
coxSW(X, Y, x.center = TRUE, x.scale = TRUE)

CV The cross-validation bandwidth selection for weighted data

Description

This function computes the data-driven bandwidth for smoothing the ROC (or distribution) func-
tion using the CV method of Beyene and El Ghouch (2020). This is an extension of the classical
(unweighted) cross-validation bandwith selection method to the case of weighted data.

Usage

CV(X, wt, ktype = "normal")

https://cran.r-project.org/package=My.stepwise

18 cv.coxEN

Arguments

X The numeric data vector.

wt The non-negative weight vector.

ktype A character string giving the type kernel to be used: "normal", "epanechnikov",
"biweight", or "triweight". By default, the "normal" kernel is used.

Details

Bowman et al (1998) proposed the cross-validation bandwidth selection method for unweighted
kernal smoothed distribution function. This method is implemented in the R package kerdiest.
We adapted this for the case of weighted data by incorporating the weight variable into the cross-
validation function of Bowman’s method. See Beyene and El Ghouch (2020) for details.

Value

Returns the computed value for the bandwith parameter.

Author(s)

Kassu Mehari Beyene, Catholic University of Louvain. <kasu.beyene@uclouvain.be>

Anouar El Ghouch, Catholic University of Louvain. <anouar.elghouch@uclouvain.be>

References

Beyene, K. M. and El Ghouch A. (2020). Smoothed time-dependent ROC curves for right-censored
survival data. submitted.

Bowman A., Hall P. and Trvan T.(1998). Bandwidth selection for the smoothing of distribution
functions. Biometrika 85:799-808.

Quintela-del-Rio, A. and Estevez-Perez, G. (2015). kerdiest: Nonparametric kernel estimation
of the distribution function, bandwidth selection and estimation of related functions. R package
version 1.2.

cv.coxEN coxEN Cross-Validation

Description

This function performs cross-validated CoxEN (coxEN). The function returns the optimal number
of EN penalty value based on cross-validation. The performance could be based on multiple metrics
as Area Under the Curve (AUC), Brier Score or C-Index. Furthermore, the user could establish more
than one metric simultaneously.

cv.coxEN 19

Usage

cv.coxEN(
X,
Y,
EN.alpha.list = seq(0, 1, 0.1),
max.variables = 15,
n_run = 3,
k_folds = 10,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE,
remove_non_significant = FALSE,
alpha = 0.05,
w_AIC = 0,
w_c.index = 0,
w_AUC = 1,
w_BRIER = 0,
times = NULL,
max_time_points = 15,
MIN_AUC_INCREASE = 0.01,
MIN_AUC = 0.8,
MIN_COMP_TO_CHECK = 3,
pred.attr = "mean",
pred.method = "cenROC",
fast_mode = FALSE,
MIN_EPV = 5,
return_models = FALSE,
returnData = FALSE,
PARALLEL = FALSE,
verbose = FALSE,
seed = 123

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

EN.alpha.list Numeric vector. Elastic net mixing parameter values to test in cross validation.
EN.alpha = 1 is the lasso penalty, and EN.alpha = 0 the ridge penalty (default:
seq(0,1,0.1)).

20 cv.coxEN

max.variables Numeric. Maximum number of variables you want to keep in the cox model. If
MIN_EPV is not meet, the value will be change automatically (default: 20).

n_run Numeric. Number of runs for cross validation (default: 3).

k_folds Numeric. Number of folds for cross validation (default: 10).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_variance_at_fold_level

Logical. If remove_variance_at_fold_level = TRUE, (near) zero variance will
be removed at fold level (default: FALSE).

remove_non_significant_models

Logical. If remove_non_significant_models = TRUE, non-significant models
are removed before computing the evaluation. A non-significant model is a
model with at least one component/variable with a P-Value higher than the alpha
cutoff.

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).

w_c.index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).

w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).

w_BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (de-
fault: 0).

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

cv.coxEN 21

MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the mini-
mum is reached, the evaluation could stop if the improvement does not reach an
AUC higher than adding the ’MIN_AUC_INCREASE’ value (default: 0.8).

MIN_COMP_TO_CHECK

Numeric. Number of penalties/components to evaluate to check if the AUC
improves. If for the next ’MIN_COMP_TO_CHECK’ the AUC is not better and
the ’MIN_AUC’ is meet, the evaluation could stop (default: 3).

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simulta-
neously. If fast_mode = FALSE, for each run, all linear predictors are computed
for test observations. Once all have their linear predictors, the evaluation is
perform across all the observations together (default: FALSE).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

return_models Logical. Return all models computed in cross validation (default: FALSE).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

seed Number. Seed value for performing runs/folds divisions (default: 123).

Details

The coxEN Cross-Validation function provides a robust mechanism to optimize the hyperparam-
eters of the cox elastic net model through cross-validation. By systematically evaluating a range
of elastic net mixing parameters (EN.alpha.list), this function identifies the optimal balance be-
tween lasso and ridge penalties for survival analysis.

The cross-validation process is structured across multiple runs (n_run) and folds (k_folds), en-
suring a comprehensive assessment of model performance. Users can prioritize specific evaluation
metrics, such as AUC, Brier Score, or C-Index, by assigning weights (w_AIC, w_c.index, w_AUC,
w_BRIER). The function also offers flexibility in the AUC evaluation method (pred.method) and
the attribute for metric evaluation (pred.attr).

One of the distinguishing features of this function is its adaptive evaluation process. The function
can terminate the cross-validation early if the improvement in AUC does not exceed the MIN_AUC_INCREASE
threshold or if a predefined AUC (MIN_AUC) is achieved. This adaptive approach ensures computa-
tional efficiency without compromising the quality of the results.

22 cv.coxEN

Data preprocessing options are integrated into the function, emphasizing the significance of data
quality. Options to remove near-zero and zero variance variables, either globally or at the fold level,
are available. The function also supports multicore processing (PARALLEL option) to expedite the
cross-validation process.

Upon execution, the function returns a detailed output, encompassing information about the best
model, performance metrics at various granularities (fold, run, component), and if desired, all cross-
validated models.

Value

Instance of class "Coxmos" and model "cv.coxEN". The class contains the following elements:
best_model_info: A data.frame with the information for the best model. df_results_folds:
A data.frame with fold-level information. df_results_runs: A data.frame with run-level in-
formation. df_results_comps: A data.frame with component-level information (for cv.coxEN,
EN.alpha information).

lst_models: If return_models = TRUE, return a the list of all cross-validated models. pred.method:
AUC evaluation algorithm method for evaluate the model performance.

opt.EN.alpha: Optimal EN.alpha value selected by the best_model. opt.nvar: Optimal number
of variables selected by the best_model.

plot_AIC: AIC plot by each hyper-parameter. plot_c_index: C-Index plot by each hyper-parameter.
plot_BRIER: Brier Score plot by each hyper-parameter. plot_AUC: AUC plot by each hyper-
parameter.

class: Cross-Validated model class.

lst_train_indexes: List (of lists) of indexes for the observations used in each run/fold for train
the models. lst_test_indexes: List (of lists) of indexes for the observations used in each run/fold
for test the models.

time: time consumed for running the cross-validated function.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
cv.coxEN_model <- cv.coxEN(X_train, Y_train, EN.alpha.list = c(0.1,0.5),
x.center = TRUE, x.scale = TRUE)

cv.isb.splsdrcox 23

cv.isb.splsdrcox Cross validation cv.isb.splsdrcox

Description

This function performs cross-validated sparse partial least squares iterative single block for splsdr-
cox. The function returns the optimal number of components and the optimal sparsity penalty value
based on cross-validation. The performance could be based on multiple metrics as Area Under the
Curve (AUC), Brier Score or C-Index. Furthermore, the user could establish more than one metric
simultaneously.

Usage

cv.isb.splsdrcox(
X,
Y,
max.ncomp = 8,
penalty.list = seq(0.1, 0.9, 0.2),
n_run = 3,
k_folds = 10,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE,
remove_non_significant = FALSE,
alpha = 0.05,
w_AIC = 0,
w_c.index = 0,
w_AUC = 1,
w_BRIER = 0,
times = NULL,
max_time_points = 15,
MIN_AUC_INCREASE = 0.01,
MIN_AUC = 0.8,
MIN_COMP_TO_CHECK = 3,
pred.attr = "mean",
pred.method = "cenROC",
fast_mode = FALSE,
MIN_EPV = 5,
returnData = TRUE,
return_models = FALSE,
PARALLEL = FALSE,
verbose = FALSE,
seed = 123

24 cv.isb.splsdrcox

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

max.ncomp Numeric. Maximum number of PLS components to compute for the cross vali-
dation (default: 8).

penalty.list Numeric vector. Vector of penalty values. Penalty for sPLS-DRCOX. If penalty
= 0 no penalty is applied, when penalty = 1 maximum penalty (no variables are
selected) based on ’plsRcox’ penalty. Equal or greater than 1 cannot be selected
(default: seq(0.1,0.9,0.2)).

n_run Numeric. Number of runs for cross validation (default: 3).

k_folds Numeric. Number of folds for cross validation (default: 10).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_variance_at_fold_level

Logical. If remove_variance_at_fold_level = TRUE, (near) zero variance will
be removed at fold level (default: FALSE).

remove_non_significant_models

Logical. If remove_non_significant_models = TRUE, non-significant models
are removed before computing the evaluation. A non-significant model is a
model with at least one component/variable with a P-Value higher than the alpha
cutoff.

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).

w_c.index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).

cv.isb.splsdrcox 25

w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).

w_BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (de-
fault: 0).

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the mini-
mum is reached, the evaluation could stop if the improvement does not reach an
AUC higher than adding the ’MIN_AUC_INCREASE’ value (default: 0.8).

MIN_COMP_TO_CHECK

Numeric. Number of penalties/components to evaluate to check if the AUC
improves. If for the next ’MIN_COMP_TO_CHECK’ the AUC is not better and
the ’MIN_AUC’ is meet, the evaluation could stop (default: 3).

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simulta-
neously. If fast_mode = FALSE, for each run, all linear predictors are computed
for test observations. Once all have their linear predictors, the evaluation is
perform across all the observations together (default: FALSE).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

return_models Logical. Return all models computed in cross validation (default: FALSE).

PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

seed Number. Seed value for performing runs/folds divisions (default: 123).

26 cv.isb.splsdrcox

Details

The cv.isb.splsdrcox function performs cross-validation for the integrative single-block sparse
partial least squares deviance residual Cox analysis. Unlike the single-block (SB) approach, the
integrative single-block (ISB) method allows for the consideration of multiple blocks of data, po-
tentially from different sources or types, to be integrated into a single model. A key distinction
of the ISB approach is its ability to compute and optimize hyperparameters individually for each
block, rather than applying a uniform set of hyperparameters across all blocks. This ensures that
each block’s unique characteristics are taken into account, leading to a more tailored and potentially
more accurate model.

Cross-validation is essential for assessing the generalizability of the model and avoiding overfitting.
By partitioning the original dataset into training and test sets multiple times, the function evaluates
the model’s performance across different subsets of the data. This iterative process ensures that the
model’s performance is robust and not overly reliant on a specific partition of the data.

The function evaluates a range of hyperparameters, including the number of latent components
(max.ncomp) and the penalty for variable selection (penalty.list). For each combination of hy-
perparameters, the dataset is divided into training and test sets based on the specified number of
folds (k_folds). The model is then trained on the training set and its performance is assessed on
the test set. This process is repeated for the specified number of runs (n_run), providing a compre-
hensive evaluation of the model’s performance.

Various evaluation metrics, such as AIC, C-Index, Brier Score, and AUC, are computed for each
combination of hyperparameters. These metrics provide insights into the model’s accuracy, dis-
criminative ability, and calibration. The function then identifies the optimal hyperparameters that
yield the best performance based on these metrics.

In summary, the cv.isb.splsdrcox function offers a robust and integrative approach for hyper-
parameter tuning and model evaluation for the sparse partial least squares deviance residual Cox
analysis. By allowing individualized hyperparameter optimization for each block, the ISB ap-
proach ensures a more nuanced and potentially more accurate model compared to the traditional
SB method.

Value

Instance of class "Coxmos" and model "sb.splscox". The class contains the following elements: X:
List of normalized X data information.

• (data): normalized X matrix

• (weightings): PLS weights

• (weightings_norm): PLS normalize weights

• (W.star): PLS W* vector

• (scores): PLS scores/variates

• (x.mean): mean values for X matrix

• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

• (deviance_residuals): deviance residual vector used as Y matrix in the sPLS.

• (dr.mean): mean values for deviance residuals Y matrix

cv.isb.splsdrcox 27

• (dr.sd): standard deviation for deviance residuals Y matrix’

• (data): normalized X matrix

• (y.mean): mean values for Y matrix

• (y.sd): standard deviation for Y matrix’

survival_model: List of survival model information.

• fit: coxph object.

• AIC: AIC of cox model.

• BIC: BIC of cox model.

• lp: linear predictors for train data.

• coef: Coefficients for cox model.

• YChapeau: Y Chapeau residuals.

• Yresidus: Y residuals.

list_spls_models: List of sPLS-DRCOX models computed for each block.

n.comp: Number of components selected.

penalty Penalty applied.

call: call function

X_input: X input matrix

Y_input: Y input matrix

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

class: Model class.

time: time consumed for running the cox analysis.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_multiomic")
data("Y_multiomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_multiomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_multiomic
X_train$mirna <- X_train$mirna[index_train,1:50]
X_train$proteomic <- X_train$proteomic[index_train,1:50]
Y_train <- Y_multiomic[index_train,]
isb.splsdrcox_model <- cv.isb.splsdrcox(X_train, Y_train, max.ncomp = 2, penalty.list = c(0.5),
n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)

28 cv.isb.splsicox

cv.isb.splsicox Cross validation cv.isb.splsicox

Description

This function performs cross-validated sparse partial least squares iterative single block for splsicox.
The function returns the optimal number of components and the optimal sparsity penalty value
based on cross-validation. The performance could be based on multiple metrics as Area Under the
Curve (AUC), Brier Score or C-Index. Furthermore, the user could establish more than one metric
simultaneously.

Usage

cv.isb.splsicox(
X,
Y,
max.ncomp = 8,
penalty.list = seq(0.1, 0.9, 0.2),
n_run = 3,
k_folds = 10,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE,
remove_non_significant = FALSE,
alpha = 0.05,
w_AIC = 0,
w_c.index = 0,
w_AUC = 1,
w_BRIER = 0,
times = NULL,
max_time_points = 15,
MIN_AUC_INCREASE = 0.01,
MIN_AUC = 0.8,
MIN_COMP_TO_CHECK = 3,
pred.attr = "mean",
pred.method = "cenROC",
fast_mode = FALSE,
MIN_EPV = 5,
returnData = TRUE,
return_models = FALSE,
PARALLEL = FALSE,
verbose = FALSE,
seed = 123

cv.isb.splsicox 29

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

max.ncomp Numeric. Maximum number of PLS components to compute for the cross vali-
dation (default: 8).

penalty.list Numeric vector. Penalty for variable selection for the individual cox models.
Variables with a lower P-Value than 1- "penalty" in the individual cox analysis
will be keep for the sPLS-ICOX approach (default: seq(0.1,0.9,0.2)).

n_run Numeric. Number of runs for cross validation (default: 3).

k_folds Numeric. Number of folds for cross validation (default: 10).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_variance_at_fold_level

Logical. If remove_variance_at_fold_level = TRUE, (near) zero variance will
be removed at fold level (default: FALSE).

remove_non_significant_models

Logical. If remove_non_significant_models = TRUE, non-significant models
are removed before computing the evaluation.

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).

w_c.index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).

w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).

w_BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (de-
fault: 0).

30 cv.isb.splsicox

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the mini-
mum is reached, the evaluation could stop if the improvement does not reach an
AUC higher than adding the ’MIN_AUC_INCREASE’ value (default: 0.8).

MIN_COMP_TO_CHECK

Numeric. Number of penalties/components to evaluate to check if the AUC
improves. If for the next ’MIN_COMP_TO_CHECK’ the AUC is not better and
the ’MIN_AUC’ is meet, the evaluation could stop (default: 3).

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simulta-
neously. If fast_mode = FALSE, for each run, all linear predictors are computed
for test observations. Once all have their linear predictors, the evaluation is
perform across all the observations together (default: FALSE).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

return_models Logical. Return all models computed in cross validation (default: FALSE).

PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

seed Number. Seed value for performing runs/folds divisions (default: 123).

Details

The cv.isb.splsicox function performs cross-validation for the iterative single-block sparse par-
tial least squares individual Cox analysis. Unlike the single-block (sb) approach, where each block
is analyzed with the same number of components and penalties, the iterative single-block (isb)

cv.isb.splsicox 31

approach allows for the specification of different numbers of components and penalties for each
block. This provides a more tailored analysis for each block, recognizing that different blocks may
have varying complexities and relationships with the outcome.

The function is designed to handle datasets with multiple blocks, processing each block individually
in an iterative manner. This ensures a detailed examination of each block’s contribution to the
survival outcome without the interference of other blocks. This approach is distinct from multiblock
methods where all blocks are analyzed simultaneously.

The cross-validation process involves partitioning the dataset into multiple subsets (folds) and then
iteratively training the model on a subset of the data while validating it on the remaining data.
This helps in determining the optimal hyperparameters for the model, such as the number of latent
components and the penalty for variable selection.

Unlike the sb approach, which returns the optimal hyperparameters for further model training, the
isb approach directly returns the final model. This model is constructed using the best-performing
hyperparameters for each block, ensuring a more customized and potentially more accurate model.

The function offers flexibility in specifying various hyperparameters and options for data prepro-
cessing. The output provides a comprehensive overview of the cross-validation results, including
metrics like AIC, C-Index, Brier Score, and AUC for each hyper-parameter combination. Visu-
alization tools are also provided to aid in understanding the model’s performance across different
hyperparameters.

Value

Instance of class "Coxmos" and model "sb.splsicox". The class contains the following elements: X:
List of normalized X data information.

• (data): normalized X matrix

• (weightings): PLS weights

• (weightings_norm): PLS normalize weights

• (W.star): PLS W* vector

• (scores): PLS scores/variates

• (x.mean): mean values for X matrix

• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

• (deviance_residuals): deviance residual vector used as Y matrix in the sPLS.

• (dr.mean): mean values for deviance residuals Y matrix

• (dr.sd): standard deviation for deviance residuals Y matrix’

• (data): normalized X matrix

• (y.mean): mean values for Y matrix

• (y.sd): standard deviation for Y matrix’

survival_model: List of survival model information.

• fit: coxph object.

32 cv.mb.splsdacox

• AIC: AIC of cox model.

• BIC: BIC of cox model.

• lp: linear predictors for train data.

• coef: Coefficients for cox model.

• YChapeau: Y Chapeau residuals.

• Yresidus: Y residuals.

list_spls_models: List of sPLS-ICOX models computed for each block.

n.comp: Number of components selected.

penalty Penalty applied.

call: call function

X_input: X input matrix

Y_input: Y input matrix

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

class: Model class.

time: time consumed for running the cox analysis.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_multiomic")
data("Y_multiomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_multiomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_multiomic
X_train$mirna <- X_train$mirna[index_train,1:20]
X_train$proteomic <- X_train$proteomic[index_train,1:20]
Y_train <- Y_multiomic[index_train,]
isb.splsicox_model <- cv.isb.splsicox(X_train, Y_train, max.ncomp = 1, penalty.list = c(0.5),
n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)

cv.mb.splsdacox MB.sPLS-DACOX Cross-Validation

Description

The cv.mb.splsdacox function performs cross-validation for the MB.sPLS-DACOX model, a spe-
cialized model tailored for survival analysis with high-dimensional data. This function systemati-
cally evaluates the performance of the model across different hyperparameters and configurations
to determine the optimal settings for the given data.

cv.mb.splsdacox 33

Usage

cv.mb.splsdacox(
X,
Y,
max.ncomp = 8,
vector = NULL,
MIN_NVAR = 10,
MAX_NVAR = 10000,
n.cut_points = 5,
EVAL_METHOD = "AUC",
n_run = 3,
k_folds = 10,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE,
remove_non_significant = FALSE,
alpha = 0.05,
w_AIC = 0,
w_c.index = 0,
w_AUC = 1,
w_BRIER = 0,
times = NULL,
max_time_points = 15,
MIN_AUC_INCREASE = 0.01,
MIN_AUC = 0.8,
MIN_COMP_TO_CHECK = 3,
pred.attr = "mean",
pred.method = "cenROC",
max.iter = 200,
fast_mode = FALSE,
MIN_EPV = 5,
return_models = FALSE,
returnData = FALSE,
PARALLEL = FALSE,
verbose = FALSE,
seed = 123

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:

34 cv.mb.splsdacox

0/1 or FALSE/TRUE for censored and event observations.

max.ncomp Numeric. Maximum number of PLS components to compute for the cross vali-
dation (default: 8).

vector Numeric vector. Used for computing best number of variables. As many values
as components have to be provided. If vector = NULL, an automatic detection
is perform (default: NULL). If vector is a list, must be named as the names of X
param followed by the number of variables to select.

MIN_NVAR Numeric. Minimum range size for computing cut points to select the best num-
ber of variables to use (default: 10).

MAX_NVAR Numeric. Maximum range size for computing cut points to select the best num-
ber of variables to use (default: 1000).

n.cut_points Numeric. Number of cut points for searching the optimal number of variables. If
only two cut points are selected, minimum and maximum size are used (default:
5).

EVAL_METHOD Character. If EVAL_METHOD = "AUC", AUC metric will be use to compute
the best number of variables. In other case, c-index metric will be used (default:
"AUC").

n_run Numeric. Number of runs for cross validation (default: 3).

k_folds Numeric. Number of folds for cross validation (default: 10).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_variance_at_fold_level

Logical. If remove_variance_at_fold_level = TRUE, (near) zero variance will
be removed at fold level (default: FALSE).

remove_non_significant_models

Logical. If remove_non_significant_models = TRUE, non-significant models
are removed before computing the evaluation. A non-significant model is a
model with at least one component/variable with a P-Value higher than the alpha
cutoff.

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

cv.mb.splsdacox 35

w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).
w_c.index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).
w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).
w_BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (de-

fault: 0).
times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-

imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the mini-
mum is reached, the evaluation could stop if the improvement does not reach an
AUC higher than adding the ’MIN_AUC_INCREASE’ value (default: 0.8).

MIN_COMP_TO_CHECK

Numeric. Number of penalties/components to evaluate to check if the AUC
improves. If for the next ’MIN_COMP_TO_CHECK’ the AUC is not better and
the ’MIN_AUC’ is meet, the evaluation could stop (default: 3).

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).
fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simulta-

neously. If fast_mode = FALSE, for each run, all linear predictors are computed
for test observations. Once all have their linear predictors, the evaluation is
perform across all the observations together (default: FALSE).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

return_models Logical. Return all models computed in cross validation (default: FALSE).
returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
PARALLEL Logical. Run the cross validation with multicore option. As many cores as your

total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
seed Number. Seed value for performing runs/folds divisions (default: 123).

36 cv.mb.splsdacox

Details

The function operates by partitioning the data into multiple subsets (folds) and iteratively holding
out one subset for validation while training on the remaining subsets. The cross-validation process
is repeated for a specified number of runs, ensuring a robust assessment of the model’s performance.
The function offers flexibility in terms of the number of PLS components, the range of variables
considered, and the evaluation metrics used.

The function provides an option to center and scale the explanatory variables, which can be crucial
for ensuring consistent performance, especially when the variables are measured on different scales.
Additionally, the function incorporates features to handle near-zero and zero variance variables,
which can be problematic in high-dimensional datasets.

For model evaluation, users can choose between various metrics, including AUC, c-index, and Brier
Score. The function also allows for the specification of weights for these metrics, enabling users to
prioritize certain metrics over others based on the research context.

The function’s design also emphasizes computational efficiency. It offers a parallel processing
option to expedite the cross-validation process, especially beneficial for large datasets. However,
users should be cautious about potential high RAM consumption when using this option.

Value

Instance of class "Coxmos" and model "cv.MB.sPLS-DACOX". best_model_info: A data.frame
with the information for the best model. df_results_folds: A data.frame with fold-level in-
formation. df_results_runs: A data.frame with run-level information. df_results_comps: A
data.frame with component-level information (for cv.coxEN, EN.alpha information).

lst_models: If return_models = TRUE, return a the list of all cross-validated models. pred.method:
AUC evaluation algorithm method for evaluate the model performance.

opt.comp: Optimal component selected by the best_model. opt.nvar: Optimal number of vari-
ables selected by the best_model.

plot_AIC: AIC plot by each hyper-parameter. plot_c_index: C-Index plot by each hyper-parameter.
plot_BRIER: Brier Score plot by each hyper-parameter. plot_AUC: AUC plot by each hyper-
parameter.

class: Cross-Validated model class.

lst_train_indexes: List (of lists) of indexes for the observations used in each run/fold for train
the models. lst_test_indexes: List (of lists) of indexes for the observations used in each run/fold
for test the models.

time: time consumed for running the cross-validated function.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_multiomic")
data("Y_multiomic")
set.seed(123)

cv.mb.splsdrcox 37

index_train <- caret::createDataPartition(Y_multiomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_multiomic
X_train$mirna <- X_train$mirna[index_train,1:50]
X_train$proteomic <- X_train$proteomic[index_train,1:50]
Y_train <- Y_multiomic[index_train,]
cv.mb.splsdacox_model <- cv.mb.splsdacox(X_train, Y_train, max.ncomp = 2, vector = NULL,
n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)

cv.mb.splsdrcox MB.sPLS-DRCOX Cross-Validation

Description

The cv.mb.splsdrcox function performs cross-validation for the MB.sPLS-DRCOX model, a spe-
cialized model for survival analysis with high-dimensional data. This function systematically evalu-
ates the performance of the model across different hyperparameters and configurations to determine
the optimal settings for the given data.

