FunChisq: Model-Free Functional Chi-Squared and Exact Tests
Statistical hypothesis testing methods for
inferring model-free functional dependency using asymptotic
chi-squared or exact distributions. Functional test
statistics are asymmetric and functionally optimal, unique
from other related statistics. Tests in this package reveal
evidence for causality based on the causality-by-
functionality principle. They include asymptotic functional
chi-squared tests (Zhang & Song 2013) <doi:10.48550/arXiv.1311.2707>,
an adapted functional chi-squared test (Kumar & Song 2022)
<doi:10.1093/bioinformatics/btac206>,
and an exact functional test (Zhong & Song 2019)
<doi:10.1109/TCBB.2018.2809743> (Nguyen et al. 2020)
<doi:10.24963/ijcai.2020/372>. The normalized functional
chi-squared test was used by Best Performer 'NMSUSongLab'
in HPN-DREAM (DREAM8) Breast Cancer Network Inference
Challenges (Hill et al. 2016) <doi:10.1038/nmeth.3773>. A
function index (Zhong & Song 2019)
<doi:10.1186/s12920-019-0565-9> (Kumar et al. 2018)
<doi:10.1109/BIBM.2018.8621502> derived from the
functional test statistic offers a new effect size measure
for the strength of functional dependency, a better
alternative to conditional entropy in many aspects. For
continuous data, these tests offer an advantage over
regression analysis when a parametric functional form
cannot be assumed; for categorical data, they provide a
novel means to assess directional dependency not possible
with symmetrical Pearson's chi-squared or Fisher's exact
tests.
Version: |
2.5.4 |
Depends: |
R (≥ 3.0.0) |
Imports: |
Rcpp, Rdpack (≥ 0.6-1), stats, dqrng |
LinkingTo: |
BH, Rcpp |
Suggests: |
Ckmeans.1d.dp, DescTools, DiffXTables, GridOnClusters, infotheo, knitr, rmarkdown, testthat (≥ 3.0.0) |
Published: |
2024-05-10 |
DOI: |
10.32614/CRAN.package.FunChisq |
Author: |
Yang Zhang [aut],
Hua Zhong [aut]
(<https://orcid.org/0000-0003-1962-2603>),
Hien Nguyen [aut]
(<https://orcid.org/0000-0002-7237-4752>),
Ruby Sharma [aut]
(<https://orcid.org/0000-0001-7774-4065>),
Sajal Kumar [aut]
(<https://orcid.org/0000-0003-0930-1582>),
Yiyi Li [aut]
(<https://orcid.org/0000-0001-8859-3987>),
Joe Song [aut,
cre] (<https://orcid.org/0000-0002-6883-6547>) |
Maintainer: |
Joe Song <joemsong at cs.nmsu.edu> |
License: |
LGPL (≥ 3) |
URL: |
https://www.cs.nmsu.edu/~joemsong/publications/ |
NeedsCompilation: |
yes |
Citation: |
FunChisq citation info |
Materials: |
README NEWS |
CRAN checks: |
FunChisq results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=FunChisq
to link to this page.