Rolling and expanding window approaches to assessing abundance based early warning signals, non-equilibrium resilience measures, and machine learning. See Dakos et al. (2012) <doi:10.1371/journal.pone.0041010>, Deb et al. (2022) <doi:10.1098/rsos.211475>, Drake and Griffen (2010) <doi:10.1038/nature09389>, Ushio et al. (2018) <doi:10.1038/nature25504> and Weinans et al. (2021) <doi:10.1038/s41598-021-87839-y> for methodological details. Graphical presentation of the outputs are also provided for clear and publishable figures. Visit the 'EWSmethods' website for more information, and tutorials.
Version: |
1.3.1 |
Depends: |
R (≥ 4.4) |
Imports: |
curl, egg, ggplot2, gtools, forecast, foreach, infotheo, mAr, moments, rEDM (≥ 1.15.0), reticulate, scales, zoo |
Suggests: |
devtools, doParallel, knitr, fs, parallel, rmarkdown, testthat (≥ 3.0.0) |
Published: |
2024-05-15 |
DOI: |
10.32614/CRAN.package.EWSmethods |
Author: |
Duncan O'Brien
[aut, cre, cph] (<https://orcid.org/0000-0002-3420-5210>),
Smita Deb [aut]
(<https://orcid.org/0000-0001-7037-7055>),
Sahil Sidheekh [aut],
Narayanan Krishnan [aut],
Partha Dutta
[aut] (<https://orcid.org/0000-0001-6067-1023>),
Christopher Clements
[aut]
(<https://orcid.org/0000-0001-5677-5401>) |
Maintainer: |
Duncan O'Brien <duncan.a.obrien at gmail.com> |
BugReports: |
https://github.com/duncanobrien/EWSmethods/issues |
License: |
MIT + file LICENSE |
URL: |
https://github.com/duncanobrien/EWSmethods,
https://duncanobrien.github.io/EWSmethods/ |
NeedsCompilation: |
no |
Citation: |
EWSmethods citation info |
Materials: |
README NEWS |
CRAN checks: |
EWSmethods results |