Usage

cv.mb.splsdrcox(
X,
Y,
max.ncomp = 8,
vector = NULL,
MIN_NVAR = 10,
MAX_NVAR = 10000,
n.cut_points = 5,
EVAL_METHOD = "AUC",
n_run = 3,
k_folds = 10,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE,
remove_non_significant = FALSE,
alpha = 0.05,
w_AIC = 0,
w_c.index = 0,
w_AUC = 1,
w_BRIER = 0,
times = NULL,
max_time_points = 15,
MIN_AUC_INCREASE = 0.01,

38 cv.mb.splsdrcox

MIN_AUC = 0.8,
MIN_COMP_TO_CHECK = 3,
pred.attr = "mean",
pred.method = "cenROC",
max.iter = 200,
fast_mode = FALSE,
MIN_EPV = 5,
return_models = FALSE,
returnData = FALSE,
PARALLEL = FALSE,
verbose = FALSE,
seed = 123

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

max.ncomp Numeric. Maximum number of PLS components to compute for the cross vali-
dation (default: 8).

vector Numeric vector. Used for computing best number of variables. As many values
as components have to be provided. If vector = NULL, an automatic detection
is perform (default: NULL). If vector is a list, must be named as the names of X
param followed by the number of variables to select.

MIN_NVAR Numeric. Minimum range size for computing cut points to select the best num-
ber of variables to use (default: 10).

MAX_NVAR Numeric. Maximum range size for computing cut points to select the best num-
ber of variables to use (default: 1000).

n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
If only two cut points are selected, minimum and maximum size are used. For
MB approaches as many as n.cut_points^n.blocks models will be computed as
minimum (default: 5).

EVAL_METHOD Character. If EVAL_METHOD = "AUC", AUC metric will be use to compute
the best number of variables. In other case, c-index metric will be used (default:
"AUC").

n_run Numeric. Number of runs for cross validation (default: 3).

k_folds Numeric. Number of folds for cross validation (default: 10).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

cv.mb.splsdrcox 39

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_variance_at_fold_level

Logical. If remove_variance_at_fold_level = TRUE, (near) zero variance will
be removed at fold level (default: FALSE).

remove_non_significant_models

Logical. If remove_non_significant_models = TRUE, non-significant models
are removed before computing the evaluation. A non-significant model is a
model with at least one component/variable with a P-Value higher than the alpha
cutoff.

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).

w_c.index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).

w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).

w_BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (de-
fault: 0).

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the mini-
mum is reached, the evaluation could stop if the improvement does not reach an
AUC higher than adding the ’MIN_AUC_INCREASE’ value (default: 0.8).

MIN_COMP_TO_CHECK

Numeric. Number of penalties/components to evaluate to check if the AUC
improves. If for the next ’MIN_COMP_TO_CHECK’ the AUC is not better and
the ’MIN_AUC’ is meet, the evaluation could stop (default: 3).

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

40 cv.mb.splsdrcox

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).

fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simulta-
neously. If fast_mode = FALSE, for each run, all linear predictors are computed
for test observations. Once all have their linear predictors, the evaluation is
perform across all the observations together (default: FALSE).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

return_models Logical. Return all models computed in cross validation (default: FALSE).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

seed Number. Seed value for performing runs/folds divisions (default: 123).

Details

The function operates by partitioning the data into multiple subsets (folds) and iteratively holding
out one subset for validation while training on the remaining subsets. The cross-validation process
is repeated for a specified number of runs, ensuring a robust assessment of the model’s performance.
The function offers flexibility in terms of the number of PLS components, the range of variables
considered, and the evaluation metrics used.

The function provides an option to center and scale the explanatory variables, which can be crucial
for ensuring consistent performance, especially when the variables are measured on different scales.
Additionally, the function incorporates features to handle near-zero and zero variance variables,
which can be problematic in high-dimensional datasets.

For model evaluation, users can choose between various metrics, including AUC, c-index, and Brier
Score. The function also allows for the specification of weights for these metrics, enabling users to
prioritize certain metrics over others based on the research context.

The function’s design also emphasizes computational efficiency. It offers a parallel processing
option to expedite the cross-validation process, especially beneficial for large datasets. However,
users should be cautious about potential high RAM consumption when using this option.

Value

Instance of class "Coxmos" and model "cv.MB.sPLS-DRCOX". best_model_info: A data.frame
with the information for the best model. df_results_folds: A data.frame with fold-level in-
formation. df_results_runs: A data.frame with run-level information. df_results_comps: A
data.frame with component-level information (for cv.coxEN, EN.alpha information).

cv.sb.splsdrcox 41

lst_models: If return_models = TRUE, return a the list of all cross-validated models. pred.method:
AUC evaluation algorithm method for evaluate the model performance.

opt.comp: Optimal component selected by the best_model. opt.nvar: Optimal number of vari-
ables selected by the best_model.

plot_AIC: AIC plot by each hyper-parameter. plot_c_index: C-Index plot by each hyper-parameter.
plot_BRIER: Brier Score plot by each hyper-parameter. plot_AUC: AUC plot by each hyper-
parameter.

class: Cross-Validated model class.

lst_train_indexes: List (of lists) of indexes for the observations used in each run/fold for train
the models. lst_test_indexes: List (of lists) of indexes for the observations used in each run/fold
for test the models.

time: time consumed for running the cross-validated function.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_multiomic")
data("Y_multiomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_multiomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_multiomic
X_train$mirna <- X_train$mirna[index_train,1:50]
X_train$proteomic <- X_train$proteomic[index_train,1:50]
Y_train <- Y_multiomic[index_train,]
cv.mb.splsdrcox_model <- cv.mb.splsdrcox(X_train, Y_train, max.ncomp = 2, vector = NULL,
n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)

cv.sb.splsdrcox SB.sPLS-DRCOX Cross-Validation

Description

This function performs cross-validated sparse partial least squares single block for splsdrcox. The
function returns the optimal number of components and the optimal sparsity penalty value based
on cross-validation. The performance could be based on multiple metrics as Area Under the Curve
(AUC), Brier Score or C-Index. Furthermore, the user could establish more than one metric simul-
taneously.

42 cv.sb.splsdrcox

Usage

cv.sb.splsdrcox(
X,
Y,
max.ncomp = 8,
penalty.list = seq(0.1, 0.9, 0.2),
n_run = 3,
k_folds = 10,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE,
remove_non_significant = FALSE,
alpha = 0.05,
w_AIC = 0,
w_c.index = 0,
w_AUC = 1,
w_BRIER = 0,
times = NULL,
max_time_points = 15,
MIN_AUC_INCREASE = 0.01,
MIN_AUC = 0.8,
MIN_COMP_TO_CHECK = 3,
pred.attr = "mean",
pred.method = "cenROC",
fast_mode = FALSE,
MIN_EPV = 5,
return_models = FALSE,
returnData = FALSE,
PARALLEL = FALSE,
verbose = FALSE,
seed = 123

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

max.ncomp Numeric. Maximum number of PLS components to compute for the cross vali-
dation (default: 8).

penalty.list Numeric vector. Vector of penalty values. Penalty for sPLS-DRCOX. If penalty
= 0 no penalty is applied, when penalty = 1 maximum penalty (no variables are

cv.sb.splsdrcox 43

selected) based on ’plsRcox’ penalty. Equal or greater than 1 cannot be selected
(default: seq(0.1,0.9,0.2)).

n_run Numeric. Number of runs for cross validation (default: 3).

k_folds Numeric. Number of folds for cross validation (default: 10).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_variance_at_fold_level

Logical. If remove_variance_at_fold_level = TRUE, (near) zero variance will
be removed at fold level (default: FALSE).

remove_non_significant_models

Logical. If remove_non_significant_models = TRUE, non-significant models
are removed before computing the evaluation. A non-significant model is a
model with at least one component/variable with a P-Value higher than the alpha
cutoff.

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).

w_c.index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).

w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).

w_BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (de-
fault: 0).

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

44 cv.sb.splsdrcox

MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the mini-
mum is reached, the evaluation could stop if the improvement does not reach an
AUC higher than adding the ’MIN_AUC_INCREASE’ value (default: 0.8).

MIN_COMP_TO_CHECK

Numeric. Number of penalties/components to evaluate to check if the AUC
improves. If for the next ’MIN_COMP_TO_CHECK’ the AUC is not better and
the ’MIN_AUC’ is meet, the evaluation could stop (default: 3).

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simulta-
neously. If fast_mode = FALSE, for each run, all linear predictors are computed
for test observations. Once all have their linear predictors, the evaluation is
perform across all the observations together (default: FALSE).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

return_models Logical. Return all models computed in cross validation (default: FALSE).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

seed Number. Seed value for performing runs/folds divisions (default: 123).

Details

The cv.sb.splsdrcox function performs cross-validation for the single-block sparse partial least
squares deviance residual Cox analysis. Cross-validation is a robust method to evaluate the per-
formance of a statistical model by partitioning the original sample into a training set to train the
model, and a test set to evaluate it. This helps in selecting the optimal hyperparameters for the
model, such as the number of latent components (max.ncomp) and the penalty for variable selection
(penalty.list).

The function systematically evaluates different combinations of hyperparameters by performing
multiple runs and folds. For each combination, the dataset is divided into training and test sets
based on the specified number of folds (k_folds). The model is then trained on the training set and
evaluated on the test set. This process is repeated for the specified number of runs (n_run), ensuring
a comprehensive evaluation of the model’s performance across different partitions of the data.

Various evaluation metrics, such as AIC, C-Index, Brier Score, and AUC, are computed for each
combination of hyperparameters. These metrics provide insights into the model’s accuracy, dis-
criminative ability, and calibration. The function then identifies the optimal hyperparameters that
yield the best performance based on the specified evaluation metrics.

cv.sb.splsdrcox 45

The function also offers flexibility in data preprocessing, such as centering and scaling of the ex-
planatory variables, removal of near-zero variance variables, and more. Additionally, users can
specify the AUC evaluation algorithm method (pred.method) and control the verbosity of the out-
put (verbose).

The output provides a comprehensive overview of the cross-validation results, including detailed
information at the fold, run, and component levels. Visualization tools, such as plots for AIC, C-
Index, Brier Score, and AUC, are also provided to aid in understanding the model’s performance
across different hyperparameters.

In summary, the cv.sb.splsdrcox function offers a robust approach for hyperparameter tuning and
model evaluation for the single-block sparse partial least squares deviance residual Cox analysis. It
ensures that the final model is both accurate and generalizable to new data.

Value

Instance of class "Coxmos" and model "cv.SB.sPLS-DRCOX". best_model_info: A data.frame
with the information for the best model. df_results_folds: A data.frame with fold-level in-
formation. df_results_runs: A data.frame with run-level information. df_results_comps: A
data.frame with component-level information (for cv.coxEN, EN.alpha information).

lst_models: If return_models = TRUE, return a the list of all cross-validated models. pred.method:
AUC evaluation algorithm method for evaluate the model performance.

opt.comp: Optimal component selected by the best_model. opt.penalty: Optimal penalty/penalty
selected by the best_model. opt.nvar: Optimal number of variables selected by the best_model.

plot_AIC: AIC plot by each hyper-parameter. plot_c_index: C-Index plot by each hyper-parameter.
plot_BRIER: Brier Score plot by each hyper-parameter. plot_AUC: AUC plot by each hyper-
parameter.

class: Cross-Validated model class.

lst_train_indexes: List (of lists) of indexes for the observations used in each run/fold for train
the models. lst_test_indexes: List (of lists) of indexes for the observations used in each run/fold
for test the models.

time: time consumed for running the cross-validated function.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_multiomic")
data("Y_multiomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_multiomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_multiomic
X_train$mirna <- X_train$mirna[index_train,1:50]
X_train$proteomic <- X_train$proteomic[index_train,1:50]
Y_train <- Y_multiomic[index_train,]
cv.sb.splsdrcox_model <- cv.sb.splsdrcox(X_train, Y_train, max.ncomp = 2, penalty.list = c(0.5),
n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)

46 cv.sb.splsicox

cv.sb.splsicox Cross validation cv.sb.splsicox

Description

This function performs cross-validated sparse partial least squares single block for splsicox. The
function returns the optimal number of components and the optimal sparsity penalty value based
on cross-validation. The performance could be based on multiple metrics as Area Under the Curve
(AUC), Brier Score or C-Index. Furthermore, the user could establish more than one metric simul-
taneously.

Usage

cv.sb.splsicox(
X,
Y,
max.ncomp = 8,
penalty.list = seq(0.1, 0.9, 0.2),
n_run = 3,
k_folds = 10,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE,
remove_non_significant = FALSE,
alpha = 0.05,
w_AIC = 0,
w_c.index = 0,
w_AUC = 1,
w_BRIER = 0,
times = NULL,
max_time_points = 15,
MIN_AUC_INCREASE = 0.01,
MIN_AUC = 0.8,
MIN_COMP_TO_CHECK = 3,
pred.attr = "mean",
pred.method = "cenROC",
fast_mode = FALSE,
MIN_EPV = 5,
return_models = FALSE,
returnData = FALSE,
PARALLEL = FALSE,
verbose = FALSE,
seed = 123

cv.sb.splsicox 47

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

max.ncomp Numeric. Maximum number of PLS components to compute for the cross vali-
dation (default: 8).

penalty.list Numeric vector. Penalty for variable selection for the individual cox models.
Variables with a lower P-Value than 1 - "penalty" in the individual cox analysis
will be keep for the sPLS-ICOX approach (default: seq(0.1,0.9,0.2)).

n_run Numeric. Number of runs for cross validation (default: 3).

k_folds Numeric. Number of folds for cross validation (default: 10).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_variance_at_fold_level

Logical. If remove_variance_at_fold_level = TRUE, (near) zero variance will
be removed at fold level (default: FALSE).

remove_non_significant_models

Logical. If remove_non_significant_models = TRUE, non-significant models
are removed before computing the evaluation.

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).

w_c.index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).

w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).

w_BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (de-
fault: 0).

48 cv.sb.splsicox

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the mini-
mum is reached, the evaluation could stop if the improvement does not reach an
AUC higher than adding the ’MIN_AUC_INCREASE’ value (default: 0.8).

MIN_COMP_TO_CHECK

Numeric. Number of penalties/components to evaluate to check if the AUC
improves. If for the next ’MIN_COMP_TO_CHECK’ the AUC is not better and
the ’MIN_AUC’ is meet, the evaluation could stop (default: 3).

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simulta-
neously. If fast_mode = FALSE, for each run, all linear predictors are computed
for test observations. Once all have their linear predictors, the evaluation is
perform across all the observations together (default: FALSE).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

return_models Logical. Return all models computed in cross validation (default: FALSE).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

seed Number. Seed value for performing runs/folds divisions (default: 123).

Details

The cv.sb.splsicox function performs cross-validation for the single-block sparse partial least
squares individual Cox analysis. While the function can handle datasets with multiple blocks, it
processes each block individually, ensuring a detailed examination of each block’s contribution

cv.sb.splsicox 49

to the survival outcome. This is distinct from multiblock methods where all blocks are analyzed
simultaneously.

In the context of this function, "single-block" means that each block of data is analyzed separately,
one at a time. This approach is beneficial when different blocks represent distinct types or sources
of data, allowing for a granular understanding of each block’s significance without the interference
of other blocks.

The cross-validation process involves partitioning the dataset into multiple subsets (folds) and then
iteratively training the model on a subset of the data while validating it on the remaining data.
This helps in determining the optimal hyperparameters for the model, such as the number of latent
components and the penalty for variable selection.

The function offers flexibility in specifying various hyperparameters and options for data prepro-
cessing. The output provides a comprehensive overview of the cross-validation results, including
metrics like AIC, C-Index, Brier Score, and AUC for each hyper-parameter combination. Visu-
alization tools are also provided to aid in understanding the model’s performance across different
hyperparameters.

In summary, the cv.sb.splsicox function offers a robust approach for determining the optimal
parameters for the single-block sparse partial least squares individual Cox analysis, ensuring opti-
mal feature selection, dimensionality reduction, and predictive modeling for each individual block
in the dataset.

Value

Instance of class "Coxmos" and model "cv.SB.sPLS-ICOX". best_model_info: A data.frame with
the information for the best model. df_results_folds: A data.frame with fold-level information.
df_results_runs: A data.frame with run-level information. df_results_comps: A data.frame
with component-level information (for cv.coxEN, EN.alpha information).

lst_models: If return_models = TRUE, return a the list of all cross-validated models. pred.method:
AUC evaluation algorithm method for evaluate the model performance.

opt.comp: Optimal component selected by the best_model. opt.penalty: Optimal penalty value
selected by the best_model.

plot_AIC: AIC plot by each hyper-parameter. plot_c_index: C-Index plot by each hyper-parameter.
plot_BRIER: Brier Score plot by each hyper-parameter. plot_AUC: AUC plot by each hyper-
parameter.

class: Cross-Validated model class.

lst_train_indexes: List (of lists) of indexes for the observations used in each run/fold for train
the models. lst_test_indexes: List (of lists) of indexes for the observations used in each run/fold
for test the models.

time: time consumed for running the cross-validated function.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

50 cv.splsdacox_dynamic

Examples

data("X_multiomic")
data("Y_multiomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_multiomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_multiomic
X_train$mirna <- X_train$mirna[index_train,1:50]
X_train$proteomic <- X_train$proteomic[index_train,1:50]
Y_train <- Y_multiomic[index_train,]
cv.sb.splsicox_model <- cv.sb.splsicox(X_train, Y_train, max.ncomp = 2, penalty.list = c(0.5),
n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)

cv.splsdacox_dynamic Cross validation splsdacox_dynamic

Description

The cv.splsdacox_dynamic function performs cross-validation for the sPLS-DA-COX-Dynamic
model. This model is designed to handle survival data, where the response variables are time-
to-event and event/censoring indicators. The function offers a comprehensive set of parameters to
fine-tune the cross-validation process, including options for data preprocessing, model evaluation,
and parallel processing.

Usage

cv.splsdacox_dynamic(
X,
Y,
max.ncomp = 8,
vector = NULL,
n_run = 3,
k_folds = 10,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE,
remove_non_significant = FALSE,
alpha = 0.05,
MIN_NVAR = 10,
MAX_NVAR = 1000,
n.cut_points = 5,
MIN_AUC_INCREASE = 0.01,
EVAL_METHOD = "AUC",
w_AIC = 0,

cv.splsdacox_dynamic 51

w_c.index = 0,
w_AUC = 1,
w_BRIER = 0,
times = NULL,
max_time_points = 15,
MIN_AUC = 0.8,
MIN_COMP_TO_CHECK = 3,
pred.attr = "mean",
pred.method = "cenROC",
fast_mode = FALSE,
max.iter = 200,
MIN_EPV = 5,
return_models = FALSE,
returnData = FALSE,
PARALLEL = FALSE,
verbose = FALSE,
seed = 123

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

max.ncomp Numeric. Maximum number of PLS components to compute for the cross vali-
dation (default: 8).

vector Numeric vector. Used for computing best number of variables. As many values
as components have to be provided. If vector = NULL, an automatic detection
is perform (default: NULL).

n_run Numeric. Number of runs for cross validation (default: 3).
k_folds Numeric. Number of folds for cross validation (default: 10).
x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:

TRUE).
x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_variance_at_fold_level

Logical. If remove_variance_at_fold_level = TRUE, (near) zero variance will
be removed at fold level (default: FALSE).

52 cv.splsdacox_dynamic

remove_non_significant_models

Logical. If remove_non_significant_models = TRUE, non-significant models
are removed before computing the evaluation.

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

MIN_NVAR Numeric. Minimum range size for computing cut points to select the best num-
ber of variables to use (default: 10).

MAX_NVAR Numeric. Maximum range size for computing cut points to select the best num-
ber of variables to use (default: 1000).

n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
If only two cut points are selected, minimum and maximum size are used. For
MB approaches as many as n.cut_points^n.blocks models will be computed as
minimum (default: 5).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

EVAL_METHOD Character. If EVAL_METHOD = "AUC", AUC metric will be use to compute
the best number of variables. In other case, c-index metric will be used (default:
"AUC").

w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).

w_c.index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).

w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).

w_BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (de-
fault: 0).

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the mini-
mum is reached, the evaluation could stop if the improvement does not reach an
AUC higher than adding the ’MIN_AUC_INCREASE’ value (default: 0.8).

MIN_COMP_TO_CHECK

Numeric. Number of penalties/components to evaluate to check if the AUC
improves. If for the next ’MIN_COMP_TO_CHECK’ the AUC is not better and
the ’MIN_AUC’ is meet, the evaluation could stop (default: 3).

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

cv.splsdacox_dynamic 53

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simulta-
neously. If fast_mode = FALSE, for each run, all linear predictors are computed
for test observations. Once all have their linear predictors, the evaluation is
perform across all the observations together (default: FALSE).

max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

return_models Logical. Return all models computed in cross validation (default: FALSE).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

seed Number. Seed value for performing runs/folds divisions (default: 123).

Details

The function begins by ensuring that the required libraries for evaluation metrics are installed. It
then checks the validity of the input parameters, such as ensuring that the response variables have
the appropriate column names ("time" and "event") and that the evaluation weights sum to 1.

Data preprocessing steps include the potential removal of variables with zero or near-zero variance,
and the transformation of explanatory variables to ensure they are centered or scaled as specified.
The function also provides an option to remove variables based on their coefficient of variation.

The core of the function revolves around the cross-validation process. Data is split into training and
test sets for each run and fold. For each combination of run, fold, and specified number of PLS
components, a sPLS-DA-COX-Dynamic model is trained. The performance of these models is then
evaluated using a combination of metrics, including the Akaike Information Criterion (AIC), C-
index, Brier Score, and Area Under the Curve (AUC). The function provides flexibility in choosing
the evaluation metric and its method.

Value

Instance of class "Coxmos" and model "cv.sPLS-DACOX-Dynamic". best_model_info: A data.frame
with the information for the best model. df_results_folds: A data.frame with fold-level in-
formation. df_results_runs: A data.frame with run-level information. df_results_comps: A
data.frame with component-level information (for cv.coxEN, EN.alpha information).

lst_models: If return_models = TRUE, return a the list of all cross-validated models. pred.method:
AUC evaluation algorithm method for evaluate the model performance.

opt.comp: Optimal component selected by the best_model. opt.nvar: Optimal number of vari-
ables selected by the best_model.

54 cv.splsdrcox

plot_AIC: AIC plot by each hyper-parameter. plot_c_index: C-Index plot by each hyper-parameter.
plot_BRIER: Brier Score plot by each hyper-parameter. plot_AUC: AUC plot by each hyper-
parameter.

class: Cross-Validated model class.

lst_train_indexes: List (of lists) of indexes for the observations used in each run/fold for train
the models. lst_test_indexes: List (of lists) of indexes for the observations used in each run/fold
for test the models.

time: time consumed for running the cross-validated function.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
cv.splsdacox_dynamic_model <- cv.splsdacox_dynamic(X_train, Y_train, max.ncomp = 2, vector = NULL,
n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)

cv.splsdrcox sPLS-DRCOX Cross-Validation

Description

This function performs cross-validated sparse partial least squares DRCox (sPLS-DRCOX). The
function returns the optimal number of components and the optimal sparsity penalty value based
on cross-validation. The performance could be based on multiple metrics as Area Under the Curve
(AUC), Brier Score or C-Index. Furthermore, the user could establish more than one metric simul-
taneously.

Usage

cv.splsdrcox(
X,
Y,
max.ncomp = 8,
penalty.list = seq(0.1, 0.9, 0.2),
n_run = 3,
k_folds = 10,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,

cv.splsdrcox 55

remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE,
remove_non_significant = FALSE,
alpha = 0.05,
w_AIC = 0,
w_c.index = 0,
w_AUC = 1,
w_BRIER = 0,
times = NULL,
max_time_points = 15,
MIN_AUC_INCREASE = 0.01,
MIN_AUC = 0.8,
MIN_COMP_TO_CHECK = 3,
pred.attr = "mean",
pred.method = "cenROC",
fast_mode = FALSE,
MIN_EPV = 5,
return_models = FALSE,
returnData = FALSE,
PARALLEL = FALSE,
verbose = FALSE,
seed = 123

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

max.ncomp Numeric. Maximum number of PLS components to compute for the cross vali-
dation (default: 8).

penalty.list Numeric vector. Vector of penalty values. Penalty for sPLS-DRCOX. If penalty
= 0 no penalty is applied, when penalty = 1 maximum penalty (no variables are
selected) based on ’plsRcox’ penalty. Equal or greater than 1 cannot be selected
(default: seq(0.1,0.9,0.2)).

n_run Numeric. Number of runs for cross validation (default: 3).

k_folds Numeric. Number of folds for cross validation (default: 10).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

56 cv.splsdrcox

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_variance_at_fold_level

Logical. If remove_variance_at_fold_level = TRUE, (near) zero variance will
be removed at fold level (default: FALSE).

remove_non_significant_models

Logical. If remove_non_significant_models = TRUE, non-significant models
are removed before computing the evaluation. A non-significant model is a
model with at least one component/variable with a P-Value higher than the alpha
cutoff.

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).

w_c.index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).

w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).

w_BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (de-
fault: 0).

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the mini-
mum is reached, the evaluation could stop if the improvement does not reach an
AUC higher than adding the ’MIN_AUC_INCREASE’ value (default: 0.8).

MIN_COMP_TO_CHECK

Numeric. Number of penalties/components to evaluate to check if the AUC
improves. If for the next ’MIN_COMP_TO_CHECK’ the AUC is not better and
the ’MIN_AUC’ is meet, the evaluation could stop (default: 3).

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

cv.splsdrcox 57

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simulta-
neously. If fast_mode = FALSE, for each run, all linear predictors are computed
for test observations. Once all have their linear predictors, the evaluation is
perform across all the observations together (default: FALSE).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

return_models Logical. Return all models computed in cross validation (default: FALSE).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

seed Number. Seed value for performing runs/folds divisions (default: 123).

Details

The sPLS-DRCOX Cross-Validation function offers a robust approach to fine-tune the hyperpa-
rameters of the sPLS-DRCOX model, ensuring optimal performance in survival analysis tasks. By
systematically evaluating different combinations of hyperparameters, this function identifies the
best model configuration that minimizes prediction error.

Cross-validation is a crucial step in survival analysis, especially when dealing with high-dimensional
datasets. It provides an unbiased assessment of the model’s generalization capability, safeguarding
against overfitting. This function employs a k-fold cross-validation strategy, partitioning the data
into multiple subsets (folds) and iteratively using each fold as a test set while the remaining folds
serve as training data.

One of the primary strengths of this function is its flexibility. Users can specify a range of values
for the number of PLS components and the penalty parameter penalty. The function then eval-
uates all possible combinations, returning the optimal configuration that yields the best predictive
performance.

Additionally, the function offers advanced features like parallel processing for faster computation,
and the ability to return all models from the cross-validation process. This is particularly useful for
in-depth analysis and comparisons.

The output provides comprehensive insights, including performance metrics for each fold, run, and
hyperparameter combination. Visualization plots like AIC, C-Index, Brier Score, and AUC plots
further aid in understanding the model’s performance across different configurations.

Value

Instance of class "Coxmos" and model "cv.sPLS-DRCOX". best_model_info: A data.frame with
the information for the best model. df_results_folds: A data.frame with fold-level information.

58 cv.splsdrcox_dynamic

df_results_runs: A data.frame with run-level information. df_results_comps: A data.frame
with component-level information (for cv.coxEN, EN.alpha information).

lst_models: If return_models = TRUE, return a the list of all cross-validated models. pred.method:
AUC evaluation algorithm method for evaluate the model performance.

opt.comp: Optimal component selected by the best_model. opt.penalty: Optimal penalty/penalty
selected by the best_model. opt.nvar: Optimal number of variables selected by the best_model.

plot_AIC: AIC plot by each hyper-parameter. plot_c_index: C-Index plot by each hyper-parameter.
plot_BRIER: Brier Score plot by each hyper-parameter. plot_AUC: AUC plot by each hyper-
parameter.

class: Cross-Validated model class.

lst_train_indexes: List (of lists) of indexes for the observations used in each run/fold for train
the models. lst_test_indexes: List (of lists) of indexes for the observations used in each run/fold
for test the models.

time: time consumed for running the cross-validated function.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
cv.splsdrcox_model <- cv.splsdrcox(X_train, Y_train, max.ncomp = 2, penalty.list = c(0.1),
n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)

cv.splsdrcox_dynamic Cross validation sPLS-DRCOX

Description

The function cv.splsdrcox_dynamic conducts a cross-validation for the sPLS-DRCOX model, which
is a specialized model tailored for survival analysis. The function aims to optimize the model’s
performance by determining the best number of PLS components and variables through cross-
validation.

Usage

cv.splsdrcox_dynamic(
X,
Y,
max.ncomp = 8,

cv.splsdrcox_dynamic 59

vector = NULL,
n_run = 3,
k_folds = 10,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE,
remove_non_significant = FALSE,
alpha = 0.05,
MIN_NVAR = 10,
MAX_NVAR = 1000,
n.cut_points = 5,
MIN_AUC_INCREASE = 0.01,
EVAL_METHOD = "AUC",
w_AIC = 0,
w_c.index = 0,
w_AUC = 1,
w_BRIER = 0,
times = NULL,
max_time_points = 15,
MIN_AUC = 0.8,
MIN_COMP_TO_CHECK = 3,
pred.attr = "mean",
pred.method = "cenROC",
fast_mode = FALSE,
max.iter = 200,
MIN_EPV = 5,
return_models = FALSE,
returnData = FALSE,
PARALLEL = FALSE,
verbose = FALSE,
seed = 123

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

max.ncomp Numeric. Maximum number of PLS components to compute for the cross vali-
dation (default: 8).

vector Numeric vector. Used for computing best number of variables. As many values
as components have to be provided. If vector = NULL, an automatic detection

60 cv.splsdrcox_dynamic

is perform (default: NULL).

n_run Numeric. Number of runs for cross validation (default: 3).

k_folds Numeric. Number of folds for cross validation (default: 10).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_variance_at_fold_level

Logical. If remove_variance_at_fold_level = TRUE, (near) zero variance will
be removed at fold level (default: FALSE).

remove_non_significant_models

Logical. If remove_non_significant_models = TRUE, non-significant models
are removed before computing the evaluation. A non-significant model is a
model with at least one component/variable with a P-Value higher than the alpha
cutoff.

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

MIN_NVAR Numeric. Minimum range size for computing cut points to select the best num-
ber of variables to use (default: 10).

MAX_NVAR Numeric. Maximum range size for computing cut points to select the best num-
ber of variables to use (default: 1000).

n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
If only two cut points are selected, minimum and maximum size are used. For
MB approaches as many as n.cut_points^n.blocks models will be computed as
minimum (default: 5).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

EVAL_METHOD Character. If EVAL_METHOD = "AUC", AUC metric will be use to compute
the best number of variables. In other case, c-index metric will be used (default:
"AUC").

cv.splsdrcox_dynamic 61

w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).

w_c.index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).

w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).

w_BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (de-
fault: 0).

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the mini-
mum is reached, the evaluation could stop if the improvement does not reach an
AUC higher than adding the ’MIN_AUC_INCREASE’ value (default: 0.8).

MIN_COMP_TO_CHECK

Numeric. Number of penalties/components to evaluate to check if the AUC
improves. If for the next ’MIN_COMP_TO_CHECK’ the AUC is not better and
the ’MIN_AUC’ is meet, the evaluation could stop (default: 3).

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simulta-
neously. If fast_mode = FALSE, for each run, all linear predictors are computed
for test observations. Once all have their linear predictors, the evaluation is
perform across all the observations together (default: FALSE).

max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

return_models Logical. Return all models computed in cross validation (default: FALSE).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

seed Number. Seed value for performing runs/folds divisions (default: 123).

62 cv.splsdrcox_dynamic

Details

The cv.splsdrcox_dynamic function is designed to perform cross-validation for the sPLS-DRCOX
model, a specialized model for survival analysis. The function’s primary objective is to identify the
optimal number of PLS components and variables that yield the best model performance.

The function accepts both numeric matrices and data frames for explanatory (X) and response (Y)
variables. It is essential to ensure that qualitative variables in X are transformed into binary format.
The response variable Y should have two columns: "time" and "event". The event column should
contain binary values, where 0/1 or FALSE/TRUE represent censored and event observations, re-
spectively.

The cross-validation process is controlled by several parameters, including the maximum number
of PLS components (max.ncomp), the number of runs (n_run), and the number of folds (k_folds).
The function also provides options for data preprocessing, such as centering and scaling of the X
matrix, and removal of variables with near-zero or zero variance.

Significance testing is incorporated into the model evaluation process. Users can specify the alpha
threshold (alpha) for determining significance. Non-significant models or variables can be option-
ally removed from the evaluation based on user-defined criteria.

The function also offers flexibility in model evaluation metrics. Users can choose between differ-
ent metrics such as AUC, AIC, C-Index, and Brier Score. The importance of each metric in the
evaluation can be controlled using weights (w_AIC, w_c.index, w_AUC, w_BRIER).

For computational efficiency, the function provides an option to run the cross-validation in parallel
(PARALLEL). Additionally, verbose logging can be enabled to display extra messages during the
execution.

Value

Instance of class "Coxmos" and model "cv.sPLS-DRCOX-Dynamic". best_model_info: A data.frame
with the information for the best model. df_results_folds: A data.frame with fold-level in-
formation. df_results_runs: A data.frame with run-level information. df_results_comps: A
data.frame with component-level information (for cv.coxEN, EN.alpha information).

lst_models: If return_models = TRUE, return a the list of all cross-validated models. pred.method:
AUC evaluation algorithm method for evaluate the model performance.

opt.comp: Optimal component selected by the best_model. opt.nvar: Optimal number of vari-
ables selected by the best_model.

plot_AIC: AIC plot by each hyper-parameter. plot_c_index: C-Index plot by each hyper-parameter.
plot_BRIER: Brier Score plot by each hyper-parameter. plot_AUC: AUC plot by each hyper-
parameter.

class: Cross-Validated model class.

lst_train_indexes: List (of lists) of indexes for the observations used in each run/fold for train
the models. lst_test_indexes: List (of lists) of indexes for the observations used in each run/fold
for test the models.

time: time consumed for running the cross-validated function.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

cv.splsicox 63

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:20]
Y_train <- Y_proteomic[index_train,]
cv.splsdrcox_dynamic_model <- cv.splsdrcox_dynamic(X_train, Y_train, max.ncomp = 1, vector = NULL,
n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)

cv.splsicox sPLS-ICOX Cross-Validation

Description

This function performs cross-validated sparse partial least squares Cox (sPLS-ICOX). The function
returns the optimal number of components and the optimal sparsity penalty value based on cross-
validation. The performance could be based on multiple metrics as Area Under the Curve (AUC),
Brier Score or C-Index. Furthermore, the user could establish more than one metric simultaneously.

Usage

cv.splsicox(
X,
Y,
max.ncomp = 8,
penalty.list = seq(0, 0.9, 0.1),
n_run = 3,
k_folds = 10,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE,
remove_non_significant = FALSE,
alpha = 0.05,
w_AIC = 0,
w_c.index = 0,
w_AUC = 1,
w_BRIER = 0,
times = NULL,
max_time_points = 15,
MIN_AUC_INCREASE = 0.05,
MIN_AUC = 0.8,
MIN_COMP_TO_CHECK = 3,

64 cv.splsicox

pred.attr = "mean",
pred.method = "cenROC",
fast_mode = FALSE,
MIN_EPV = 5,
return_models = FALSE,
returnData = FALSE,
PARALLEL = FALSE,
verbose = FALSE,
seed = 123

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

max.ncomp Numeric. Maximum number of PLS components to compute for the cross vali-
dation (default: 8).

penalty.list Numeric vector. Penalty for variable selection for the individual cox models.
Variables with a lower P-Value than 1 - "penalty" in the individual cox analysis
will be keep for the sPLS-ICOX approach (default: seq(0.1,0.9,0.2)).

n_run Numeric. Number of runs for cross validation (default: 3).

k_folds Numeric. Number of folds for cross validation (default: 10).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_variance_at_fold_level

Logical. If remove_variance_at_fold_level = TRUE, (near) zero variance will
be removed at fold level (default: FALSE).

remove_non_significant_models

Logical. If remove_non_significant_models = TRUE, non-significant models
are removed before computing the evaluation. A non-significant model is a
model with at least one component/variable with a P-Value higher than the alpha
cutoff.

cv.splsicox 65

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).

w_c.index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).

w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).

w_BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (de-
fault: 0).

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the mini-
mum is reached, the evaluation could stop if the improvement does not reach an
AUC higher than adding the ’MIN_AUC_INCREASE’ value (default: 0.8).

MIN_COMP_TO_CHECK

Numeric. Number of penalties/components to evaluate to check if the AUC
improves. If for the next ’MIN_COMP_TO_CHECK’ the AUC is not better and
the ’MIN_AUC’ is meet, the evaluation could stop (default: 3).

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simulta-
neously. If fast_mode = FALSE, for each run, all linear predictors are computed
for test observations. Once all have their linear predictors, the evaluation is
perform across all the observations together (default: FALSE).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

return_models Logical. Return all models computed in cross validation (default: FALSE).

66 cv.splsicox

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

seed Number. Seed value for performing runs/folds divisions (default: 123).

Details

The sPLS-ICOX Cross-Validation function offers a systematic approach to determine the opti-
mal hyperparameters for the sparse partial least squares Cox (sPLS-ICOX) model through cross-
validation. This function aims to identify the best combination of the number of PLS components
(max.ncomp) and the sparsity penalty (penalty.list) by evaluating model performance across
multiple metrics such as Area Under the Curve (AUC), Brier Score, and C-Index.

Cross-validation is executed through a series of runs (n_run) and folds (k_folds), ensuring a ro-
bust assessment of model performance. The function provides flexibility in defining the evaluation
criteria, allowing users to set weights for different metrics (w_AIC, w_c.index, w_AUC, w_BRIER)
and to specify the desired evaluation method (pred.method).

An essential feature of this function is its ability to halt the evaluation process based on pre-
defined conditions. If the improvement in AUC across successive models does not surpass the
MIN_AUC_INCREASE threshold or if the desired AUC (MIN_AUC) is achieved, the evaluation can be
terminated early, optimizing computational efficiency.

The function also incorporates various data preprocessing options, emphasizing the importance
of data quality in model performance. For instance, near-zero and zero variance variables can
be removed either globally or at the fold level. Additionally, the function can handle multicore
processing (PARALLEL option) to expedite the cross-validation process.

Upon completion, the function returns a comprehensive output, including detailed information
about the best model, performance metrics at various levels (fold, run, component), and option-
ally, all cross-validated models.

Value

Instance of class "Coxmos" and model "cv.sPLS-ICOX". best_model_info: A data.frame with
the information for the best model. df_results_folds: A data.frame with fold-level information.
df_results_runs: A data.frame with run-level information. df_results_comps: A data.frame
with component-level information (for cv.coxEN, EN.alpha information).

lst_models: If return_models = TRUE, return a the list of all cross-validated models. pred.method:
AUC evaluation algorithm method for evaluate the model performance.

opt.comp: Optimal component selected by the best_model. opt.penalty: Optimal penalty value
selected by the best_model.

plot_AIC: AIC plot by each hyper-parameter. plot_c_index: C-Index plot by each hyper-parameter.
plot_BRIER: Brier Score plot by each hyper-parameter. plot_AUC: AUC plot by each hyper-
parameter.

class: Cross-Validated model class.

deleteNearZeroCoefficientOfVariation 67

lst_train_indexes: List (of lists) of indexes for the observations used in each run/fold for train
the models. lst_test_indexes: List (of lists) of indexes for the observations used in each run/fold
for test the models.

time: time consumed for running the cross-validated function.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
cv.splsicox_model <- cv.splsicox(X_train, Y_train, max.ncomp = 2, penalty.list = c(0.1),
n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)

deleteNearZeroCoefficientOfVariation

deleteNearZeroCoefficientOfVariation

Description

Filters out variables from a dataset that exhibit a coefficient of variation below a specified threshold,
ensuring the retention of variables with meaningful variability.

Usage

deleteNearZeroCoefficientOfVariation(X, LIMIT = 0.1)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

LIMIT Numeric. Cutoff for minimum variation. If coefficient is lesser than the limit,
the variables are removed because not vary enough (default: 0.1).

Details

The deleteNearZeroCoefficientOfVariation function is a pivotal tool in data preprocessing,
especially when dealing with high-dimensional datasets. The coefficient of variation (CoV) is a
normalized measure of data dispersion, calculated as the ratio of the standard deviation to the mean.
In many scientific investigations, variables with a low CoV might be considered as offering lim-
ited discriminative information, potentially leading to noise in subsequent statistical analyses. By
setting a threshold through the LIMIT parameter, this function provides a systematic approach to

68 deleteNearZeroCoefficientOfVariation.mb

identify and exclude variables that do not meet the desired variability criteria. The underlying ra-
tionale is that variables with a CoV below the set threshold might not contribute significantly to the
variability of the dataset and could be redundant or even detrimental for certain analyses. The func-
tion returns a modified dataset, a list of deleted variables, and the computed coefficients of variation
for each variable. This comprehensive output ensures that researchers are well-informed about the
preprocessing steps and can make subsequent analytical decisions with confidence.

Value

Return a list of two objects: X: The new data.frame X filtered. variablesDeleted: The variables
that have been removed by the filter. coeff_variation: The coefficient variables per each variable
tested.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
X <- X_proteomic
filter <- deleteNearZeroCoefficientOfVariation(X, LIMIT = 0.1)

deleteNearZeroCoefficientOfVariation.mb

deleteNearZeroCoefficientOfVariation.mb

Description

Filters out variables from a dataset that exhibit a coefficient of variation below a specified threshold,
ensuring the retention of variables with meaningful variability.

Usage

deleteNearZeroCoefficientOfVariation.mb(X, LIMIT = 0.1)

Arguments

X List of numeric matrices or data.frames. Explanatory variables. Qualitative
variables must be transform into binary variables.

LIMIT Numeric. Cutoff for minimum variation. If coefficient is lesser than the limit,
the variables are removed because not vary enough (default: 0.1).

deleteZeroOrNearZeroVariance 69

Details

The deleteNearZeroCoefficientOfVariation function is a pivotal tool in data preprocessing,
especially when dealing with high-dimensional datasets. The coefficient of variation (CoV) is a
normalized measure of data dispersion, calculated as the ratio of the standard deviation to the mean.
In many scientific investigations, variables with a low CoV might be considered as offering lim-
ited discriminative information, potentially leading to noise in subsequent statistical analyses. By
setting a threshold through the LIMIT parameter, this function provides a systematic approach to
identify and exclude variables that do not meet the desired variability criteria. The underlying ra-
tionale is that variables with a CoV below the set threshold might not contribute significantly to the
variability of the dataset and could be redundant or even detrimental for certain analyses. The func-
tion returns a modified dataset, a list of deleted variables, and the computed coefficients of variation
for each variable. This comprehensive output ensures that researchers are well-informed about the
preprocessing steps and can make subsequent analytical decisions with confidence.

Value

A list of three objects. X: A list with as many blocks as X input, but with the variables filtered.
variablesDeleted: A list with as many blocks as X input, with the name of the variables that have
been removed. coeff_variation: A list with as many blocks as X input, with the coefficient of
variation per variable.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_multiomic")
X <- X_multiomic
filter <- deleteNearZeroCoefficientOfVariation.mb(X, LIMIT = 0.1)

deleteZeroOrNearZeroVariance

deleteZeroOrNearZeroVariance

Description

Provides a robust mechanism to filter out variables from a dataset that exhibit zero or near-zero
variance, thereby enhancing the quality and interpretability of subsequent statistical analyses.

Usage

deleteZeroOrNearZeroVariance(
X,
remove_near_zero_variance = FALSE,
remove_zero_variance = TRUE,

70 deleteZeroOrNearZeroVariance

toKeep.zv = NULL,
freqCut = 95/5

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

freqCut Numeric. Cutoff for the ratio of the most common value to the second most
common value (default: 95/5).

Details

The deleteZeroOrNearZeroVariance function is an indispensable tool in the preprocessing phase
of statistical modeling. In many datasets, especially high-dimensional ones, certain variables might
exhibit zero or near-zero variance. Such variables can be problematic as they offer limited infor-
mation variance and can potentially distort the results of statistical models, leading to issues like
overfitting. By leveraging the caret::nearZeroVar() function, this tool offers a rigorous method
to identify and exclude these variables. Users are afforded flexibility in their choices, with options
to remove only zero variance variables, near-zero variance variables, or both. The function also
provides the capability to set a frequency cutoff, freqCut, which determines the threshold for near-
zero variance based on the ratio of the most frequent value to the second most frequent value. For
scenarios where certain variables are deemed essential and should not be removed regardless of
their variance, the toKeep.zv parameter allows users to specify a list of such variables.

Value

Return a list of two objects: X: The new data.frame X filtered. variablesDeleted: The variables
that have been removed by the filter.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
X <- X_proteomic
filter <- deleteZeroOrNearZeroVariance(X, remove_near_zero_variance = TRUE)

deleteZeroOrNearZeroVariance.mb 71

deleteZeroOrNearZeroVariance.mb

deleteZeroOrNearZeroVariance.mb

Description

Provides a robust mechanism to filter out variables from a dataset that exhibit zero or near-zero
variance, thereby enhancing the quality and interpretability of subsequent statistical analyses.

Usage

deleteZeroOrNearZeroVariance.mb(
X,
remove_near_zero_variance = FALSE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
freqCut = 95/5

)

Arguments

X List of numeric matrices or data.frame. Explanatory variables. Qualitative vari-
ables must be transform into binary variables.

remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

freqCut Numeric. Cutoff for the ratio of the most common value to the second most
common value (default: 95/5).

Details

The deleteZeroOrNearZeroVariance function is an indispensable tool in the preprocessing phase
of statistical modeling. In many datasets, especially high-dimensional ones, certain variables might
exhibit zero or near-zero variance. Such variables can be problematic as they offer limited infor-
mation variance and can potentially distort the results of statistical models, leading to issues like
overfitting. By leveraging the caret::nearZeroVar() function, this tool offers a rigorous method
to identify and exclude these variables. Users are afforded flexibility in their choices, with options
to remove only zero variance variables, near-zero variance variables, or both. The function also
provides the capability to set a frequency cutoff, freqCut, which determines the threshold for near-
zero variance based on the ratio of the most frequent value to the second most frequent value. For
scenarios where certain variables are deemed essential and should not be removed regardless of
their variance, the toKeep.zv parameter allows users to specify a list of such variables.

72 eval_Coxmos_models

Value

A list of two objects. X: A list with as many blocks as X input, but with the variables filtered.
variablesDeleted: A list with as many blocks as X input, with the name of the variables that have
been removed.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_multiomic")
X <- X_multiomic
filter <- deleteZeroOrNearZeroVariance.mb(X, remove_near_zero_variance = TRUE)

eval_Coxmos_models eval_Coxmos_models

Description

The eval_Coxmos_models function facilitates the comprehensive evaluation of multiple Coxmos
models in a concurrent manner. It is designed to provide a detailed assessment of the models’ per-
formance by calculating the Area Under the Curve (AUC) for each model at specified time points.
The results generated by this function are primed for visualization using the plot_evaluation()
function.

Usage

eval_Coxmos_models(
lst_models,
X_test,
Y_test,
pred.method = "cenROC",
pred.attr = "mean",
times = NULL,
PARALLEL = FALSE,
max_time_points = 15,
verbose = FALSE,
progress_bar = TRUE

)

Arguments

lst_models List of Coxmos models. Each object of the list must be named.

X_test Numeric matrix or data.frame. Explanatory variables for test data (raw format).
Qualitative variables must be transform into binary variables.

eval_Coxmos_models 73

Y_test Numeric matrix or data.frame. Response variables for test data. Object must
have two columns named as "time" and "event". For event column, accepted
values are: 0/1 or FALSE/TRUE for censored and event observations.

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

progress_bar Logical. If progress_bar = TRUE, progress bar is shown (default = TRUE).

Details

The function begins by validating the names of the models provided in the lst_models list and
ensures that there are at least two events present in the dataset. It then checks for the availability of
the specified evaluation method and ensures that the test times are consistent with the training times
of the models.

The core of the function revolves around the evaluation of each model. Depending on the user’s
preference, the evaluations can be executed in parallel, which can significantly expedite the process,
especially when dealing with a large number of models. The function employs various evaluation
methods, as specified by the pred.method parameter, to compute the AUC values. These methods
include but are not limited to "risksetROC", "survivalROC", and "cenROC".

Post-evaluation, the function collates the results, including training times, AIC values, c-index,
Brier scores, and AUC values for each time point. The results are then transformed into a struc-
tured data frame, making it conducive for further analysis and visualization. It’s worth noting that
potential issues in AUC computation, often arising from sparse samples, are flagged to the user for
further inspection.

Value

A list of four objects. df: A data.frame which the global predictions for all models. This data.frame
is used to plot the information by the function plot_evaluation(). lst_AUC: A list of models
where the user can check the linear predictors computed, the global AUC, the AUC per time point
and the predicted time points selected. lst_BRIER: A list of models where the user can check
the predicted time points selected, the Brier Score per time point and the Integrative Brier score
(computed by survcomp::sbrier.score2proba). time: Time used for evaluation process.

74 eval_Coxmos_model_per_variable

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA (1982). “Evaluating the Yield of Medi-
cal Tests.” JAMA, 247. doi:10.1001/jama.1982.03320430047030, https://jamanetwork.com/
journals/jama. MS S, AC C, J Q, B H (2011). “survcomp: an R/Bioconductor package for
performance assessment and comparison of survival models.” Bioinformatics, 27(22), 3206-3208.
Heagerty PJ, Lumley T, Pepe MS (2000). “Time-Dependent ROC Curves for Censored Survival
Data and a Diagnostic Marker.” Biometrics. Heagerty PJ, Zheng Y (2005). “Survival Model Predic-
tive Accuracy and ROC Curves.” Biometrics, 61, 92-105. doi:10.1111/j.0006341x.2005.030814.x.
Beyene KM, Ghouch AE (2020). “Smoothed time-dependent receiver operating characteristic curve
for right censored survival data.” Statistics in Medicine, 39(24), 3373-3396. ISSN 10970258,
https://pubmed.ncbi.nlm.nih.gov/32687225/. Pérez-Fernández S, Martínez-Camblor P, Filz-
moser P, Corral N (2018). “nsROC: An R package for Non-Standard ROC Curve Analysis.” The
R Journal. doi:10.1007/s00180020009557. Díaz-Coto S, Martínez-Camblor P, Pérez-Fernández S
(2020). “smoothROCtime: an R package for time-dependent ROC curve estimation.” Computa-
tional Statistics, 35(3), 1231-1251. ISSN 16139658, doi:10.1007/s00180020009557.

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]

X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]

model_icox <- splsicox(X_train, Y_train, n.comp = 2)
model_drcox <- splsdrcox(X_train, Y_train, n.comp = 2)
lst_models <- list("splsicox" = model_icox, "splsdrcox" = model_drcox)
eval_Coxmos_models(lst_models, X_test, Y_test, pred.method = "cenROC")

eval_Coxmos_model_per_variable

eval_Coxmos_model_per_variable

Description

The eval_Coxmos_model_per_variable function offers a granular evaluation of a specific Cox-
mos model, focusing on the influence of individual variables or components on the model’s predic-
tive performance. It computes the Area Under the Curve (AUC) for each variable at designated time
points, providing insights into the relative importance of each variable in the model’s predictions.
For a visual representation of the results, it is advisable to utilize the plot_evaluation() function
post-evaluation.

https://doi.org/10.1001/jama.1982.03320430047030
https://jamanetwork.com/journals/jama
https://jamanetwork.com/journals/jama
https://doi.org/10.1111/j.0006-341x.2005.030814.x
https://pubmed.ncbi.nlm.nih.gov/32687225/
https://doi.org/10.1007/s00180-020-00955-7
https://doi.org/10.1007/s00180-020-00955-7

eval_Coxmos_model_per_variable 75

Usage

eval_Coxmos_model_per_variable(
model,
X_test,
Y_test,
pred.method = "cenROC",
pred.attr = "mean",
times = NULL,
max_time_points = 15,
PARALLEL = FALSE,
verbose = FALSE

)

Arguments

model Coxmos model.
X_test Numeric matrix or data.frame. Explanatory variables for test data (raw format).

Qualitative variables must be transform into binary variables.
Y_test Numeric matrix or data.frame. Response variables for test data. Object must

have two columns named as "time" and "event". For event column, accepted
values are: 0/1 or FALSE/TRUE for censored and event observations.

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
total cores - 1 will be used. It could lead to higher RAM consumption (default:
FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

Upon invocation, the function initiates by verifying the consistency between test times and the
training times of the provided model. Subsequently, linear predictors for each variable are derived
using the predict.Coxmos function. These linear predictors serve as the foundation for the AUC
computation, which is executed for each variable across the specified time points.

The function employs various evaluation methods, as determined by the pred.method parameter,
to calculate the AUC values. These methods encompass options such as "risksetROC", "survival-
ROC", and "cenROC", among others. The results are systematically organized into a structured data

76 factorToBinary

frame, segregating AUC values for each variable at different time points. This structured output not
only facilitates easy interpretation but also sets the stage for subsequent visualization or further
analysis.

It’s noteworthy that the function is equipped to handle parallel processing, contingent on the user’s
preference, which can expedite the evaluation process, especially when dealing with extensive
datasets or multiple time points.

Value

A list of two objects: df: A data.frame which the predictions for the specific model split into the
full model (LP) and each component individually. This data.frame is used to plot the information by
the function plot_evaluation(). lst_AUC: A list of the full model prediction and its components
where the user can check the linear predictors used, the global AUC, the AUC per time point and
the predicted time points selected.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]

X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]

model_icox <- splsicox(X_train, Y_train, n.comp = 2)
eval_Coxmos_model_per_variable(model_icox, X_test, Y_test, pred.method = "cenROC")

factorToBinary factorToBinary

Description

Transforms factor variables within a matrix or data frame into binary dummy variables, facilitating
numerical representation for subsequent statistical analyses. The function provides an option to
generate either k or k-1 dummy variables for each factor, contingent on its levels.

Usage

factorToBinary(X, all = TRUE, sep = "_")

getAutoKM 77

Arguments

X Numeric matrix or data.frame. Only qualitative variables (factor class) will be
transformed into binary variables.

all Logical. If all = TRUE, as many variables as levels will be returned in the new
matrix. Otherwise, k-1 variables will be used where the first level will be use as
"default" state (default: TRUE).

sep Character. Character symbol to generate new colnames. Ex. If variable name is
"sex" and sep = "_". Dummy variables will be "sex_male" and "sex_female".

Details

The factorToBinary function addresses a recurrent challenge in data preprocessing: the conver-
sion of factor variables into a numerical format suitable for a plethora of statistical and machine
learning algorithms. Factors, inherently categorical in nature, often necessitate transformation into
a binary format, commonly referred to as dummy or one-hot encoding. This function adeptly
performs this transformation, iterating over each column of the provided matrix or data frame.
When encountering factor variables, it employs the model.matrix function to generate the requi-
site dummy variables. The user’s discretion is paramount in determining the number of dummy
variables: either k, equivalent to the number of levels for the factor, or k-1, where the omitted level
serves as a reference or "default" state. This choice is particularly salient in regression contexts
to circumvent multicollinearity issues. The naming convention for the resultant dummy variables
amalgamates the original factor’s name with its respective level, separated by a user-defined char-
acter, ensuring clarity and interpretability. Non-factor variables remain unaltered, preserving the
integrity of the original data structure.

Value

A matrix or data.frame with k-1 or k dummy variables for categorical/factor data.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
X <- X_proteomic
X.dummy <- factorToBinary(X, all = FALSE, sep = "_")
X.pls <- factorToBinary(X, all = TRUE, sep = "_")

getAutoKM getAutoKM

Description

Generates a Kaplan-Meier plot for the specified Coxmos model. The plot can be constructed based
on the model’s Linear Predictor value, the PLS-COX component, or the original variable level.

78 getAutoKM

Usage

getAutoKM(
type = "LP",
model,
comp = 1:2,
top = 10,
ori_data = TRUE,
BREAKTIME = NULL,
n.breaks = 20,
only_sig = FALSE,
alpha = 0.05,
title = NULL,
verbose = FALSE

)

Arguments

type Character. Kaplan Meier for complete model linear predictor ("LP"), for PLS
components ("COMP") or for original variables ("VAR") (default: LP).

model Coxmos model.

comp Numeric vector. Vector of length two. Select which components to plot (default:
c(1,2)).

top Numeric. Show "top" first variables. If top = NULL, all variables are shown
(default: 10).

ori_data Logical. Compute the Kaplan-Meier plot with the raw-data or the normalize-
data to compute the best cut-point for splitting the data into two groups. Only
used when type = "VAR" (default: TRUE).

BREAKTIME Numeric. Size of time to split the data into "total_time / BREAKTIME + 1"
points. If BREAKTIME = NULL, "n.breaks" is used (default: NULL).

n.breaks Numeric. If BREAKTIME is NULL, "n.breaks" is the number of time-break
points to compute (default: 20).

only_sig Logical. If "only_sig" = TRUE, then only significant log-rank test variables are
returned (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

title Character. Kaplan-Meier plot title (default: NULL).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

The getAutoKM function offers a flexible approach to visualize survival analysis results using the
Kaplan-Meier method. Depending on the type parameter, the function can generate plots based on
different aspects of the Coxmos model:

• "LP": Uses the Linear Predictor value of the model.

getAutoKM.list 79

• "COMP": Utilizes the PLS-COX component.

• "VAR": Operates at the original variable level.

The function provides options to customize the number of components (comp), the number of top
variables (top), and whether to use raw or normalized data (ori_data). Additionally, users can
specify the time intervals (BREAKTIME and n.breaks) for the Kaplan-Meier plot. If significance
testing is desired, the function can filter out non-significant variables based on the log-rank test
(only_sig and alpha parameters).

It’s essential to ensure that the provided model is of the correct class (Coxmos). The function will
return an error message if an incompatible model is supplied.

Value

A list of two elements per each model in the list: info_logrank_num: A list of two data.frames
with the numerical variables categorize as qualitative and the cutpoint to divide the data into two
groups. LST_PLOTS: A list with the Kaplan-Meier Plots.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Kaplan EL, Kaplan EL, Meier P (1958). “Nonparametric Estimation from Incomplete Observa-
tions.” Journal of the American Statistical Association. doi:10.1007/9781461243809_25, https:
//link.springer.com/chapter/10.1007/978-1-4612-4380-9_25.

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
getAutoKM(type = "LP", model = splsicox.model)

getAutoKM.list getAutoKM.list

Description

Run the function "getAutoKM" for a list of models. More information in "?getAutoKM".

https://doi.org/10.1007/978-1-4612-4380-9_25
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_25
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_25

80 getAutoKM.list

Usage

getAutoKM.list(
type = "LP",
lst_models,
comp = 1:2,
top = NULL,
ori_data = TRUE,
BREAKTIME = NULL,
n.breaks = 20,
only_sig = FALSE,
alpha = 0.05,
title = NULL,
verbose = FALSE

)

Arguments

type Character. Kaplan Meier for complete model linear predictor ("LP"), for PLS
components ("COMP") or for original variables ("VAR") (default: LP).

lst_models List of Coxmos models.
comp Numeric vector. Vector of length two. Select which components to plot (default:

c(1,2)).
top Numeric. Show "top" first variables. If top = NULL, all variables are shown

(default: 10).
ori_data Logical. Compute the Kaplan-Meier plot with the raw-data or the normalize-

data to compute the best cut-point for splitting the data into two groups. Only
used when type = "VAR" (default: TRUE).

BREAKTIME Numeric. Size of time to split the data into "total_time / BREAKTIME + 1"
points. If BREAKTIME = NULL, "n.breaks" is used (default: NULL).

n.breaks Numeric. If BREAKTIME is NULL, "n.breaks" is the number of time-break
points to compute (default: 20).

only_sig Logical. If "only_sig" = TRUE, then only significant log-rank test variables are
returned (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

title Character. Kaplan-Meier plot title (default: NULL).
verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Value

A list of two elements per each model in the list: info_logrank_num: A list of two data.frames
with the numerical variables categorize as qualitative and the cutpoint to divide the data into two
groups. LST_PLOTS: A list with the Kaplan-Meier Plots.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

getCutoffAutoKM 81

References

Kaplan EL, Kaplan EL, Meier P (1958). “Nonparametric Estimation from Incomplete Observa-
tions.” Journal of the American Statistical Association. doi:10.1007/9781461243809_25, https:
//link.springer.com/chapter/10.1007/978-1-4612-4380-9_25.

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:20]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:20]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 1, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
splsdrcox.model <- splsdrcox(X_train, Y_train, n.comp = 1, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
getAutoKM.list(type = "LP", lst_models)

getCutoffAutoKM getCutoffAutoKM

Description

Gets the cutoff value from the results of getAutoKM() functions.

Usage

getCutoffAutoKM(result)

Arguments

result List. Result of getAutoKM() function.

Value

A named numeric vector where each element represents the cutoff value.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Kaplan EL, Kaplan EL, Meier P (1958). “Nonparametric Estimation from Incomplete Observa-
tions.” Journal of the American Statistical Association. doi:10.1007/9781461243809_25, https:
//link.springer.com/chapter/10.1007/978-1-4612-4380-9_25.

https://doi.org/10.1007/978-1-4612-4380-9_25
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_25
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_25
https://doi.org/10.1007/978-1-4612-4380-9_25
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_25
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_25

82 getCutoffAutoKM.list

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
KMresult = getAutoKM(type = "LP", model = splsicox.model)
getCutoffAutoKM(result = KMresult)

getCutoffAutoKM.list getCutoffAutoKM.list

Description

Run the function "getCutoffAutoKM" for a list of models. More information in "?getCutoffAu-
toKM".

Usage

getCutoffAutoKM.list(lst_results)

Arguments

lst_results List of lists. Result of getAutoKM.list() function.

Value

A list where each element corresponds to the result of the getCutoffAutoKM function applied to
each model in the input list. The structure and content of each element will be consistent with the
output of the getCutoffAutoKM function.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Kaplan EL, Kaplan EL, Meier P (1958). “Nonparametric Estimation from Incomplete Observa-
tions.” Journal of the American Statistical Association. doi:10.1007/9781461243809_25, https:
//link.springer.com/chapter/10.1007/978-1-4612-4380-9_25.

https://doi.org/10.1007/978-1-4612-4380-9_25
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_25
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_25

getEPV 83

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
splsdrcox.model <- splsdrcox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
lst_results = getAutoKM.list(type = "LP", lst_models)
getCutoffAutoKM.list(lst_results)

getEPV getEPV

Description

Provides a quantitative assessment of the dataset by computing the Events per Variable (EPV) met-
ric, which gauges the proportionality between observed events and the number of explanatory vari-
ables.

Usage

getEPV(X, Y)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

Details

In the realm of survival analysis, the balance between observed events and explanatory variables is
paramount. The getEPV function serves as a tool for researchers to ascertain this balance, which
can be pivotal in determining the robustness and interpretability of subsequent statistical models.
By evaluating the ratio of events in the Y matrix to the variables in the X matrix, the function yields
the EPV metric. It is of utmost importance that the Y matrix encompasses two distinct columns,
namely "time" and "event". The latter, "event", should strictly encapsulate binary values, delineating
censored (either 0 or FALSE) and event (either 1 or TRUE) observations. To ensure the integrity
of the data and the precision of the computation, the function is equipped with an error mechanism
that activates if the "event" column remains undetected.

84 getEPV.mb

Value

Return the EPV value for a specific X (explanatory variables) and Y (time and censored variables)
data.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic
Y <- Y_proteomic
getEPV(X,Y)

getEPV.mb getEPV.mb

Description

Provides a quantitative assessment of the dataset by computing the Events per Variable (EPV) metric
for multi-block data, which gauges the proportionality between observed events and the number of
explanatory variables.

Usage

getEPV.mb(X, Y)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

Details

In the realm of survival analysis, the balance between observed events and explanatory variables is
paramount. The getEPV function serves as a tool for researchers to ascertain this balance, which
can be pivotal in determining the robustness and interpretability of subsequent statistical models.
By evaluating the ratio of events in the Y matrix to the variables in the X matrix, the function yields
the EPV metric. It is of utmost importance that the Y matrix encompasses two distinct columns,
namely "time" and "event". The latter, "event", should strictly encapsulate binary values, delineating
censored (either 0 or FALSE) and event (either 1 or TRUE) observations. To ensure the integrity
of the data and the precision of the computation, the function is equipped with an error mechanism
that activates if the "event" column remains undetected.

getTestKM 85

Value

Return the EPV value for a specific X (explanatory variables) and Y (time and censored variables)
data.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_multiomic")
data("Y_multiomic")
X <- X_multiomic
Y <- Y_multiomic
getEPV.mb(X,Y)

getTestKM getTestKM

Description

This function computes and visualizes the Kaplan-Meier survival curve for a given test dataset,
utilizing the cutoff derived from the original model. The function offers flexibility in terms of the
type of Kaplan-Meier estimation, whether it’s based on the linear predictor, PLS components, or
original variables.

Usage

getTestKM(
model,
X_test,
Y_test,
cutoff,
type = "LP",
ori_data = TRUE,
BREAKTIME = NULL,
n.breaks = 20,
title = NULL

)

Arguments

model Coxmos model.

X_test Numeric matrix or data.frame. Explanatory variables for test data (raw format).
Qualitative variables must be transform into binary variables.

86 getTestKM

Y_test Numeric matrix or data.frame. Response variables for test data. Object must
have two columns named as "time" and "event". For event column, accepted
values are: 0/1 or FALSE/TRUE for censored and event observations.

cutoff Numeric. Cutoff value to split the observations into two groups. Recommended
to compute optimal cutoff value with getAutoKM() function.

type Character. Kaplan Meier for complete model linear predictor ("LP"), for PLS
components ("COMP") or for original variables ("VAR") (default: LP).

ori_data Logical. Compute the Kaplan-Meier plot with the raw-data or the normalize-
data to compute the best cut-point for splitting the data into two groups. Only
used when type = "VAR" (default: TRUE).

BREAKTIME Numeric. Size of time to split the data into "total_time / BREAKTIME + 1"
points. If BREAKTIME = NULL, "n.breaks" is used (default: NULL).

n.breaks Numeric. If BREAKTIME is NULL, "n.breaks" is the number of time-break
points to compute (default: 20).

title Character. Kaplan-Meier plot title (default: NULL).

Details

The getTestKM function is designed to evaluate the survival probabilities of a test dataset based
on a pre-trained Coxmos model. The function ensures that the test times are consistent with the
training times. Depending on the specified type, the function can compute the Kaplan-Meier curve
using:

• The complete model’s linear predictor (LP).

• The PLS components (COMP).

• The original variables (VAR).

For the LP type, the function predicts scores for the X_test and subsequently predicts the linear
predictor using these scores. For the COMP type, the function predicts scores for each component in
the model and computes the Kaplan-Meier curve for each. For the VAR type, the function computes
the Kaplan-Meier curve for each variable in the test dataset.

The function also provides the flexibility to compute the Kaplan-Meier plot using raw data or nor-
malized data, which can be useful for determining the optimal cut-point for data segmentation.
The time intervals for the Kaplan-Meier estimation can be defined using either the BREAKTIME or
n.breaks parameters.

The resulting Kaplan-Meier plot provides a visual representation of the survival probabilities over
time, segmented based on the specified cutoff. This allows for a comprehensive evaluation of the
test dataset’s survival characteristics in the context of the original model.

Value

Depending on the specified type parameter, the function returns:

• LP: A ggplot object visualizing the Kaplan-Meier survival curve based on the linear predictor,
segmented by the specified cutoff.

• COMP: A list of ggplot objects, where each plot represents the Kaplan-Meier survival curve for
a specific PLS component in the model, segmented by the respective cutoffs.

getTestKM.list 87

• VAR: A list of ggplot objects, where each plot visualizes the Kaplan-Meier survival curve for a
specific variable in the test dataset, segmented by the respective cutoffs.

Each plot provides a visual representation of the survival probabilities over time, allowing for a
comprehensive evaluation of the test dataset’s survival characteristics in the context of the original
model.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Kaplan EL, Kaplan EL, Meier P (1958). “Nonparametric Estimation from Incomplete Observa-
tions.” Journal of the American Statistical Association. doi:10.1007/9781461243809_25, https:
//link.springer.com/chapter/10.1007/978-1-4612-4380-9_25.

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
KMresult = getAutoKM(type = "LP", model = splsicox.model)
cutoff <- getCutoffAutoKM(result = KMresult)
getTestKM(splsicox.model, X_test, Y_test, cutoff)

getTestKM.list getTestKM.list

Description

Run the function "getTestKM" for a list of models. More information in "?getTestKM".

Usage

getTestKM.list(
lst_models,
X_test,
Y_test,
lst_cutoff,
type = "LP",
ori_data = TRUE,

https://doi.org/10.1007/978-1-4612-4380-9_25
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_25
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_25

88 getTestKM.list

BREAKTIME = NULL,
n.breaks = 20,
title = NULL,
verbose = FALSE

)

Arguments

lst_models List of Coxmos model

X_test Numeric matrix or data.frame. Explanatory variables for test data (raw format).
Qualitative variables must be transform into binary variables.

Y_test Numeric matrix or data.frame. Response variables for test data. Object must
have two columns named as "time" and "event". For event column, accepted
values are: 0/1 or FALSE/TRUE for censored and event observations.

lst_cutoff Numeric vector. Cutoff vector to split the observations into two groups for each
model. Recommended to compute optimal cutoff value with getAutoKM() or
getAutoKM.list() functions.

type Character. Kaplan Meier for complete model linear predictor ("LP"), for PLS
components ("COMP") or for original variables ("VAR") (default: LP).

ori_data Logical. Compute the Kaplan-Meier plot with the raw-data or the normalize-
data to compute the best cut-point for splitting the data into two groups. Only
used when type = "VAR" (default: TRUE).

BREAKTIME Numeric. Size of time to split the data into "total_time / BREAKTIME + 1"
points. If BREAKTIME = NULL, "n.breaks" is used (default: NULL).

n.breaks Numeric. If BREAKTIME is NULL, "n.breaks" is the number of time-break
points to compute (default: 20).

title Character. Kaplan-Meier plot title (default: NULL).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Value

A list where each element corresponds to a Kaplan-Meier plot generated for each model in the
input list. Each plot visualizes the survival probabilities based on the specified cutoff values for the
respective model. The list’s names correspond to the names of the models provided in the input list.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Kaplan EL, Kaplan EL, Meier P (1958). “Nonparametric Estimation from Incomplete Observa-
tions.” Journal of the American Statistical Association. doi:10.1007/9781461243809_25, https:
//link.springer.com/chapter/10.1007/978-1-4612-4380-9_25.

https://doi.org/10.1007/978-1-4612-4380-9_25
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_25
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_25

loadingplot.Coxmos 89

Examples

data("X_proteomic")
data("Y_proteomic")
X_proteomic <- X_proteomic[1:50,]
Y_proteomic <- Y_proteomic[1:50,]
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:20]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:20]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 1, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
splsdrcox.model <- splsdrcox(X_train, Y_train, n.comp = 1, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
lst_results = getAutoKM.list(type = "LP", lst_models)
lst_cutoff <- getCutoffAutoKM.list(lst_results)
getTestKM.list(lst_models, X_test, Y_test, lst_cutoff)

loadingplot.Coxmos loadingplot.Coxmos

Description

The loadingplot.Coxmos function visualizes the loading values of a given Coxmos model. The
function produces a series of bar plots for each component’s loading values, offering a compre-
hensive view of the model’s variable contributions. The plots can be customized to exclude zero
loadings, display only the top variables, and automatically adjust the color scale limits.

Usage

loadingplot.Coxmos(model, zero.rm = TRUE, top = NULL, auto.limits = TRUE)

Arguments

model Coxmos model.

zero.rm Logical. Remove variables equal to 0 (default: TRUE).

top Numeric. Show "top" first variables. If top = NULL, all variables are shown
(default: NULL).

auto.limits Logical. If "auto.limits" = TRUE, limits are detected automatically (default:
TRUE).

90 loadingplot.fromVector.Coxmos

Details

The primary objective of the loadingplot.Coxmos function is to facilitate the interpretation of
Coxmos models by visualizing the loading values of each component. The function first verifies the
class of the provided model to ensure it is a valid Coxmos model.

The loading values are extracted from the model and processed based on the user’s specifications.
If the zero.rm parameter is set to TRUE, variables with zero loadings are excluded from the vi-
sualization. Additionally, if the top parameter is specified, only the top variables, ranked by their
absolute loading values, are displayed.

The function employs the ’ggplot2’ framework for visualization. The color scale of the plots can
be automatically adjusted based on the maximum absolute loading value when auto.limits is
set to TRUE. If the RColorConesa package is available, it utilizes its color palettes for enhanced
visualization; otherwise, default colors are applied.

Value

A list of ggplot2 objects, each representing the loading values for a component of the Coxmos
model.

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox.model <- splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
loadingplot.Coxmos(model = splsicox.model)

loadingplot.fromVector.Coxmos

loadingplot.fromVector.Coxmos

Description

loadingplot.fromVector.Coxmos

Usage

loadingplot.fromVector.Coxmos(
model,
vector,
zero.rm = FALSE,
top = NULL,
auto.limits = TRUE

)

mb.splsdacox 91

Arguments

model Coxmos model.
vector Vector of loading
zero.rm Logical. Remove variables equal to 0 (default: FALSE).
top Numeric. Show "top" first variables. If top = NULL, all variables are shown

(default: NULL).
auto.limits Logical. If "auto.limits" = TRUE, limits are detected automatically (default:

TRUE).

mb.splsdacox MB.sPLS-DACOX

Description

The MB.sPLS-DACOX function conducts a multi-block sparse partial least squares discriminant
analysis Cox (MB.sPLS-DACOX) using a dynamic variable selection approach. This analysis is
particularly suited for high-dimensional datasets where the goal is to identify the relationship be-
tween explanatory variables and survival outcomes. The function outputs a model of class "Cox-
mos" with an attribute labeled "MB.sPLS-DACOX".

Usage

mb.splsdacox(
X,
Y,
n.comp = 4,
vector = NULL,
MIN_NVAR = 10,
MAX_NVAR = 10000,
n.cut_points = 5,
EVAL_METHOD = "AUC",
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_non_significant = TRUE,
alpha = 0.05,
MIN_AUC_INCREASE = 0.01,
pred.method = "cenROC",
max.iter = 200,
times = NULL,
max_time_points = 15,
MIN_EPV = 5,
returnData = TRUE,
verbose = FALSE

)

92 mb.splsdacox

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

n.comp Numeric. Number of latent components to compute for the (s)PLS model (de-
fault: 10).

vector Numeric vector or list. Used for computing best number of variables. As many
values as components have to be provided. If vector = NULL, an automatic
detection is perform (default: NULL). If vector is a list, must be named as the
names of X param followed by the number of variables to select.

MIN_NVAR Numeric. Minimum range size for computing cut points to select the best num-
ber of variables to use (default: 10).

MAX_NVAR Numeric. Maximum range size for computing cut points to select the best num-
ber of variables to use (default: 1000).

n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
If only two cut points are selected, minimum and maximum size are used. For
MB approaches as many as n.cut_points^n.blocks models will be computed as
minimum (default: 5).

EVAL_METHOD Character. If EVAL_METHOD = "AUC", AUC metric will be use to compute
the best number of variables. In other case, c-index metric will be used (default:
"AUC").

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

mb.splsdacox 93

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

The MB.sPLS-DACOX methodology is designed to handle multi-block datasets, where each block
represents a set of related variables. By employing a sparse partial least squares approach, the
function efficiently selects relevant variables from each block, ensuring that the final model is both
interpretable and predictive. The Cox proportional hazards model is then applied to the selected
variables to assess their association with survival outcomes.

The function offers flexibility in terms of parameter tuning. For instance, users can specify the
number of latent components to compute, the range of variables to consider for optimal selection,
and the evaluation metric (either AUC or c-index). Additionally, data preprocessing options are
available, such as centering and scaling of the explanatory variables, and removal of variables with
near-zero or zero variance.

Value

Instance of class "Coxmos" and model "MB.sPLS-DACOX". The class contains the following
elements: X: List of normalized X data information.

• (data): normalized X matrix

• (weightings): PLS weights

• (weightings_norm): PLS normalize weights

• (W.star): PLS W* vector

• (scores): PLS scores/variates

• (E): error matrices

• (x.mean): mean values for X matrix

• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

94 mb.splsdacox

• (deviance_residuals): deviance residual vector used as Y matrix in the sPLS.

• (dr.mean): mean values for deviance residuals Y matrix

• (dr.sd): standard deviation for deviance residuals Y matrix’

• (data): normalized X matrix

• (y.mean): mean values for Y matrix

• (y.sd): standard deviation for Y matrix’

survival_model: List of survival model information.

• fit: coxph object.

• AIC: AIC of cox model.

• BIC: BIC of cox model.

• lp: linear predictors for train data.

• coef: Coefficients for cox model.

• YChapeau: Y Chapeau residuals.

• Yresidus: Y residuals.

mb.model: List of sPLS models computed for each block.

n.comp: Number of components selected.

n.varX: Number of variables selected for each block.

call: call function

X_input: X input matrix

Y_input: Y input matrix

B.hat: PLS beta matrix

R2: PLS R2

SCR: PLS SCR

SCT: PLS SCT

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

time: time consumed for running the cox analysis.

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

time: time consumed for running the cox analysis.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Rohart F, Gautier B, Singh A, Cao KAL (2017). “mixOmics: An R package for ‘omics feature
selection and multiple data integration.” PLoS Computational Biology, 13(11). ISSN 15537358,
https://pubmed.ncbi.nlm.nih.gov/29099853/.

https://pubmed.ncbi.nlm.nih.gov/29099853/

mb.splsdrcox 95

Examples

data("X_multiomic")
data("Y_multiomic")
X <- X_multiomic
X$mirna <- X$mirna[,1:50]
X$proteomic <- X$proteomic[,1:50]
Y <- Y_multiomic
mb.splsdacox(X, Y, n.comp = 2, vector = NULL, x.center = TRUE, x.scale = TRUE)

mb.splsdrcox MB.sPLS-DRCOX

Description

The MB.sPLS-DRCOX function conducts a multi-block sparse partial least squares deviant resid-
uals Cox (MB.sPLS-DRCOX) using a dynamic variable selection approach. This analysis is par-
ticularly suited for high-dimensional datasets where the goal is to identify the relationship between
explanatory variables and survival outcomes. The function outputs a model of class "Coxmos" with
an attribute labeled "MB.sPLS-DRCOX".

Usage

mb.splsdrcox(
X,
Y,
n.comp = 4,
vector = NULL,
MIN_NVAR = 10,
MAX_NVAR = 10000,
n.cut_points = 5,
EVAL_METHOD = "AUC",
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_non_significant = TRUE,
alpha = 0.05,
MIN_AUC_INCREASE = 0.01,
pred.method = "cenROC",
max.iter = 200,
times = NULL,
max_time_points = 15,
MIN_EPV = 5,
returnData = TRUE,

96 mb.splsdrcox

verbose = FALSE
)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

n.comp Numeric. Number of latent components to compute for the (s)PLS model (de-
fault: 10).

vector Numeric vector. Used for computing best number of variables. As many values
as components have to be provided. If vector = NULL, an automatic detection
is perform (default: NULL). If vector is a list, must be named as the names of X
param followed by the number of variables to select.

MIN_NVAR Numeric. Minimum range size for computing cut points to select the best num-
ber of variables to use (default: 10).

MAX_NVAR Numeric. Maximum range size for computing cut points to select the best num-
ber of variables to use (default: 1000).

n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
If only two cut points are selected, minimum and maximum size are used. For
MB approaches as many as n.cut_points^n.blocks models will be computed as
minimum (default: 5).

EVAL_METHOD Character. If EVAL_METHOD = "AUC", AUC metric will be use to compute
the best number of variables. In other case, c-index metric will be used (default:
"AUC").

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

mb.splsdrcox 97

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

The MB.sPLS-DRCOX methodology is designed to handle multi-block datasets, where each block
represents a set of related variables. By employing a sparse partial least squares approach, the
function efficiently selects relevant variables from each block, ensuring that the final model is both
interpretable and predictive. The Cox proportional hazards model is then applied to the selected
variables to assess their association with survival outcomes.

The function offers flexibility in terms of parameter tuning. For instance, users can specify the
number of latent components to compute, the range of variables to consider for optimal selection,
and the evaluation metric (either AUC or c-index). Additionally, data preprocessing options are
available, such as centering and scaling of the explanatory variables, and removal of variables with
near-zero or zero variance.

Value

Instance of class "Coxmos" and model "MB.sPLS-DRCOX". The class contains the following
elements: X: List of normalized X data information.

• (data): normalized X matrix

• (weightings): PLS weights

• (weightings_norm): PLS normalize weights

• (W.star): PLS W* vector

• (scores): PLS scores/variates

98 mb.splsdrcox

• (E): error matrices

• (x.mean): mean values for X matrix

• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

• (deviance_residuals): deviance residual vector used as Y matrix in the sPLS.

• (dr.mean): mean values for deviance residuals Y matrix

• (dr.sd): standard deviation for deviance residuals Y matrix’

• (data): normalized X matrix

• (y.mean): mean values for Y matrix

• (y.sd): standard deviation for Y matrix’

survival_model: List of survival model information.

• fit: coxph object.

• AIC: AIC of cox model.

• BIC: BIC of cox model.

• lp: linear predictors for train data.

• coef: Coefficients for cox model.

• YChapeau: Y Chapeau residuals.

• Yresidus: Y residuals.

mb.model: List of sPLS models computed for each block.

n.comp: Number of components selected.

n.varX: Number of variables selected for each block.

call: call function

X_input: X input matrix

Y_input: Y input matrix

B.hat: PLS beta matrix

R2: PLS R2

SCR: PLS SCR

SCT: PLS SCT

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

time: time consumed for running the cox analysis.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

norm01 99

References

Rohart F, Gautier B, Singh A, Cao KAL (2017). “mixOmics: An R package for ‘omics feature
selection and multiple data integration.” PLoS Computational Biology, 13(11). ISSN 15537358,
https://pubmed.ncbi.nlm.nih.gov/29099853/.

Examples

data("X_multiomic")
data("Y_multiomic")
X <- X_multiomic
X$mirna <- X$mirna[,1:50]
X$proteomic <- X$proteomic[,1:50]
Y <- Y_multiomic
mb.splsdrcox(X, Y, n.comp = 2, vector = NULL, x.center = TRUE, x.scale = TRUE)

norm01 norm01

Description

Normalize all values into 0-1 range.

Usage

norm01(x)

Arguments

x Numeric matrix or data.frame. Explanatory variables. Only qualitative variables
will be transformed into binary variables.

NR The normal reference bandwidth selection for weighted data

Description

This function computes the data-driven bandwidth for smoothing the ROC (or distribution) func-
tion using the NR method of Beyene and El Ghouch (2020). This is an extension of the classical
(unweighted) normal reference bandwith selection method to the case of weighted data.

Usage

NR(X, wt, ktype = "normal")

https://pubmed.ncbi.nlm.nih.gov/29099853/

100 PI

Arguments

X The numeric data vector.

wt The non-negative weight vector.

ktype A character string giving the type kernel to be used: "normal", "epanechnikov",
"biweight", or "triweight". By default, the "normal" kernel is used.

Details

See Beyene and El Ghouch (2020) for details.

Value

Returns the computed value for the bandwith parameter.

Author(s)

Kassu Mehari Beyene, Catholic University of Louvain. <kasu.beyene@uclouvain.be>

Anouar El Ghouch, Catholic University of Louvain. <anouar.elghouch@uclouvain.be>

References

Beyene, K. M. and El Ghouch A. (2020). Smoothed time-dependent ROC curves for right-censored
survival data. submitted.

PI The plug-in bandwidth selection for weighted data

Description

This function computes the data-driven bandwidth for smoothing the ROC (or distribution) func-
tion using the PI method of Beyene and El Ghouch (2020). This is an extension of the classical
(unweighted) direct plug-in bandwith selection method to the case of weighted data.

Usage

PI(X, wt, ktype = "normal")

Arguments

X The numeric vector of random variable.

wt The non-negative weight vector.

ktype A character string giving the type kernel to be used: "normal", "epanechnikov",
"biweight", or "triweight". By default, the "normal" kernel is used.

Details

See Beyene and El Ghouch (2020) for details.

plot_cox.event 101

Value

Returns the computed value for the bandwith parameter.

Author(s)

Kassu Mehari Beyene, Catholic University of Louvain. <kasu.beyene@uclouvain.be>

Anouar El Ghouch, Catholic University of Louvain. <anouar.elghouch@uclouvain.be>

References

Beyene, K. M. and El Ghouch A. (2020). Smoothed time-dependent ROC curves for right-censored
survival data. submitted.

plot_cox.event plot_cox.event

Description

Visualizes the distribution of events based on a Coxmos model’s predictions. The function provides
both density and histogram plots to elucidate the event distribution, which can be instrumental in
understanding the model’s behavior across different prediction types.

Usage

plot_cox.event(model, type = "lp", n.breaks = 20)

Arguments

model Coxmos model.

type Character. Prediction type: "lp", "risk", "expected" or "survival" (default: "lp").

n.breaks Numeric. If BREAKTIME is NULL, "n.breaks" is the number of time-break
points to compute (default: 20).

Details

The function takes in a Coxmos model and, based on the specified prediction type (lp, risk,
expected, or survival), computes the respective predictions. The lp (linear predictor) is the
default prediction type. The density and histogram plots are then generated to represent the distri-
bution of events (censored or occurred) concerning these predictions.

The density plot provides a smoothed representation of the event distribution, with separate curves
for censored and occurred events. This visualization can be particularly useful to discern the overall
distribution and overlap between the two event types.

The histogram, on the other hand, offers a binned representation of the event distribution. Each bin’s
height represents the count of observations falling within that prediction range, stacked by event
type. This visualization provides a more granular view of the event distribution across different
prediction values.

102 plot_cox.event.list

It’s imperative to note that the models should be run with the returnData = TRUE option to ensure
the necessary data is available for plotting.

Value

A list containing three elements: df: A data.frame with the computed predictions based on the
specified type and the corresponding event status. plot.density: A ggplot object representing
the density plot of the event distribution, with separate curves for censored and occurred events.
plot.histogram: A ggplot object representing the histogram of the event distribution, with bins
stacked by event type.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox.model <- splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
plot_cox.event(splsicox.model)

plot_cox.event.list plot_cox.event.list

Description

Run the function "plot_cox.event" for a list of models. More information in "?plot_cox.event".

Usage

plot_cox.event.list(lst_models, type = "lp", n.breaks = 20)

Arguments

lst_models List of Coxmos models.

type Character. Prediction type: "lp", "risk", "expected" or "survival" (default: "lp").

n.breaks Numeric. Number of time-break points to compute (default: 20).

Value

A list containing three elements per each model: df: A data.frame with the computed predictions
based on the specified type and the corresponding event status. plot.density: A ggplot object rep-
resenting the density plot of the event distribution, with separate curves for censored and occurred
events. plot.histogram: A ggplot object representing the histogram of the event distribution, with
bins stacked by event type.

plot_Coxmos.MB.PLS.model 103

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox.model <- splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
splsdrcox.model <- splsdrcox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
plot_cox.event.list(lst_models)

plot_Coxmos.MB.PLS.model

plot_Coxmos.MB.PLS.model

Description

Visualizes the Coxmos model using multiblock partial least squares (MB-PLS) approach. This
function offers various plotting modes, including scores, loadings, and biplot visualizations, to
provide insights into the model’s structure and relationships.

Usage

plot_Coxmos.MB.PLS.model(
model,
comp = c(1, 2),
mode = "scores",
factor = NULL,
legend_title = NULL,
top = NULL,
only_top = FALSE,
radius = NULL,
names = TRUE,
colorReverse = FALSE,
text.size = 2,
overlaps = 10

)

Arguments

model Coxmos model.

comp Numeric vector. Vector of length two. Select which components to plot (default:
c(1,2)).

104 plot_Coxmos.MB.PLS.model

mode Character. Choose one of the following plots: "scores", "loadings" o "biplot"
(default: "scores").

factor Factor. Factor variable to color the observations. If factor = NULL, event will
be used (default: NULL).

legend_title Character. Legend title (default: NULL).

top Numeric. Show "top" first variables. If top = NULL, all variables are shown
(default: NULL).

only_top Logical. If "only_top" = TRUE, then only top/radius loading variables will be
shown in loading or biplot graph (default: FALSE).

radius Numeric. Radius size (loading/scale value) to plot variable names that are
greater than the radius value (default: NULL).

names Logical. Show loading names for top variables or for those that are outside the
radius size (default: TRUE).

colorReverse Logical. Reverse palette colors (default: FALSE).

text.size Numeric. Text size (default: 2).

overlaps Numeric. Number of overlaps to show when plotting loading names (default:
10).

Details

The plot_Coxmos.MB.PLS.model function is designed to generate comprehensive visualizations of
the Coxmos model, specifically tailored for multiblock PLS. It leverages the inherent structure of
the model to produce plots that can aid in the interpretation of the model’s components and their
relationships.

Depending on the chosen mode, the function can display:

• Scores: This mode visualizes the scores of the model, which represent the projections of the
original data onto the PLS components. The scores can be colored by a factor variable, and
ellipses can be added to represent the distribution of the scores.

• Loadings: This mode displays the loadings of the model, which indicate the contribution of
each variable to the PLS components. The loadings can be filtered by a specified threshold (top
or radius), and arrows can be added to represent the direction and magnitude of the loadings.

• Biplot: A biplot combines both scores and loadings in a single plot, providing a comprehensive
view of the relationships between the observations and variables in the model.

The function also offers various customization options, such as adjusting the text size, reversing
the color palette, and specifying the number of overlaps for loading names. It ensures that the
visualizations are informative and tailored to the user’s preferences and the specific characteristics
of the data.

It’s important to note that the function performs checks to ensure the input model is of the correct
class and provides informative messages for any inconsistencies detected.

plot_Coxmos.PLS.model 105

plot_Coxmos.PLS.model plot_Coxmos.PLS.model

Description

Visualizes the Coxmos model using partial least squares (PLS) approach. This function offers
various plotting modes, including scores, loadings, and biplot visualizations, to provide insights
into the model’s structure and relationships.

Usage

plot_Coxmos.PLS.model(
model,
comp = c(1, 2),
mode = "scores",
factor = NULL,
legend_title = NULL,
top = NULL,
only_top = FALSE,
radius = NULL,
names = TRUE,
colorReverse = FALSE,
text.size = 2,
overlaps = 10

)

Arguments

model Coxmos model.

comp Numeric vector. Vector of length two. Select which components to plot (default:
c(1,2)).

mode Character. Choose one of the following plots: "scores", "loadings" o "biplot"
(default: "scores").

factor Factor. Factor variable to color the observations. If factor = NULL, event will
be used (default: NULL).

legend_title Character. Legend title (default: NULL).

top Numeric. Show "top" first variables. If top = NULL, all variables are shown
(default: NULL).

only_top Logical. If "only_top" = TRUE, then only top/radius loading variables will be
shown in loading or biplot graph (default: FALSE).

radius Numeric. Radius size (loading/scale value) to plot variable names that are
greater than the radius value (default: NULL).

names Logical. Show loading names for top variables or for those that are outside the
radius size (default: TRUE).

106 plot_divergent.biplot

colorReverse Logical. Reverse palette colors (default: FALSE).

text.size Numeric. Text size (default: 2).

overlaps Numeric. Number of overlaps to show when plotting loading names (default:
10).

Details

The plot_Coxmos.PLS.model function is designed to generate comprehensive visualizations of the
Coxmos model, specifically tailored for PLS. It leverages the inherent structure of the model to
produce plots that can aid in the interpretation of the model’s components and their relationships.

Depending on the chosen mode, the function can display:

• Scores: This mode visualizes the scores of the model, which represent the projections of the
original data onto the PLS components. The scores can be colored by a factor variable, and
ellipses can be added to represent the distribution of the scores.

• Loadings: This mode displays the loadings of the model, which indicate the contribution of
each variable to the PLS components. The loadings can be filtered by a specified threshold (top
or radius), and arrows can be added to represent the direction and magnitude of the loadings.

• Biplot: A biplot combines both scores and loadings in a single plot, providing a comprehensive
view of the relationships between the observations and variables in the model.

The function also offers various customization options, such as adjusting the text size, reversing
the color palette, and specifying the number of overlaps for loading names. It ensures that the
visualizations are informative and tailored to the user’s preferences and the specific characteristics
of the data.

It’s important to note that the function performs checks to ensure the input model is of the correct
class and provides informative messages for any inconsistencies detected.

plot_divergent.biplot plot_divergent.biplot

Description

Generates a divergent biplot visualizing the distribution of a qualitative variable against a quantita-
tive variable, further categorized by an event matrix.

Usage

plot_divergent.biplot(
X,
Y,
NAMEVAR1,
NAMEVAR2,
BREAKTIME,
x.text = "N. of Samples"

)

plot_divergent.biplot 107

Arguments

X Numeric matrix or data.frame. Explanatory variables with "NAMEVAR1" and
"NAMEVAR2" variables. "NAMEVAR1" must be a factor variable.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

NAMEVAR1 Character. Factor variable name (must be located in colnames(X) and have to
have two levels).

NAMEVAR2 Character. Numerical variable name (must be located in colnames(X)).
BREAKTIME Numeric. Size of time to split the data into "total_time / BREAKTIME + 1"

points. If BREAKTIME = NULL, "n.breaks" is used (default: NULL).
x.text Character. Title for X axis.

Details

The function plot_divergent.biplot is designed to offer a comprehensive visualization of the
relationship between a qualitative and a quantitative variable, while also taking into account an
associated event matrix. The qualitative variable, denoted by "NAMEVAR1", is expected to be a
factor with two levels, and the quantitative variable, "NAMEVAR2", is numerically represented.
The event matrix, "Y", consists of two columns: "time" and "event". The "event" column indicates
whether an observation is censored or an event, represented by binary values (0/1 or FALSE/TRUE).

The function processes the input data to categorize the quantitative variable into groups based on the
specified "BREAKTIME" parameter. Each group represents a range of values for the quantitative
variable. The resulting plot displays the number of samples for each level of the qualitative variable
on the X-axis, while the Y-axis represents the categorized groups of the quantitative variable. The
bars in the plot are further colored based on the event type, providing a clear distinction between
censored and event observations.

Value

A ’ggplot2’ two side bar plot. X axis represent the number of samples per each NAMEVAR1 factor
levels and Y axis, the X NAMEVAR2 numerical variables categorize in groups of breaks.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

X <- data.frame(sex = factor(c("M","M","F","F","F","M","F","M","M")),
age = as.numeric(c(22,23,25,28,32,30,29,33,32)))

Y = data.frame(time = c(24,25,28,29,22,26,22,23,24),
event = c(TRUE,TRUE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,FALSE))

NAMEVAR1 = "sex"
NAMEVAR2 = "age"
plot_divergent.biplot(X, Y, NAMEVAR1, NAMEVAR2, BREAKTIME = 5, x.text = "N. of Patients")

108 plot_evaluation

plot_evaluation plot_evaluation

Description

Generates a comprehensive evaluation of the performance of a given Coxmos evaluation object
from eval_Coxmos_models(), offering both statistical tests and visual plots for assessment.

Usage

plot_evaluation(
eval_results,
evaluation = "AUC",
pred.attr = "mean",
y.min = NULL,
type = "both",
round_times = FALSE,
decimals = 2,
title = NULL,
title_size_text = 15,
legend_title = "Method",
legend_size_text = 12,
x_axis_size_text = 10,
y_axis_size_text = 10,
label_x_axis_size = 10,
label_y_axis_size = 10

)

Arguments

eval_results Coxmos evaluation object from eval_Coxmos_models().

evaluation Character. Perform the evaluation using the "AUC" or "Brier" metric (default:
"AUC").

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

y.min Numeric. Minimum Y value for establish the Y axis value. If y.min = NULL,
automatic detection is performed (default: NULL).

type Character. Plot type. Must be one of the following: "both", "line" or "mean". In
other case, "both" will be selected (default: "both").

round_times Logical. Whether times x value should be rounded (default: FALSE).

decimals Numeric. Number of decimals to use in round times. Must be a value greater or
equal zero (default = 2).

title Character. Plot title (default: NULL).
title_size_text

Numeric. Text size for legend title (default: 15).

plot_evaluation 109

legend_title Character. Legend title (default: "Method").
legend_size_text

Numeric. Text size for legend title (default: 12).
x_axis_size_text

Numeric. Text size for x axis (default: 10).
y_axis_size_text

Numeric. Text size for y axis (default: 10).
label_x_axis_size

Numeric. Text size for x label axis (default: 10).
label_y_axis_size

Numeric. Text size for y label axis (default: 10).

Details

The plot_evaluation function is designed to facilitate a rigorous evaluation of the performance
of models, specifically in the context of survival analysis. This function is tailored to work with a
Coxmos evaluation object, which encapsulates the results of survival models. The primary objective
is to provide both statistical and visual insights into the model’s performance.

The function offers flexibility in the evaluation metric, allowing users to choose between the Area
Under the Curve (AUC) and the Brier score. The chosen metric is then evaluated based on either its
mean or median value, as specified by the "pred.attr" parameter. The resulting plots can be tailored
to display continuous performance over time or aggregated mean performance, based on the "type"
parameter.

A salient feature of this function is its ability to conduct statistical tests to compare the performance
across different methods. Supported tests include the t-test, ANOVA, Wilcoxon rank-sum test, and
Kruskal-Wallis test. These tests provide a quantitative measure of the differences in performance,
aiding in the objective assessment of the models.

The visual outputs are generated using the ’ggplot2’ package, ensuring high-quality and inter-
pretable plots. The function also offers extensive customization options for the plots, including
axis labels, title, and text sizes, ensuring that the outputs align with the user’s preferences and the
intended audience’s expectations.

Value

A list of lst_eval_results length. Each element is a list of three elements. lst_plots: A list of
two plots. The evaluation over the time, and the extension adding the mean or median on the right.
lst_plot_comparisons: A list of comparative boxplots by t.test, anova, wilcoxon, kruscal. df:
Data.frame of evaluation result.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)

110 plot_evaluation.list

index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
coxEN.model <- coxEN(X_train, Y_train, x.center = TRUE, x.scale = TRUE)
eval_results <- eval_Coxmos_models(lst_models = list("coxEN" = coxEN.model), X_test = X_test,
Y_test = Y_test)
plot_eval_results <- plot_evaluation(eval_results)

plot_evaluation.list plot_evaluation.list

Description

Run the function "plot_evaluation" for a list of results. More information in "?plot_evaluation".

Usage

plot_evaluation.list(
lst_eval_results,
evaluation = "AUC",
pred.attr = "mean",
y.min = NULL,
type = "both",
round_times = FALSE,
decimals = 2,
title = NULL,
title_size_text = 15,
legend_title = "Method",
legend_size_text = 12,
x_axis_size_text = 10,
y_axis_size_text = 10,
label_x_axis_size = 10,
label_y_axis_size = 10

)

Arguments

lst_eval_results

List (named) of Coxmos evaluation results from eval_Coxmos_models().

evaluation Character. Perform the evaluation using the "AUC" or "Brier" metric (default:
"AUC").

pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
"mean" or "median" (default: "mean").

y.min Numeric. Minimum Y value for establish the Y axis value. If y.min = NULL,
automatic detection is performed (default: NULL).

plot_evaluation.list 111

type Character. Plot type. Must be one of the following: "both", "line" or "mean". In
other case, "both" will be selected (default: "both").

round_times Logical. Whether times x value should be rounded (default: FALSE).

decimals Numeric. Number of decimals to use in round times. Must be a value greater or
equal zero (default = 2).

title Character. Plot title (default: NULL).
title_size_text

Numeric. Text size for legend title (default: 15).

legend_title Character. Legend title (default: "Method").
legend_size_text

Numeric. Text size for legend title (default: 12).
x_axis_size_text

Numeric. Text size for x axis (default: 10).
y_axis_size_text

Numeric. Text size for y axis (default: 10).
label_x_axis_size

Numeric. Text size for x label axis (default: 10).
label_y_axis_size

Numeric. Text size for y label axis (default: 10).

Value

A list of lst_eval_results length. Each element is a list of three elements. lst_plots: A list of
two plots. The evaluation over the time, and the extension adding the mean or median on the right.
lst_plot_comparisons: A list of comparative boxplots by t.test, anova, wilcoxon, kruscal. df:
Data.frame of evaluation result.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
coxEN.model <- coxEN(X_train, Y_train, x.center = TRUE, x.scale = TRUE)
eval_results <- list()
eval_results[["cenROC"]] <- eval_Coxmos_models(lst_models = list("coxEN" = coxEN.model),
X_test = X_test, Y_test = Y_test, pred.method = "cenROC")
eval_results[["survivalROC"]] <- eval_Coxmos_models(lst_models = list("coxEN" = coxEN.model),
X_test = X_test, Y_test = Y_test, pred.method = "survivalROC")
plot_eval_results <- plot_evaluation.list(eval_results)

112 plot_events

plot_events plot_events

Description

Generates a bar plot visualizing the distribution of events over time, categorizing observations as
either censored or non-censored.

Usage

plot_events(
Y,
max.breaks = 20,
roundTo = 0.1,
categories = c("Censored", "Death"),
y.text = "Number of observations",
verbose = FALSE

)

Arguments

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

max.breaks Numeric. Maximum number of breaks in X axis (default: 20).
roundTo Numeric. Value to round time. If roundTo = 0.1, the results will be rounded to

the tenths (default: 0.1).
categories Character vector. Vector of length two to name both categories for censored and

non-censored observations (default: c("Censored","Death")).
y.text Character. Y axis title (default: "Number of observations").
verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

The plot_events function is meticulously crafted to provide a visualization of event occurrences
over a specified time frame. The primary objective of this function is to elucidate the distribution
of events, distinguishing between censored and non-censored observations. The input response
matrix, "Y", is expected to encompass two pivotal columns: "time" and "event". The "time" col-
umn delineates the temporal occurrence of each observation, while the "event" column demarcates
whether an observation is censored or an event, with accepted binary representations being 0/1 or
FALSE/TRUE.

The function employs a systematic approach to categorize the time variable into distinct intervals
or "breaks". The number of these intervals is determined by the "max.breaks" parameter, and their
size is influenced by the "roundTo" parameter. Each interval represents a range of time values,
and the resulting plot showcases the number of censored and non-censored observations within
each interval. The bars in the plot are color-coded based on the event type, offering a clear visual
distinction between the two categories.

plot_forest 113

Value

A list of two elements. plot: Barplot. df: Data.frame used for the plotting.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
Y_train <- Y_proteomic
plot_events(Y_train, categories = c("Censored","Death"))

plot_forest plot_forest

Description

Generates a forest plot for Coxmos models, visualizing the hazard ratios and their confidence in-
tervals. The function leverages the capabilities of the survminer::ggforest function to produce a
comprehensive representation of the model’s coefficients.

Usage

plot_forest(
model,
title = "Hazard Ratio",
cpositions = c(0.02, 0.22, 0.4),
fontsize = 0.7,
refLabel = "reference",
noDigits = 2

)

Arguments

model Coxmos model.

title Character. Forest plot title (default: "Hazard Ratio").

cpositions Numeric vector. Relative positions of first three columns in the OX scale (de-
fault: c(0.02, 0.22, 0.4)).

fontsize Numeric. Elative size of annotations in the plot (default: 0.7).

refLabel Character. Label for reference levels of factor variables (default: "reference").

noDigits Numeric. Number of digits for estimates and p-values in the plot (default: 2).

114 plot_forest.list

Details

The forest plot is a graphical representation of the point estimates and confidence intervals of the
hazard ratios derived from a Coxmos model. Each row in the plot corresponds to a variable or
component from the model, with a point representing the hazard ratio and horizontal lines indicating
the confidence intervals. The plot provides a visual assessment of the significance and magnitude
of each variable’s effect on the outcome.

The function starts by validating the provided model to ensure it belongs to the Coxmos class and
is among the recognized Coxmos models. If the model is valid, the function then proceeds to
generate the forest plot using the survminer::ggforest function. Several customization options
are available, including adjusting the title, column positions, font size, reference label, and the
number of digits displayed for estimates and p-values.

Forest plots are instrumental in the field of survival analysis, offering a concise visualization of the
model’s results, making them easier to interpret and communicate.

Value

A ggplot object representing the forest plot. The plot visualizes the hazard ratios and their confi-
dence intervals for each variable or component from the Coxmos model.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox.model <- splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
plot_forest(splsicox.model)

plot_forest.list plot_forest.list

Description

Run the function "plot_forest" for a list of models. More information in "?plot_forest".

Usage

plot_forest.list(
lst_models,
title = "Hazard Ratio",
cpositions = c(0.02, 0.22, 0.4),
fontsize = 0.7,
refLabel = "reference",

plot_LP.multipleObservations 115

noDigits = 2
)

Arguments

lst_models List of Coxmos models.

title Character. Forest plot title (default: "Hazard Ratio").

cpositions Numeric vector. Relative positions of first three columns in the OX scale (de-
fault: c(0.02, 0.22, 0.4)).

fontsize Numeric. Elative size of annotations in the plot (default: 0.7).

refLabel Character. Label for reference levels of factor variables (default: "reference").

noDigits Numeric. Number of digits for estimates and p-values in the plot (default: 2).

Value

A ggplot object per model representing the forest plot. The plot visualizes the hazard ratios and
their confidence intervals for each variable or component from the Coxmos model.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox.model <- splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
splsdrcox.model <- splsdrcox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
plot_forest.list(lst_models)

plot_LP.multipleObservations

plot_LP.multipleObservations

Description

Visualizes the linear predictors for multiple patients based on a given Coxmos model.

116 plot_LP.multipleObservations

Usage

plot_LP.multipleObservations(
model,
new_observations,
error.bar = FALSE,
onlySig = TRUE,
alpha = 0.05,
zero.rm = TRUE,
auto.limits = TRUE,
top = NULL

)

Arguments

model Coxmos model.
new_observations

Numeric matrix or data.frame. New explanatory variables (raw data). Qualita-
tive variables must be transform into binary variables.

error.bar Logical. Show error bar (default: FALSE).

onlySig Logical. Compute plot using only significant components (default: TRUE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

zero.rm Logical. Remove variables equal to 0 (default: TRUE).

auto.limits Logical. If "auto.limits" = TRUE, limits are detected automatically (default:
TRUE).

top Numeric. Show "top" first variables. If top = NULL, all variables are shown
(default: NULL).

Details

The function plot_LP.multipleObservations is designed to visualize the linear predictors for
multiple patients based on the provided Coxmos model. The function takes into account various
parameters to customize the visualization, such as the significance level, error bars, and the number
of top variables to display.

The function works by first checking the class of the provided model. Depending on the model type,
it delegates the plotting task to one of the three methods: classical models, PLS models, or multi-
block PLS models. Each of these methods is tailored to handle specific model types and produce
the desired plots.

Value

A ggplot object visualizing the linear predictors for multiple patients based on the provided Coxmos
model.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

plot_LP.multipleObservations.list 117

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
plot_LP.multipleObservations(model = splsicox.model, new_observations = X_test[1:5,])

plot_LP.multipleObservations.list

plot_LP.multipleObservations.list

Description

Run the function "plot_LP.multipleObservations" for a list of models. More information in "?plot_LP.multipleObservations".

Usage

plot_LP.multipleObservations.list(
lst_models,
new_observations,
error.bar = FALSE,
onlySig = TRUE,
alpha = 0.05,
zero.rm = TRUE,
auto.limits = TRUE,
top = NULL

)

Arguments

lst_models List of Coxmos models.
new_observations

Numeric matrix or data.frame. New explanatory variables (raw data). Qualita-
tive variables must be transform into binary variables.

error.bar Logical. Show error bar (default: FALSE).

onlySig Logical. Compute plot using only significant components (default: TRUE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

zero.rm Logical. Remove variables equal to 0 (default: TRUE).

118 plot_observation.eventDensity

auto.limits Logical. If "auto.limits" = TRUE, limits are detected automatically (default:
TRUE).

top Numeric. Show "top" first variables. If top = NULL, all variables are shown
(default: NULL).

Value

A list of ggplot objects for each model in the lst_models. Each plot visualizes the linear predictor
values for multiple patients based on the specified Coxmos model. The plots can optionally display
error bars, consider only significant components, and can be limited to a specified number of top
variables. The visualization aids in understanding the influence of explanatory variables on the
survival prediction for each patient in the context of the provided models.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
splsdrcox.model <- splsdrcox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
plot_LP.multipleObservations.list(lst_models = lst_models, X_test[1:5,])

plot_observation.eventDensity

plot_observation.eventDensity

Description

Visualizes the event density for a given observation’s data using the Coxmos model.

Usage

plot_observation.eventDensity(
observation,
model,
time = NULL,

plot_observation.eventDensity 119

type = "lp",
size = 3,
color = "red"

)

Arguments

observation Numeric matrix or data.frame. New explanatory variables (raw data) for one
observation. Qualitative variables must be transform into binary variables.

model Coxmos model.

time Numeric. Time point where the AUC will be evaluated (default: NULL).

type Character. Prediction type: "lp", "risk", "expected" or "survival" (default: "lp").

size Numeric. Point size (default: 3).

color String. R Color.

Details

The plot_observation.eventDensity function provides a graphical representation of the event
density for a specific observation’s data, based on the Coxmos model. The function computes the
density of events and non-events and plots them, highlighting the predicted value for the given
observation’s data. The density is determined using density estimation, and the predicted value
is obtained from the Coxmos model. The function allows customization of the plot aesthetics,
such as point size and color. The resulting plot provides a visual comparison of the observation’s
predicted event density against the overall event density distribution, aiding in the interpretation of
the observation’s risk profile.

Value

A ggplot object representing a density of the predicted event values based on the provided Coxmos
model.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
coxEN.model <- coxEN(X_train, Y_train, x.center = TRUE, x.scale = TRUE)
observation = X_test[1,,drop=FALSE]
plot_observation.eventDensity(observation = observation, model = coxEN.model, time = NULL)

120 plot_observation.eventHistogram

plot_observation.eventHistogram

plot_observation.eventHistogram

Description

Generates a histogram plot for observation event data based on a given Coxmos model. The function
visualizes the distribution of predicted values and highlights the prediction for a specific observa-
tion.

Usage

plot_observation.eventHistogram(
observation,
model,
time = NULL,
type = "lp",
size = 3,
color = "red"

)

Arguments

observation Numeric matrix or data.frame. New explanatory variables (raw data) for one
observation. Qualitative variables must be transform into binary variables.

model Coxmos model.

time Numeric. Time point where the AUC will be evaluated (default: NULL).

type Character. Prediction type: "lp", "risk", "expected" or "survival" (default: "lp").

size Numeric. Point size (default: 3).

color String. R Color.

Details

The plot_observation.eventHistogram function is designed to provide a visual representation
of the distribution of predicted event values based on a Coxmos model. The function takes in obser-
vation data, a specified time point, and a Coxmos model to compute the prediction. The resulting
histogram plot displays the distribution of these predictions, with a specific emphasis on the predic-
tion for the provided observation data. The prediction is represented as a point on the histogram,
allowing for easy comparison between the specific observation’s prediction and the overall distribu-
tion of predictions. The type of prediction ("lp", "risk", "expected", or "survival") can be specified,
offering flexibility in the kind of insights one wishes to derive from the visualization. The appear-
ance of the point representing the observation’s prediction can be customized using the size and
color parameters.

plot_PLS_Coxmos 121

Value

A ggplot object representing a histogram of the predicted event values based on the provided Cox-
mos model.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
coxEN.model <- coxEN(X_train, Y_train, x.center = TRUE, x.scale = TRUE)
observation = X_test[1,,drop=FALSE]
plot_observation.eventHistogram(observation = observation, model = coxEN.model, time = NULL)

plot_PLS_Coxmos plot_PLS_Coxmos

Description

Visualizes the Coxmos models based on partial least squares (PLS) or Multi-block PLS approaches.
This function offers various plotting modes, including scores, loadings, and biplot visualizations, to
provide insights into the model’s structure and relationships.

Usage

plot_PLS_Coxmos(
model,
comp = c(1, 2),
mode = "scores",
factor = NULL,
legend_title = NULL,
top = NULL,
only_top = FALSE,
radius = NULL,
names = TRUE,
colorReverse = FALSE,
text.size = 2,
overlaps = 10

)

122 plot_PLS_Coxmos

Arguments

model Coxmos model.

comp Numeric vector. Vector of length two. Select which components to plot (default:
c(1,2)).

mode Character. Choose one of the following plots: "scores", "loadings" o "biplot"
(default: "scores").

factor Factor. Factor variable to color the observations. If factor = NULL, event will
be used (default: NULL).

legend_title Character. Legend title (default: NULL).

top Numeric. Show "top" first variables. If top = NULL, all variables are shown
(default: NULL).

only_top Logical. If "only_top" = TRUE, then only top/radius loading variables will be
shown in loading or biplot graph (default: FALSE).

radius Numeric. Radius size (loading/scale value) to plot variable names that are
greater than the radius value (default: NULL).

names Logical. Show loading names for top variables or for those that are outside the
radius size (default: TRUE).

colorReverse Logical. Reverse palette colors (default: FALSE).

text.size Numeric. Text size (default: 2).

overlaps Numeric. Number of overlaps to show when plotting loading names (default:
10).

Details

The plot_Coxmos.PLS.model function is designed to generate comprehensive visualizations of the
Coxmos models. It leverages the inherent structure of the model to produce plots that can aid in the
interpretation of the model’s components and their relationships.

Depending on the chosen mode, the function can display:

• Scores: This mode visualizes the scores of the model, which represent the projections of the
original data onto the PLS components. The scores can be colored by a factor variable, and
ellipses can be added to represent the distribution of the scores.

• Loadings: This mode displays the loadings of the model, which indicate the contribution of
each variable to the PLS components. The loadings can be filtered by a specified threshold (top
or radius), and arrows can be added to represent the direction and magnitude of the loadings.

• Biplot: A biplot combines both scores and loadings in a single plot, providing a comprehensive
view of the relationships between the observations and variables in the model.

The function also offers various customization options, such as adjusting the text size, reversing
the color palette, and specifying the number of overlaps for loading names. It ensures that the
visualizations are informative and tailored to the user’s preferences and the specific characteristics
of the data.

It’s important to note that the function performs checks to ensure the input model is of the correct
class and provides informative messages for any inconsistencies detected.

plot_proportionalHazard 123

Value

A list of two elements. plot: Score, Loading or Biplot graph in ’ggplot2’ format. outliers:
Data.frame of outliers detected in the plot.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox.model <- splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
plot_PLS_Coxmos(splsicox.model, comp = c(1,2), mode = "scores")

plot_proportionalHazard

plot_proportionalHazard

Description

Generates a visual assessment of the proportional hazards assumption for a given Coxmos model.
The function integrates the capabilities of the survival::cox.zph and survminer::ggcoxzph
functions to produce a ggplot2 graph that visualizes the validity of the proportional hazards as-
sumption.

Usage

plot_proportionalHazard(model)

Arguments

model Coxmos model.

Details

The proportional hazards assumption is a fundamental tenet of the Cox proportional hazards regres-
sion model. It posits that the hazard ratios between groups remain constant over time. Violations
of this assumption can lead to biased or misleading results. Thus, assessing the validity of this
assumption is crucial in survival analysis.

The function begins by validating the provided model to ensure it belongs to the Coxmos class.
If the model is valid, the function then evaluates the proportional hazards assumption using the
survival::cox.zph function. The results of this evaluation are then visualized using the survminer::ggcoxzph
function, producing a ggplot2 graph.

124 plot_proportionalHazard.list

The resulting plot provides a visual representation of the Schoenfeld residuals against time, allowing
for an intuitive assessment of the proportional hazards assumption. Each variable or factor level
from the model is represented in the plot, and the global test for the proportional hazards assumption
is also provided.

This function is instrumental in ensuring the robustness and validity of survival analysis results,
offering a comprehensive visualization that aids in the interpretation and validation of the Coxmos
model’s assumptions.

Value

A ggplot2 object visualizing the assessment of the proportional hazards assumption for the given
Coxmos model. The plot displays the Schoenfeld residuals against time for each variable or factor
level from the model. A line is fitted to these residuals to indicate any trend, which can suggest a
violation of the proportional hazards assumption.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Therneau TM (2024). A Package for Survival Analysis in R. R package version 3.5-8, https://
CRAN.R-project.org/package=survival. Kassambara A, Kosinski M, Biecek P (2021). survminer:
Drawing Survival Curves using ’ggplot2’. R package version 0.4.9, https://CRAN.R-project.
org/package=survminer. Grambsch PM, Therneau TM (1994). “Proportional hazards tests and
diagnostics based on weighted residuals.” Biometrika. doi:10.1093/biomet/81.3.515, https://
academic.oup.com/biomet/article-abstract/81/3/515/257037?redirectedFrom=fulltext.
Schoenfeld DA (1982). “Partial residuals for the proportional hazards regression model.” Biometrika.
doi:10.1093/biomet/69.1.239, https://academic.oup.com/biomet/article-abstract/69/1/239/
243012?redirectedFrom=fulltext.

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox.model <- splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
plot_proportionalHazard(splsicox.model)

plot_proportionalHazard.list

plot_proportionalHazard.list

Description

Run the function "plot_proportionalHazard" for a list of models. More information in "?plot_proportionalHazard".

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survminer
https://doi.org/10.1093/biomet/81.3.515
https://academic.oup.com/biomet/article-abstract/81/3/515/257037?redirectedFrom=fulltext
https://academic.oup.com/biomet/article-abstract/81/3/515/257037?redirectedFrom=fulltext
https://doi.org/10.1093/biomet/69.1.239
https://academic.oup.com/biomet/article-abstract/69/1/239/243012?redirectedFrom=fulltext
https://academic.oup.com/biomet/article-abstract/69/1/239/243012?redirectedFrom=fulltext

plot_pseudobeta 125

Usage

plot_proportionalHazard.list(lst_models)

Arguments

lst_models List of Coxmos models.

Value

A ggplot2 object per model visualizing the assessment of the proportional hazards assumption for
the given Coxmos model. The plot displays the Schoenfeld residuals against time for each variable
or factor level from the model. A line is fitted to these residuals to indicate any trend, which can
suggest a violation of the proportional hazards assumption.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox.model <- splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
splsdrcox.model <- splsdrcox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
plot_proportionalHazard.list(lst_models)

plot_pseudobeta plot_pseudobeta

Description

This function decomposes a PLS-Cox model, translating it into a pseudo-beta interpretation with
respect to the original variables. The decomposition is based on the relationship between the Cox
coefficients associated with each component and the weights corresponding to the original variables.
The final Cox formula is thus expressed in terms of these original variables.

Usage

plot_pseudobeta(
model,
error.bar = TRUE,
onlySig = FALSE,
alpha = 0.05,
zero.rm = TRUE,
top = NULL,

126 plot_pseudobeta

auto.limits = TRUE,
show_percentage = TRUE,
size_percentage = 3,
title_size_text = 15,
legend_size_text = 12,
x_axis_size_text = 10,
y_axis_size_text = 10,
label_x_axis_size = 10,
label_y_axis_size = 10

)

Arguments

model Coxmos model.

error.bar Logical. Show error bar (default: TRUE).

onlySig Logical. Compute pseudobetas using only significant components (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

zero.rm Logical. Remove variables with a pseudobeta equal to 0 (default: TRUE).

top Numeric. Show "top" first variables with the higher pseudobetas in absolute
value. If top = NULL, all variables are shown (default: NULL).

auto.limits Logical. If "auto.limits" = TRUE, limits are detected automatically (default:
TRUE).

show_percentage

Logical. If show_percentage = TRUE, it shows the contribution percentage for
each variable to the full model (default: TRUE).

size_percentage

Numeric. Size of percentage text (default: 3).
title_size_text

Numeric. Text size for legend title (default: 15).
legend_size_text

Numeric. Text size for legend title (default: 12).
x_axis_size_text

Numeric. Text size for x axis (default: 10).
y_axis_size_text

Numeric. Text size for y axis (default: 10).
label_x_axis_size

Numeric. Text size for x label axis (default: 10).
label_y_axis_size

Numeric. Text size for y label axis (default: 10).

Details

The plot_pseudobeta function offers a comprehensive visualization and interpretation of a PLS-
Cox model in terms of the original variables. The function begins by validating the model’s class
and type. For single block models, the function computes the pseudo-betas by multiplying the

plot_pseudobeta.list 127

loading weights (W.star) with the Cox coefficients. For multiblock models, this computation is
performed for each block separately.

The function provides flexibility in terms of visualization. Users can opt to display error bars, filter
out non-significant components based on a significance threshold (alpha), and remove variables
with a pseudo-beta of zero. Additionally, the function allows for automatic limit detection for the
plot and displays the contribution percentage of each variable to the full model. The resulting plot
can be customized further with various text size parameters for different plot elements.

It’s worth noting that the function supports both single block and multiblock PLS-Cox models. For
multiblock models, the function returns a list of plots, one for each block, whereas for single block
models, a single plot is returned.

Value

A list containing the following elements: plot: Depending on the model type, this can either
be a single ggplot object visualizing the pseudo-beta coefficients for the original variables in a
single block PLS-Cox model, or a list of ggplot objects for each block in a multiblock PLS-Cox
model. Each plot provides a comprehensive visualization of the pseudo-beta coefficients, potentially
including error bars, significance filtering, and variable contribution percentages. beta: A matrix
or list of matrices (for multiblock models) containing the computed pseudo-beta coefficients for the
original variables. These coefficients represent the influence of each original variable on the survival
prediction. sd.min: A matrix or list of matrices (for multiblock models) representing the lower
bounds of the error bars for the pseudo-beta coefficients. sd.max: A matrix or list of matrices (for
multiblock models) representing the upper bounds of the error bars for the pseudo-beta coefficients.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox.model <- splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
plot_pseudobeta(model = splsicox.model)

plot_pseudobeta.list plot_pseudobeta.list

Description

Run the function "plot_pseudobeta" for a list of models. More information in "?plot_pseudobeta".

128 plot_pseudobeta.list

Usage

plot_pseudobeta.list(
lst_models,
error.bar = TRUE,
onlySig = FALSE,
alpha = 0.05,
zero.rm = TRUE,
top = NULL,
auto.limits = TRUE,
show_percentage = TRUE,
size_percentage = 3,
verbose = FALSE

)

Arguments

lst_models List of Coxmos models.

error.bar Logical. Show error bar (default: TRUE).

onlySig Logical. Compute pseudobetas using only significant components (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

zero.rm Logical. Remove variables with a pseudobeta equal to 0 (default: TRUE).

top Numeric. Show "top" first variables with the higher pseudobetas in absolute
value. If top = NULL, all variables are shown (default: NULL).

auto.limits Logical. If "auto.limits" = TRUE, limits are detected automatically (default:
TRUE).

show_percentage

Logical. If show_percentage = TRUE, it shows the contribution percentage for
each variable to the full model (default: TRUE).

size_percentage

Numeric. Size of percentage text (default: 3).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Value

A list containing the following elements per model: plot: Depending on the model type, this can
either be a single ggplot object visualizing the pseudo-beta coefficients for the original variables in
a single block PLS-Cox model, or a list of ggplot objects for each block in a multiblock PLS-Cox
model. Each plot provides a comprehensive visualization of the pseudo-beta coefficients, potentially
including error bars, significance filtering, and variable contribution percentages. beta: A matrix
or list of matrices (for multiblock models) containing the computed pseudo-beta coefficients for the
original variables. These coefficients represent the influence of each original variable on the survival
prediction. sd.min: A matrix or list of matrices (for multiblock models) representing the lower
bounds of the error bars for the pseudo-beta coefficients. sd.max: A matrix or list of matrices (for
multiblock models) representing the upper bounds of the error bars for the pseudo-beta coefficients.

plot_pseudobeta_newObservation 129

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox.model <- splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
splsdrcox.model <- splsdrcox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
plot_pseudobeta.list(lst_models = lst_models)

plot_pseudobeta_newObservation

plot_pseudobeta.newObservation

Description

Generates a visual representation comparing the pseudobeta values derived from the Coxmos model
with the values of a new observation. This function provides insights into how the new observation
aligns with the established model, offering a graphical comparison of the pseudobeta directions.

Usage

plot_pseudobeta_newObservation(
model,
new_observation,
error.bar = TRUE,
onlySig = TRUE,
alpha = 0.05,
zero.rm = TRUE,
top = NULL,
auto.limits = TRUE,
show.betas = FALSE

)

Arguments

model Coxmos model.
new_observation

Numeric matrix or data.frame. New explanatory variables (raw data) for one
observation. Qualitative variables must be transform into binary variables.

error.bar Logical. Show error bar (default: TRUE).

onlySig Logical. Compute pseudobetas using only significant components (default: TRUE).

130 plot_pseudobeta_newObservation

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

zero.rm Logical. Remove variables with a pseudobeta equal to 0 (default: TRUE).
top Numeric. Show "top" first variables with the higher pseudobetas in absolute

value. If top = NULL, all variables are shown (default: NULL).
auto.limits Logical. If "auto.limits" = TRUE, limits are detected automatically (default:

TRUE).
show.betas Logical. Show original betas (default: FALSE).

Details

The function plot_pseudobeta.newObservation is designed to visually compare the pseudobeta
values from the Coxmos model with those of a new observation. The generated plot is based on
the ggplot2 framework and offers a comprehensive view of the relationship between the model’s
pseudobeta values and the new observation’s values.

The function first checks the validity of the provided model and ensures that it belongs to the
appropriate class. Depending on the type of the model (either PLS or MB Coxmos methods).

For the actual plotting, the function computes the linear predictor values for the new observation
and juxtaposes them with the pseudobeta values from the model. If the show.betas parameter is
set to TRUE, the original beta values are also displayed on the plot. Error bars can be included
to represent the variability in the pseudobeta values, providing a more comprehensive view of the
data’s distribution.

The resulting plot serves as a valuable tool for researchers and statisticians to visually assess the
alignment of a new observation with an established Coxmos model, facilitating better interpretation
and understanding of the data in the context of the model.

Value

A list of four elements: plot: Linear prediction per variable. lp.var: Value of each linear pre-
diction per variable. norm_observation: Observation normalized using the model information.
observation: Observation used.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
plot_pseudobeta_newObservation(model = splsicox.model, new_observation = X_test[1,,drop=FALSE])

plot_pseudobeta_newObservation.list 131

plot_pseudobeta_newObservation.list

plot_pseudobeta_newObservation.list

Description

Run the function "plot_pseudobeta_newObservation" for a list of models. More information in
"?plot_pseudobeta_newObservation".

Usage

plot_pseudobeta_newObservation.list(
lst_models,
new_observation,
error.bar = TRUE,
onlySig = TRUE,
alpha = 0.05,
zero.rm = TRUE,
top = NULL,
auto.limits = TRUE,
show.betas = FALSE,
verbose = FALSE

)

Arguments

lst_models List of Coxmos models.
new_observation

Numeric matrix or data.frame. New explanatory variables (raw data) for one
observation. Qualitative variables must be transform into binary variables.

error.bar Logical. Show error bar (default: TRUE).

onlySig Logical. Compute pseudobetas using only significant components (default: TRUE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

zero.rm Logical. Remove variables with a pseudobeta equal to 0 (default: TRUE).

top Numeric. Show "top" first variables with the higher pseudobetas in absolute
value. If top = NULL, all variables are shown (default: NULL).

auto.limits Logical. If "auto.limits" = TRUE, limits are detected automatically (default:
TRUE).

show.betas Logical. Show original betas (default: FALSE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

132 plot_time.list

Value

A list of lst_models length with a list of four elements per each model: plot: Linear prediction per
variable. lp.var: Value of each linear prediction per variable. norm_observation: Observation
normalized using the model information. observation: Observation used.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
splsdrcox.model <- splsdrcox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
plot_pseudobeta_newObservation.list(lst_models, new_observation = X_test[1,,drop=FALSE])

plot_time.list Time consuming plot.

Description

Produces a visual representation, using ggplot2, of the computational time consumed by each model
encapsulated within the provided list of Coxmos models. This visualization aids in the comparative
assessment of computational efficiency across different models.

Usage

plot_time.list(lst_models, x.text = "Method", y.text = NULL)

Arguments

lst_models List of Coxmos models. Each Coxmos object has the attribute time measured in
minutes (cross-validation models could be also added to this function).

x.text Character. X axis title.

y.text Character. Y axis title. If y.text = NULL, then y.text = "Time (mins)" (default:
NULL).

predict.Coxmos 133

Details

The plot_time.list function objective is to offer a clear and concise visual representation of the
computational time expended by each model during its execution.

The function expects a list of Coxmos models, each of which should inherently possess a time
attribute indicating the computational time it consumed. This time attribute is then extracted, ag-
gregated, and visualized in a bar plot format. The function is versatile enough to handle both
individual models and cross-validation models, summing up the computational times in the latter
case to provide an aggregate view.

The resultant plot is generated using the ’ggplot2’ package, ensuring a high-quality and interpretable
visualization. The Y-axis of the plot represents the computational time, typically in minutes, while
the X-axis enumerates the different models. The function also offers customization options for axis
labels, ensuring that the resultant plot aligns with the user’s preferences and the intended audience’s
expectations.

Value

A ’ggplot2’ bar plot object.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
coxSW.model <- coxSW(X, Y, x.center = TRUE, x.scale = TRUE)
coxEN.model <- coxEN(X, Y, x.center = TRUE, x.scale = TRUE)
lst_models = list("coxSW" = coxSW.model, "coxEN" = coxEN.model)
plot_time.list(lst_models, x.text = "Method")

predict.Coxmos predict.Coxmos

Description

Generates the prediction score matrix for Partial Least Squares (PLS) Survival models, facilitating
the transformation of high-dimensional data into a reduced space while preserving the most relevant
information for survival analysis.

Usage

S3 method for class 'Coxmos'
predict(object, ..., newdata = NULL)

134 print.Coxmos

Arguments

object Coxmos model
... additional arguments affecting the predictions produced.
newdata Numeric matrix or data.frame. New data for explanatory variables (raw data).

Qualitative variables must be transform into binary variables.

Details

The predict.Coxmos function is designed to compute the prediction scores for new data based on a
previously trained PLS Survival model. The function leverages the dimensional reduction capabili-
ties of PLS to project the new data into a lower-dimensional space, which is particularly beneficial
when dealing with high-dimensional datasets in survival analysis. The score matrix obtained serves
as a compact representation of the original data, capturing the most salient features that influence
survival outcomes.

Value

Score values data.frame for new data using the Coxmos model selected.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]

X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
model <- splsicox(X_train, Y_train, n.comp = 2) #after CV
predict(object = model, newdata = X_test)

print.Coxmos print.Coxmos

Description

Provides a structured print output for objects of class Coxmos, detailing either the final Cox survival
model or the attributes of the optimal model from cross-validation.

Usage

S3 method for class 'Coxmos'
print(x, ...)

save_ggplot 135

Arguments

x Coxmos object

... further arguments passed to or from other methods.

Details

The print.Coxmos function serves as a diagnostic tool, offering a comprehensive display of the
Coxmos object’s attributes. Depending on the nature of the Coxmos object—whether it’s derived
from a survival model or a cross-validated model—the function tailors its output accordingly. For
survival models, it elucidates the method employed, any variables removed due to high correlation,
zero or near-zero variance, or non-significance within the Cox model, and presents a summary of
the survival model itself. In the context of cross-validated models, the function delineates the cross-
validation method utilized and, if ascertainable, details of the best model. For evaluation objects,
it systematically enumerates the methods evaluated and provides a summary of metrics for each
method.

Value

Print information relative to a Coxmos object.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
model <- splsicox(X, Y, x.center = TRUE, x.scale = TRUE)
print(model)

save_ggplot save_ggplot

Description

Allows to save ’ggplot2’ objects in .tiff format based on an specific resolution.

Usage

save_ggplot(
plot,
folder,
name = "plot",
wide = TRUE,

136 save_ggplot.svg

quality = "4K",
dpi = 80,
custom = NULL

)

Arguments

plot ’ggplot2’ object. Object to plot and save.

folder Character. Folder path as character type.

name Character. File name.

wide Logical. If TRUE, widescreen format (16:9) is used, in other case (4:3) format.

quality Character. One of: "HD", "FHD", "2K", "4K", "8K"

dpi Numeric. Dpi value for the image.

custom Numeric vector. Custom size of the image. Numeric vector of width and height.

Value

Generate a plot image in the specific folder or working directory.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

if(requireNamespace("ggplot2", quietly = TRUE)){
library(ggplot2)
data(iris)
g <- ggplot(iris, aes(Sepal.Width, Sepal.Length, color = Species))
g <- g + geom_point(size = 4)
save_ggplot(g, folder = tempdir())
}

save_ggplot.svg save_ggplot.svg

Description

Allows to save ’ggplot2’ objects in .svg format based on an specific resolution.

save_ggplot.svg 137

Usage

save_ggplot.svg(
plot,
folder,
name = "plot",
wide = TRUE,
quality = "4K",
dpi = 80,
custom = NULL

)

Arguments

plot ’ggplot2’ object. Object to plot and save.

folder Character. Folder path as character type.

name Character. File name.

wide Logical. If TRUE, widescreen format (16:9) is used, in other case (4:3) format.

quality Character. One of: "HD", "FHD", "2K", "4K", "8K"

dpi Numeric. Dpi value for the image.

custom Numeric vector. Custom size of the image. Numeric vector of width and height.

Value

Generate as many plot images as list objects in the specific folder or working directory.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

if(requireNamespace("ggplot2", quietly = TRUE)){
library(ggplot2)
data(iris)
g <- ggplot(iris, aes(Sepal.Width, Sepal.Length, color = Species))
g <- g + geom_point(size = 4)
save_ggplot.svg(g, folder = tempdir())
}

138 save_ggplot_lst

save_ggplot_lst save_ggplot_lst

Description

Allows to save a list of ’ggplot2’ objects in .tiff format based on an specific resolution.

Usage

save_ggplot_lst(
lst_plots,
folder,
prefix = NULL,
suffix = NULL,
wide = TRUE,
quality = "4K",
dpi = 80,
custom = NULL,
object_name = NULL

)

Arguments

lst_plots List of ’ggplot2’.

folder Character. Folder path as character type.

prefix Character. Prefix for file name.

suffix Character. Sufix for file name.

wide Logical. If TRUE, widescreen format (16:9) is used, in other case (4:3) format.

quality Character. One of: "HD", "FHD", "2K", "4K", "8K"

dpi Numeric. Dpi value for the image.

custom Numeric vector. Custom size of the image. Numeric vector of width and height.

object_name Character. If the file to plot it is inside of a list, name of the object to save.

Value

Generate a plot image in the specific folder or working directory.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

save_ggplot_lst.svg 139

Examples

if(requireNamespace("ggplot2", quietly = TRUE)){
library(ggplot2)
data(iris)
g <- ggplot(iris, aes(Sepal.Width, Sepal.Length, color = Species))
g <- g + geom_point(size = 4)
g2 <- ggplot(iris, aes(Petal.Width, Petal.Length, color = Species))
g2 <- g2 + geom_point(size = 4)
lst_plots <- list("Sepal" = g, "Petal" = g2)
save_ggplot_lst(lst_plots, folder = tempdir())
}

save_ggplot_lst.svg save_ggplot_lst.svg

Description

Allows to save a list of ’ggplot2’ objects in .svg format based on an specific resolution.

Usage

save_ggplot_lst.svg(
lst_plots,
folder,
prefix = NULL,
suffix = NULL,
wide = TRUE,
quality = "4K",
dpi = 80,
custom = NULL,
object_name = NULL

)

Arguments

lst_plots List of ’ggplot2’.

folder Character. Folder path as character type.

prefix Character. Prefix for file name.

suffix Character. Sufix for file name.

wide Logical. If TRUE, widescreen format (16:9) is used, in other case (4:3) format.

quality Character. One of: "HD", "FHD", "2K", "4K", "8K"

dpi Numeric. Dpi value for the image.

custom Numeric vector. Custom size of the image. Numeric vector of width and height.

object_name Character. If the file to plot it is inside of a list, name of the object to save.

140 sb.splsdrcox

Value

Generate as many plot images as list objects in the specific folder or working directory.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

if(requireNamespace("ggplot2", quietly = TRUE)){
library(ggplot2)
data(iris)
g <- ggplot(iris, aes(Sepal.Width, Sepal.Length, color = Species))
g <- g + geom_point(size = 4)
g2 <- ggplot(iris, aes(Petal.Width, Petal.Length, color = Species))
g2 <- g2 + geom_point(size = 4)
lst_plots <- list("Sepal" = g, "Petal" = g2)
save_ggplot_lst.svg(lst_plots, folder = tempdir())
}

sb.splsdrcox SB.sPLS-DRCOX

Description

This function performs a single-block sparse partial least squares deviance residual Cox (SB.sPLS-
DRCOX). The function returns a Coxmos model with the attribute model as "SB.sPLS-DRCOX".

Usage

sb.splsdrcox(
X,
Y,
n.comp = 4,
penalty = 0.5,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_non_significant = FALSE,
alpha = 0.05,
MIN_EPV = 5,
returnData = TRUE,
verbose = FALSE

)

sb.splsdrcox 141

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

n.comp Numeric. Number of latent components to compute for the (s)PLS model (de-
fault: 10).

penalty Numeric. Penalty for sPLS-DRCOX. If penalty = 0 no penalty is applied, when
penalty = 1 maximum penalty (no variables are selected) based on ’plsRcox’
penalty. Equal or greater than 1 cannot be selected (default: 0.5).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

The SB.sPLS-DRCOX function performs a single-block sparse partial least squares deviance residual
Cox analysis. This method is designed to handle datasets with a single block of explanatory vari-
ables and aims to identify the most relevant features that contribute to the survival outcome. The
method combines the strengths of sparse partial least squares (sPLS) with Cox regression, allowing
for dimensionality reduction, feature selection, and survival analysis in a unified framework.

The key feature of this function is the use of deviance residuals as the response in the sPLS model.
Deviance residuals are derived from a preliminary Cox model and capture the discrepancies between

142 sb.splsdrcox

the observed and expected number of events. By using these residuals as the response, the sPLS
model can focus on identifying the explanatory variables that have the most significant impact on
the survival outcome.

The function offers flexibility in specifying various hyperparameters, such as the number of latent
components (n.comp) and the penalty for variable selection (penalty). The penalty parameter,
penalty, controls the sparsity of the model, with higher values leading to more variables being
excluded from the model. This allows for a balance between model complexity and interpretability.

Data preprocessing options, such as centering and scaling of the explanatory variables and removal
of near-zero variance variables, are also provided. These preprocessing steps ensure that the data is
in a suitable format for the sPLS model and can help improve the stability and performance of the
analysis.

The output of the function provides a comprehensive overview of the sPLS-DRCOX model, includ-
ing the normalized data, PLS weights and scores, and the final Cox model. Visualization tools and
metrics such as AIC and BIC are also provided to aid in understanding the model’s performance
and significance of the selected features.

In summary, the SB.sPLS-DRCOX function offers a robust approach for survival analysis with high-
dimensional data, combining feature selection, dimensionality reduction, and Cox regression in a
single-block framework. The method is particularly useful for datasets where the number of vari-
ables exceeds the number of observations, and there’s a need to identify the most relevant features
for predicting survival outcomes.

Value

Instance of class "Coxmos" and model "sb.splscox". The class contains the following elements: X:
List of normalized X data information.

• (data): normalized X matrix

• (weightings): PLS weights

• (weightings_norm): PLS normalize weights

• (W.star): PLS W* vector

• (scores): PLS scores/variates

• (x.mean): mean values for X matrix

• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

• (deviance_residuals): deviance residual vector used as Y matrix in the sPLS.

• (dr.mean): mean values for deviance residuals Y matrix

• (dr.sd): standard deviation for deviance residuals Y matrix’

• (data): normalized X matrix

• (y.mean): mean values for Y matrix

• (y.sd): standard deviation for Y matrix’

survival_model: List of survival model information.

• fit: coxph object.

sb.splsicox 143

• AIC: AIC of cox model.

• BIC: BIC of cox model.

• lp: linear predictors for train data.

• coef: Coefficients for cox model.

• YChapeau: Y Chapeau residuals.

• Yresidus: Y residuals.

list_spls_models: List of sPLS-DRCOX models computed for each block.

n.comp: Number of components selected.

penalty Penalty applied.

call: call function

X_input: X input matrix

Y_input: Y input matrix

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

class: Model class.

time: time consumed for running the cox analysis.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_multiomic")
data("Y_multiomic")
X <- X_multiomic
X$mirna <- X$mirna[,1:50]
X$proteomic <- X$proteomic[,1:50]
Y <- Y_multiomic
sb.splsdrcox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)

sb.splsicox SB.sPLS-ICOX

Description

This function performs a single-block sparse partial least squares individual Cox (SB.sPLS-ICOX).
The function returns a Coxmos model with the attribute model as "SB.sPLS-ICOX".

144 sb.splsicox

Usage

sb.splsicox(
X,
Y,
n.comp = 4,
penalty = 1,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_non_significant = FALSE,
alpha = 0.05,
MIN_EPV = 5,
returnData = TRUE,
verbose = FALSE

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

n.comp Numeric. Number of latent components to compute for the (s)PLS model (de-
fault: 10).

penalty Numeric. Penalty for variable selection for the individual cox models. Variables
with a lower P-Value than 1 - "penalty" in the individual cox analysis will be
keep for the sPLS-ICOX approach (default: 1).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

sb.splsicox 145

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

The SB.sPLS-ICOX function is designed to perform a single-block sparse partial least squares in-
dividual Cox analysis. This method is particularly suited for high-dimensional datasets where the
number of variables (features) significantly exceeds the number of observations. The "single-block"
in its name indicates that while the function can handle datasets with multiple blocks, it processes
each block individually rather than in a multiblock manner where all blocks are analyzed simulta-
neously.

By analyzing one block at a time, the function ensures a focused and detailed examination of each
block’s contribution to the survival outcome. This approach is especially beneficial when different
blocks represent distinct types or sources of data, allowing for a granular understanding of each
block’s significance.

The analysis begins by applying a penalty to select significant variables based on individual Cox
models. This step ensures that only the most relevant features from the current block contribute to
the subsequent sPLS analysis. The sPLS method then identifies latent components that capture the
maximum covariance between the explanatory variables (X) from the block and the response (Y),
which are the deviance residuals from the Cox models.

Users have the flexibility to specify various hyperparameters, including the number of latent compo-
nents and the penalty for variable selection. The function also offers options for data preprocessing,
such as centering, scaling, and removing variables with near-zero or zero variance.

The output provides a comprehensive overview of the analysis for the processed block, including
normalized data information, survival model details, and the sPLS-ICOX model. Visualization
tools and metrics such as AIC and BIC further aid in understanding the model’s performance and
significance for the given block.

In summary, the SB.sPLS-ICOX function offers a powerful approach for survival analysis in high-
dimensional settings, ensuring optimal feature selection, dimensionality reduction, and predictive
modeling for each individual block in the dataset.

Value

Instance of class "Coxmos" and model "sb.splsicox". The class contains the following elements: X:
List of normalized X data information.

• (data): normalized X matrix

• (weightings): PLS weights

• (weightings_norm): PLS normalize weights

• (W.star): PLS W* vector

146 sb.splsicox

• (scores): PLS scores/variates
• (x.mean): mean values for X matrix
• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

• (deviance_residuals): deviance residual vector used as Y matrix in the sPLS.
• (dr.mean): mean values for deviance residuals Y matrix
• (dr.sd): standard deviation for deviance residuals Y matrix’
• (data): normalized X matrix
• (y.mean): mean values for Y matrix
• (y.sd): standard deviation for Y matrix’

survival_model: List of survival model information.

• fit: coxph object.
• AIC: AIC of cox model.
• BIC: BIC of cox model.
• lp: linear predictors for train data.
• coef: Coefficients for cox model.
• YChapeau: Y Chapeau residuals.
• Yresidus: Y residuals.

list_spls_models: List of sPLS-ICOX models computed for each block.

n.comp: Number of components selected.

penalty Penalty applied.

call: call function

X_input: X input matrix

Y_input: Y input matrix

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

class: Model class.

time: time consumed for running the cox analysis.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_multiomic")
data("Y_multiomic")
X <- X_multiomic
X$mirna <- X$mirna[,1:50]
X$proteomic <- X$proteomic[,1:50]
Y <- Y_multiomic
sb.splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)

splsdacox_dynamic 147

splsdacox_dynamic sPLSDA-COX Dynamic

Description

The splsdacox_dynamic function conducts a sparse partial least squares discriminant analysis Cox
(sPLSDA-COX) using dynamic variable selection methodology. This method is particularly use-
ful for high-dimensional survival data where the goal is to identify a subset of variables that are
most predictive of survival outcomes. The function integrates the power of sPLSDA with the Cox
proportional hazards model to provide a robust tool for survival analysis in the context of large
datasets.

Usage

splsdacox_dynamic(
X,
Y,
n.comp = 4,
vector = NULL,
MIN_NVAR = 10,
MAX_NVAR = 1000,
n.cut_points = 5,
MIN_AUC_INCREASE = 0.01,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_non_significant = FALSE,
alpha = 0.05,
EVAL_METHOD = "AUC",
pred.method = "cenROC",
max.iter = 200,
times = NULL,
max_time_points = 15,
MIN_EPV = 5,
returnData = TRUE,
verbose = FALSE

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

148 splsdacox_dynamic

n.comp Numeric. Number of latent components to compute for the (s)PLS model (de-
fault: 10).

vector Numeric vector. Used for computing best number of variables. As many values
as components have to be provided. If vector = NULL, an automatic detection
is perform (default: NULL).

MIN_NVAR Numeric. Minimum range size for computing cut points to select the best num-
ber of variables to use (default: 10).

MAX_NVAR Numeric. Maximum range size for computing cut points to select the best num-
ber of variables to use (default: 1000).

n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
If only two cut points are selected, minimum and maximum size are used. For
MB approaches as many as n.cut_points^n.blocks models will be computed as
minimum (default: 5).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

EVAL_METHOD Character. If EVAL_METHOD = "AUC", AUC metric will be use to compute
the best number of variables. In other case, c-index metric will be used (default:
"AUC").

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).

splsdacox_dynamic 149

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

The function begins by checking the input parameters for consistency and ensuring that the response
variable Y has the required columns "time" and "event". It then preprocesses the data by centering
and scaling (if specified), and removing variables with zero or near-zero variance. The function also
checks for multicollinearity in the data and addresses it if detected.

The core of the function involves determining the optimal number of variables to retain in the model.
If the vector parameter is not provided, the function employs a strategy to identify the best number
of variables for each latent component. This is achieved by evaluating different combinations of
variables and selecting the one that maximizes the model’s performance, as determined by the
specified evaluation metric (EVAL_METHOD).

Once the optimal number of variables is determined, the function proceeds to compute the sPLSDA-
COX model. It employs the mixOmics::splsda function to compute the sPLSDA model, which is
then integrated with the Cox proportional hazards model. The resulting model provides insights
into the relationship between the predictor variables and survival outcomes.

The function also offers the flexibility to refine the model further by removing non-significant vari-
ables based on a specified alpha threshold.

Value

Instance of class "Coxmos" and model "sPLS-DACOX-Dynamic". The class contains the following
elements: X: List of normalized X data information.

• (data): normalized X matrix

• (weightings): sPLS weights

• (W.star): sPLS W* vector

• (loadings): sPLS loadings

• (scores): sPLS scores/variates

• (x.mean): mean values for X matrix

• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

150 splsdacox_dynamic

• (data): normalized X matrix
• (y.mean): mean values for Y matrix
• (y.sd): standard deviation for Y matrix’

survival_model: List of survival model information.

• fit: coxph object.
• AIC: AIC of cox model.
• BIC: BIC of cox model.
• lp: linear predictors for train data.
• coef: Coefficients for cox model.
• YChapeau: Y Chapeau residuals.
• Yresidus: Y residuals.

n.comp: Number of components selected.

n.varX: Number of Variables selected in each PLS component.

var_by_component: Variables selected in each PLS component.

plot_accuracyPerVariable: If NULL vector is selected, return a plot for understanding the num-
ber of variable selection.

call: call function

X_input: X input matrix

Y_input: Y input matrix

alpha: alpha value selected

nsv: Variables removed by cox alpha cutoff.

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

class: Model class.

time: time consumed for running the cox analysis.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Rohart F, Gautier B, Singh A, Cao KAL (2017). “mixOmics: An R package for ‘omics feature
selection and multiple data integration.” PLoS Computational Biology, 13(11). ISSN 15537358,
https://pubmed.ncbi.nlm.nih.gov/29099853/.

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:20]
Y <- Y_proteomic
splsdacox_dynamic(X, Y, n.comp = 2, vector = NULL, x.center = TRUE, x.scale = TRUE)

https://pubmed.ncbi.nlm.nih.gov/29099853/

splsdrcox 151

splsdrcox sPLS-DRCOX

Description

This function performs a sparse partial least squares deviance residual Cox (sPLS-DRCOX) (based
on plsRcox R package). The function returns a Coxmos model with the attribute model as "sPLS-
DRCOX".

Usage

splsdrcox(
X,
Y,
n.comp = 4,
penalty = 0.5,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = FALSE,
toKeep.zv = NULL,
remove_non_significant = FALSE,
alpha = 0.05,
MIN_EPV = 5,
returnData = TRUE,
verbose = FALSE

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

n.comp Numeric. Number of latent components to compute for the (s)PLS model (de-
fault: 10).

penalty Numeric. Penalty for sPLS-DRCOX. If penalty = 0 no penalty is applied, when
penalty = 1 maximum penalty (no variables are selected) based on ’plsRcox’
penalty. Equal or greater than 1 cannot be selected (default: 0.5).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

152 splsdrcox

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

The sPLS-DRCOX function implements the sparse partial least squares deviance residual Cox (sPLS-
DRCOX) model, a specialized approach tailored for survival analysis. This method integrates the
strengths of the sparse partial least squares (sPLS) technique with the Cox proportional hazards
model, leveraging deviance residuals as a bridge.

The function’s core lies in its ability to handle high-dimensional data, often encountered in ge-
nomics or other omics studies. By incorporating the penalty parameter, which governs the spar-
sity level, the function offers a fine-grained control over variable selection. This ensures that only
the most informative predictors contribute to the model, enhancing interpretability and reducing
overfitting.

Data preprocessing is seamlessly integrated, with options to center and scale the predictors, and to
remove variables exhibiting near-zero or zero variance. The function also provides a mechanism to
retain specific variables, regardless of their variance, ensuring that domain-specific knowledge can
be incorporated.

The output is comprehensive, detailing both the sPLS and Cox model components. It provides
insights into the selected variables, their contributions across latent components, and the overall fit
of the survival model. This rich output aids in understanding the underlying relationships between
predictors and survival outcomes.

The sPLS-DRCOX function is grounded in established methodologies and is a valuable tool for re-
searchers aiming to unravel complex survival associations in high-dimensional datasets.

Value

Instance of class "Coxmos" and model "sPLS-DRCOX". The class contains the following elements:
X: List of normalized X data information.

• (data): normalized X matrix

splsdrcox 153

• (weightings): sPLS weights

• (weightings_norm): sPLS normalize weights

• (W.star): sPLS W* vector

• (loadings): sPLS loadings

• (scores): sPLS scores/variates

• (E): error matrices

• (x.mean): mean values for X matrix

• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

• (deviance_residuals): deviance residual vector used as Y matrix in the sPLS.

• (dr.mean): mean values for deviance residuals Y matrix

• (dr.sd): standard deviation for deviance residuals Y matrix’

• (data): normalized X matrix

• (weightings): sPLS weights

• (loadings): sPLS loadings

• (scores): sPLS scores/variates

• (ratio): r value for the sPLS model (used to perform predictions)

• (y.mean): mean values for Y matrix

• (y.sd): standard deviation for Y matrix’

survival_model: List of survival model information.

• fit: coxph object.

• AIC: AIC of cox model.

• BIC: BIC of cox model.

• lp: linear predictors for train data.

• coef: Coefficients for cox model.

• YChapeau: Y Chapeau residuals.

• Yresidus: Y residuals.

penalty: Penalty value selected.

n.comp: Number of components selected.

var_by_component: Variables selected in each PLS component.

call: call function

X_input: X input matrix

Y_input: Y input matrix

B.hat: sPLS beta matrix

R2: sPLS R2

SCR: sPLS SCR

154 splsdrcox_dynamic

SCT: sPLS SCT

alpha: alpha value selected

nsv: Variables removed by cox alpha cutoff.

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

class: Model class.

time: time consumed for running the cox analysis.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Bastien P (2008). “Deviance residuals based PLS regression for censored data in high dimensional
setting.” Chemometrics and Intelligent Laboratory Systems. doi:10.1016/j.chemolab.2007.09.009,
https://www.sciencedirect.com/science/article/abs/pii/S0169743907001931?via%3Dihub.
Bastien P, Bastien P, Bertrand F, Meyer N, Meyer N, Meyer N, Maumy-Bertrand M (2015). “De-
viance residuals-based sparse PLS and sparse kernel PLS regression for censored data.” Bioinfor-
matics. https://academic.oup.com/bioinformatics/article/31/3/397/2366078.

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsdrcox(X, Y, n.comp = 3, penalty = 0.25, x.center = TRUE, x.scale = TRUE)

splsdrcox_dynamic sPLS-DRCOX Dynamic

Description

The sPLS-DRCOX Dynamic function conducts a sparse partial least squares deviance residual Cox
regression analysis using a dynamic variable selection approach. This method is particularly useful
for high-dimensional survival data where variable selection is crucial. The function returns a model
of class "Coxmos" with the attribute model specified as "sPLS-DRCOX".

Usage

splsdrcox_dynamic(
X,
Y,
n.comp = 4,
vector = NULL,

https://doi.org/10.1016/j.chemolab.2007.09.009
https://www.sciencedirect.com/science/article/abs/pii/S0169743907001931?via%3Dihub
https://academic.oup.com/bioinformatics/article/31/3/397/2366078

splsdrcox_dynamic 155

MIN_NVAR = 10,
MAX_NVAR = 1000,
n.cut_points = 5,
MIN_AUC_INCREASE = 0.01,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_non_significant = FALSE,
alpha = 0.05,
EVAL_METHOD = "AUC",
pred.method = "cenROC",
max.iter = 200,
times = NULL,
max_time_points = 15,
MIN_EPV = 5,
returnData = TRUE,
verbose = FALSE

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

n.comp Numeric. Number of latent components to compute for the (s)PLS model (de-
fault: 10).

vector Numeric vector. Used for computing best number of variables. As many values
as components have to be provided. If vector = NULL, an automatic detection
is perform (default: NULL).

MIN_NVAR Numeric. Minimum range size for computing cut points to select the best num-
ber of variables to use (default: 10).

MAX_NVAR Numeric. Maximum range size for computing cut points to select the best num-
ber of variables to use (default: 1000).

n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
If only two cut points are selected, minimum and maximum size are used. For
MB approaches as many as n.cut_points^n.blocks models will be computed as
minimum (default: 5).

MIN_AUC_INCREASE

Numeric. Minimum improvement between different cross validation models
to continue evaluating higher values in the multiple tested parameters. If it
is not reached for next ’MIN_COMP_TO_CHECK’ models and the minimum
’MIN_AUC’ value is reached, the evaluation stops (default: 0.01).

156 splsdrcox_dynamic

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

EVAL_METHOD Character. If EVAL_METHOD = "AUC", AUC metric will be use to compute
the best number of variables. In other case, c-index metric will be used (default:
"AUC").

pred.method Character. AUC evaluation algorithm method for evaluate the model perfor-
mance. Must be one of the following: "risksetROC", "survivalROC", "cen-
ROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cen-
ROC").

max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).

times Numeric vector. Time points where the AUC will be evaluated. If NULL, a max-
imum of ’max_time_points’ points will be selected equally distributed (default:
NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model
(default: 15).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

The function employs a sparse partial least squares (sPLS) approach combined with deviance resid-
uals from a Cox model to handle survival data. The dynamic variable selection methodology en-
sures that only the most relevant predictors are included in the model, enhancing interpretability
and potentially improving predictive performance.

splsdrcox_dynamic 157

The input matrices X and Y represent the explanatory and response variables, respectively. It is
essential to note that qualitative variables in X should be transformed into binary format. The
response matrix Y should have two columns named "time" and "event", where the "event" column
can take values 0/1 or FALSE/TRUE, representing censored and event observations.

Several parameters allow users to fine-tune the model. For instance, n.comp determines the number
of latent components for the PLS model, and vector aids in computing the optimal number of
variables. Parameters like MIN_NVAR and MAX_NVAR define the range for computing cut points
to select the best number of variables. The function also provides options for data preprocessing,
such as centering and scaling the X matrix and removing variables with near-zero or zero variance.

The evaluation metric for determining the best number of variables can be specified using the
EVAL_METHOD parameter. The function supports various evaluation algorithms for assessing
model performance, as indicated by the pred.method parameter.

Value

Instance of class "Coxmos" and model "sPLS-DRCOX-Dynamic". The class contains the following
elements: X: List of normalized X data information.

• (data): normalized X matrix

• (weightings): PLS weights

• (W.star): PLS W* vector

• (loadings): sPLS loadings

• (scores): PLS scores/variates

• (E): error matrices

• (x.mean): mean values for X matrix

• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

• (deviance_residuals): deviance residual vector used as Y matrix in the sPLS.

• (dr.mean): mean values for deviance residuals Y matrix

• (dr.sd): standard deviation for deviance residuals Y matrix’

• (data): normalized X matrix

• (y.mean): mean values for Y matrix

• (y.sd): standard deviation for Y matrix’

survival_model: List of survival model information.

• fit: coxph object.

• AIC: AIC of cox model.

• BIC: BIC of cox model.

• lp: linear predictors for train data.

• coef: Coefficients for cox model.

• YChapeau: Y Chapeau residuals.

158 splsdrcox_dynamic

• Yresidus: Y residuals.

n.comp: Number of components selected.

n.varX: Number of Variables selected in each PLS component.

var_by_component: Variables selected in each PLS component.

plot_accuracyPerVariable: If NULL vector is selected, return a plot for understanding the num-
ber of variable selection.

call: call function

X_input: X input matrix

Y_input: Y input matrix

beta_matrix: PLS beta matrix

R2: PLS R2

SCR: PLS SCR

SCT: PLS SCT

alpha: alpha value selected

nsv: Variables removed by cox alpha cutoff.

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

class: Model class.

time: time consumed for running the cox analysis.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

References

Bastien P (2008). “Deviance residuals based PLS regression for censored data in high dimensional
setting.” Chemometrics and Intelligent Laboratory Systems. doi:10.1016/j.chemolab.2007.09.009,
https://www.sciencedirect.com/science/article/abs/pii/S0169743907001931?via%3Dihub.
Bastien P, Bastien P, Bertrand F, Meyer N, Meyer N, Meyer N, Maumy-Bertrand M (2015). “De-
viance residuals-based sparse PLS and sparse kernel PLS regression for censored data.” Bioin-
formatics. https://academic.oup.com/bioinformatics/article/31/3/397/2366078. Ro-
hart F, Gautier B, Singh A, Cao KAL (2017). “mixOmics: An R package for ‘omics feature
selection and multiple data integration.” PLoS Computational Biology, 13(11). ISSN 15537358,
https://pubmed.ncbi.nlm.nih.gov/29099853/.

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsdrcox_dynamic(X, Y, n.comp = 3, vector = NULL, x.center = TRUE, x.scale = TRUE)

https://doi.org/10.1016/j.chemolab.2007.09.009
https://www.sciencedirect.com/science/article/abs/pii/S0169743907001931?via%3Dihub
https://academic.oup.com/bioinformatics/article/31/3/397/2366078
https://pubmed.ncbi.nlm.nih.gov/29099853/

splsicox 159

splsicox sPLS-ICOX

Description

This function performs a sparse partial least squares individual Cox (sPLS-ICOX) (based on plsR-
cox R package). The function returns a Coxmos model with the attribute model as "sPLS-ICOX".

Usage

splsicox(
X,
Y,
n.comp = 4,
penalty = 0,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = FALSE,
toKeep.zv = NULL,
remove_non_significant = FALSE,
alpha = 0.05,
MIN_EPV = 5,
returnData = TRUE,
verbose = FALSE

)

Arguments

X Numeric matrix or data.frame. Explanatory variables. Qualitative variables
must be transform into binary variables.

Y Numeric matrix or data.frame. Response variables. Object must have two
columns named as "time" and "event". For event column, accepted values are:
0/1 or FALSE/TRUE for censored and event observations.

n.comp Numeric. Number of latent components to compute for the (s)PLS model (de-
fault: 10).

penalty Numeric. Penalty for variable selection for the individual cox models. Variables
with a lower P-Value than 1 - "penalty" in the individual cox analysis will be
keep for the sPLS-ICOX approach (default: 0).

x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default:
TRUE).

x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
remove_near_zero_variance

Logical. If remove_near_zero_variance = TRUE, near zero variance variables
will be removed (default: TRUE).

160 splsicox

remove_zero_variance

Logical. If remove_zero_variance = TRUE, zero variance variables will be re-
moved (default: TRUE).

toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero vari-
ance filtering (default: NULL).

remove_non_significant

Logical. If remove_non_significant = TRUE, non-significant variables/components
in final cox model will be removed until all variables are significant by forward
selection (default: FALSE).

alpha Numeric. Numerical values are regarded as significant if they fall below the
threshold (default: 0.05).

MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for
the final cox model. Used to restrict the number of variables/components can be
computed in final cox models. If the minimum is not meet, the model cannot be
computed (default: 5).

returnData Logical. Return original and normalized X and Y matrices (default: TRUE).

verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Details

The sPLS-ICOX function is an advanced analytical tool tailored for the elucidation of high-dimensional
survival data. It amalgamates the principles of sparse partial least squares (sPLS) regression with
individual Cox regression, thereby offering a robust mechanism for both dimension reduction and
variable selection in the context of survival analysis. Rooted in the methodologies of the plsRcox
R package, this function operationalizes the sPLS-ICOX model by leveraging the inherent sparsity
introduced via the penalty parameter. This parameter delineates a stringent criterion for variable
retention, wherein only those variables that manifest a P-Value inferior to the threshold defined by
1 - penalty in the individual Cox analysis are assimilated into the sPLS-ICOX model framework.
The parameter n.comp demarcates the number of latent components to be computed for the sPLS
model. These latent components, which encapsulate salient patterns within the data, subsequently
underpin the Cox regression analysis. It is imperative to underscore the necessity of meticulous data
preprocessing, especially in the context of qualitative variables. Such variables necessitate binary
transformation prior to their integration into the function. Moreover, the function is equipped with
options for data centering and scaling, pivotal operations that can significantly influence model per-
formance. Designed with a predilection for right-censored survival data, the function mandates the
structuring of the outcome or response variable Y into two distinct columns: "time", which chroni-
cles the survival time, and "event", which catalogues the occurrence or non-occurrence of the event
of interest.

Upon execution, the function yields a comprehensive list encapsulating a plethora of elements ger-
mane to the sPLS-ICOX model, inclusive of the normalized data matrices, sPLS weight vectors,
loadings, scores, and an exhaustive compilation of survival model metrics.

Value

Instance of class "Coxmos" and model "sPLS-ICOX". The class contains the following elements:
X: List of normalized X data information.

• (data): normalized X matrix

splsicox 161

• (weightings): sPLS weights

• (weightings_norm): sPLS normalize weights

• (W.star): sPLS W* vector

• (loadings): sPLS loadings

• (scores): sPLS scores/variates

• (E): error matrices

• (x.mean): mean values for X matrix

• (x.sd): standard deviation for X matrix

Y: List of normalized Y data information.

• (data): normalized X matrix

• (y.mean): mean values for Y matrix

• (y.sd): standard deviation for Y matrix’

survival_model: List of survival model information.

• fit: coxph object.

• AIC: AIC of cox model.

• BIC: BIC of cox model.

• lp: linear predictors for train data.

• coef: Coefficients for cox model.

• YChapeau: Y Chapeau residuals.

• Yresidus: Y residuals.

n.comp: Number of components selected.

var_by_component: Variables selected by each component.

call: call function

X_input: X input matrix

Y_input: Y input matrix

alpha: alpha value selected

nsv: Variables removed by cox alpha cutoff.

nzv: Variables removed by remove_near_zero_variance or remove_zero_variance.

nz_coeffvar: Variables removed by coefficient variation near zero.

class: Model class.

time: time consumed for running the cox analysis.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

162 w.starplot.Coxmos

References

Bastien P, Vinzi VE, Tenenhaus M (2005). “PLS generalised linear regression.” Computational
Statistics & Data Analysis. https://www.sciencedirect.com/science/article/abs/pii/S0167947304000271?
via%3Dihub.

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)

w.starplot.Coxmos w.starplot.Coxmos

Description

The w.starplot.Coxmos function offers a graphical representation of the W* (W star) values from
a given Coxmos model. Through this visualization, users can gain insights into the variable con-
tributions and their significance in the model. The function provides options for customization,
allowing users to focus on specific variables, exclude zero values, and adjust the visual limits.

Usage

w.starplot.Coxmos(model, zero.rm = FALSE, top = NULL, auto.limits = TRUE)

Arguments

model Coxmos model.

zero.rm Logical. Remove variables equal to 0 (default: FALSE).

top Numeric. Show "top" first variables. If top = NULL, all variables are shown
(default: NULL).

auto.limits Logical. If "auto.limits" = TRUE, limits are detected automatically (default:
TRUE).

Details

The w.starplot.Coxmos function is tailored to visualize the W* values, which are indicative of the
variable contributions in a Coxmos model. Initially, the function checks the class of the provided
model to ensure its compatibility with the Coxmos framework.

The W* values are extracted from the model and subsequently processed based on user-defined
parameters. The zero.rm option allows users to exclude variables with zero W* values, ensuring
a more concise visualization. If the top parameter is specified, the function focuses on displaying
only the top-ranked variables based on their absolute W* values.

https://www.sciencedirect.com/science/article/abs/pii/S0167947304000271?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0167947304000271?via%3Dihub

X_multiomic 163

The visualization is constructed using the ’ggplot2’ framework. The color scale can be automati-
cally adjusted to the maximum absolute W* value when the auto.limits parameter is set to TRUE.
The function also checks for the availability of the RColorConesa package. If present, it leverages
its color palettes for a more refined visualization; in its absence, default color schemes are applied.

Value

A list of ggplot2 objects, each representing the W* values for a component of the Coxmos model.

Examples

data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox.model <- splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
w.starplot.Coxmos(model = splsicox.model)

X_multiomic X_multiomic Data

Description

Toy dataset from BREAST CANCER. miRNA and Protein data. (https://github.com/pilargmarch/multiomics2.0/tree/main)

Usage

X_multiomic

Format

A data frame with 150 observations and two omics (miRNA and proteomic):

642 miRNAs, 369 proteins

Source

TCGA-BRCA data

164 Y_multiomic

X_proteomic X_proteomic Data

Description

Toy dataset from BREAST CANCER. Protein data. (https://github.com/pilargmarch/multiomics2.0/tree/main)

Usage

X_proteomic

Format

A data frame with 150 observations and 369 features:
Small data set from original data (585 observations).

Source

TCGA-BRCA data

Y_multiomic Y_multiomic Data

Description

Toy dataset from BREAST CANCER. miRNA and Protein data. (https://github.com/pilargmarch/multiomics2.0/tree/main)

Usage

Y_multiomic

Format

A data frame with 150 observations and 2 features:

time Global survival time in years. Time to the event of to the last patient information.

event Numeric. FALSE/0 for censored and TRUE/1 for event observations.

Source

TCGA-BRCA data

Y_proteomic 165

Y_proteomic Y_proteomic Data

Description

Toy dataset from BREAST CANCER. Protein data. (https://github.com/pilargmarch/multiomics2.0/tree/main)

Usage

Y_proteomic

Format

A data frame with 150 observations and 2 features:

time Global survival time in years. Time to the event of to the last patient information.

event Numeric. FALSE/0 for censored and TRUE/1 for event observations.

Source

TCGA-BRCA data

Index

∗ datasets
X_multiomic, 163
X_proteomic, 164
Y_multiomic, 164
Y_proteomic, 165

Beran, 4

cenROC, 5
cox, 7
cox.prediction, 10
coxEN, 11
coxSW, 14
CV, 17
cv.coxEN, 18
cv.isb.splsdrcox, 23
cv.isb.splsicox, 28
cv.mb.splsdacox, 32
cv.mb.splsdrcox, 37
cv.sb.splsdrcox, 41
cv.sb.splsicox, 46
cv.splsdacox_dynamic, 50
cv.splsdrcox, 54
cv.splsdrcox_dynamic, 58
cv.splsicox, 63

deleteNearZeroCoefficientOfVariation,
67

deleteNearZeroCoefficientOfVariation.mb,
68

deleteZeroOrNearZeroVariance, 69
deleteZeroOrNearZeroVariance.mb, 71

eval_Coxmos_model_per_variable, 74
eval_Coxmos_models, 72

factorToBinary, 76

getAutoKM, 77
getAutoKM.list, 79
getCutoffAutoKM, 81

getCutoffAutoKM.list, 82
getEPV, 83
getEPV.mb, 84
getTestKM, 85
getTestKM.list, 87

loadingplot.Coxmos, 89
loadingplot.fromVector.Coxmos, 90

mb.splsdacox, 91
mb.splsdrcox, 95

norm01, 99
NR, 99

PI, 100
plot_cox.event, 101
plot_cox.event.list, 102
plot_Coxmos.MB.PLS.model, 103
plot_Coxmos.PLS.model, 105
plot_divergent.biplot, 106
plot_evaluation, 108
plot_evaluation.list, 110
plot_events, 112
plot_forest, 113
plot_forest.list, 114
plot_LP.multipleObservations, 115
plot_LP.multipleObservations.list, 117
plot_observation.eventDensity, 118
plot_observation.eventHistogram, 120
plot_PLS_Coxmos, 121
plot_proportionalHazard, 123
plot_proportionalHazard.list, 124
plot_pseudobeta, 125
plot_pseudobeta.list, 127
plot_pseudobeta_newObservation, 129
plot_pseudobeta_newObservation.list,

131
plot_time.list, 132
predict.Coxmos, 133

166

INDEX 167

print.Coxmos, 134

save_ggplot, 135
save_ggplot.svg, 136
save_ggplot_lst, 138
save_ggplot_lst.svg, 139
sb.splsdrcox, 140
sb.splsicox, 143
splsdacox_dynamic, 147
splsdrcox, 151
splsdrcox_dynamic, 154
splsicox, 159

w.starplot.Coxmos, 162

X_multiomic, 163
X_proteomic, 164

Y_multiomic, 164
Y_proteomic, 165

	Beran
	cenROC
	cox
	cox.prediction
	coxEN
	coxSW
	CV
	cv.coxEN
	cv.isb.splsdrcox
	cv.isb.splsicox
	cv.mb.splsdacox
	cv.mb.splsdrcox
	cv.sb.splsdrcox
	cv.sb.splsicox
	cv.splsdacox_dynamic
	cv.splsdrcox
	cv.splsdrcox_dynamic
	cv.splsicox
	deleteNearZeroCoefficientOfVariation
	deleteNearZeroCoefficientOfVariation.mb
	deleteZeroOrNearZeroVariance
	deleteZeroOrNearZeroVariance.mb
	eval_Coxmos_models
	eval_Coxmos_model_per_variable
	factorToBinary
	getAutoKM
	getAutoKM.list
	getCutoffAutoKM
	getCutoffAutoKM.list
	getEPV
	getEPV.mb
	getTestKM
	getTestKM.list
	loadingplot.Coxmos
	loadingplot.fromVector.Coxmos
	mb.splsdacox
	mb.splsdrcox
	norm01
	NR
	PI
	plot_cox.event
	plot_cox.event.list
	plot_Coxmos.MB.PLS.model
	plot_Coxmos.PLS.model
	plot_divergent.biplot
	plot_evaluation
	plot_evaluation.list
	plot_events
	plot_forest
	plot_forest.list
	plot_LP.multipleObservations
	plot_LP.multipleObservations.list
	plot_observation.eventDensity
	plot_observation.eventHistogram
	plot_PLS_Coxmos
	plot_proportionalHazard
	plot_proportionalHazard.list
	plot_pseudobeta
	plot_pseudobeta.list
	plot_pseudobeta_newObservation
	plot_pseudobeta_newObservation.list
	plot_time.list
	predict.Coxmos
	print.Coxmos
	save_ggplot
	save_ggplot.svg
	save_ggplot_lst
	save_ggplot_lst.svg
	sb.splsdrcox
	sb.splsicox
	splsdacox_dynamic
	splsdrcox
	splsdrcox_dynamic
	splsicox
	w.starplot.Coxmos
	X_multiomic
	X_proteomic
	Y_multiomic
	Y_proteomic
	Index

