
FuzzyLP: An R Package for Solving Fuzzy Linear

Programming Problems

Pablo J. Villacorta
University of Granada

Carlos A. Rabelo
University of Granada

David A. Pelta
University of Granada

José L. Verdegay
University of Granada

Abstract

An inherent limitation of Linear Programming is the need to know precisely all the
conditions concerning the problem being modeled. This is not always possible as there
exist uncertainty situations which require a more suitable approach. Fuzzy Linear Pro-
gramming allows working with imprecise data and constraints, leading to more realistic
models. Despite being a consolidated field with more than 30 years of existence, almost no
software has been developed for public use that solves fuzzy linear programming problems.
Here we present an open-source R package to deal with fuzzy constraints, fuzzy costs and
fuzzy coefficients in linear programming. The theoretical foundations for solving each type
of problem are introduced first, followed by code examples. The package is accompanied
by a user manual and can be freely downloaded, employed and extended by any R user.

Keywords: fuzzy sets, fuzzy linear programming, linear programming, R.

1. Introduction

Linear Programming (LP) is one of the main branches of Operational Research. It is composed
of optimization models whose objective function and constraints are linear on the decision
variables. Due to their simplicity, they have often been used for solving a wide variety of
problems in sciences and engineering, enabling important benefits and savings for companies
and organizations. Efficient algorithms exist for this problem, such as simplex, created in
1947 Dantzig (1987).

One limitation of LP is the requirement to know precisely all the parameters of the problem.
This is sometimes not possible due to risk or uncertainty in some data, which can be coped
using fuzzy numbers. Such situations are very common. Fuzzy Linear Programming (FLP)
Fedrizzi, Kacprzyk, and Verdegay (1991), as a particular case of the more broad field of
Fuzzy Convex Optimization Silva, Cruz, Verdegay, and Yamakami (2010), allows working
with imprecision in both the coefficients and the constraints, yielding more realistic models.
We can distinguish three cases:

� Problems with fuzzy constraints problems, where some degree of violation of the con-
straints is allowed.

� Problems with fuzzy costs, where the coefficients of the objective function are fuzzy.

� Problems with fuzzy coefficients, where the coefficients of the constraints are fuzzy.

2 FuzzyLP: Fuzzy Linear Programming in R

although it is usual to find problems that combine more than one of these.

A list of applications of FLP can be found in Rommelfanger (1996); we summarize some of
them below.

� Agricultural economy: water usage and water scheduling in agriculture, diet problems,
optimization of farms structure, allocation of regional resources.

� Banking: assessing financial assets, portfolio problems, investment.

� Environment: regulation of air pollution, energy production models.

� Manufacturing: aggregated production scheduling, machine optimization, optimal allo-
cation for metal manufacturing, optimal system design, raw oil processing.

� Personnel management and coordination.

� Transportation problems, track routing problems

Further examples include industrial production planning Vasant (2003), optimal water al-
location with environmental constraints Tsakiris and Spiliotis (2004), optimal cattle diets
Cadenas, Pelta, Pelta, and Verdegay (2004), supply chain management under uncertainty
Peidro, Mula, and Poler (2007), optimization of football team resources to maximize per-
formance Cadenas, Liern, Sala, and Verdegay (2010), and energy management Sadeghi and
Hosseini (2013), just to cite a few.

Although a very large number of approaches can be found in the literature, software solutions
are scarce. As highlighted in Sadeghi and Hosseini (2013), researchers usually focus on toy
examples to demonstrate their novel mathematical solution methods. In Sadeghi and Hosseini
(2013), a proposal on a fuzzy version of GAMS Rosenthal (2014), a popular algebraic modeling
language for crisp mathematical programming, is briefly outlined but no further development
was done. Apart from this, there exist (a) a non-general software aimed at solving a concrete
problem, such as SACRA Cadenas, Pelta, and Verdegay (2003) for cattle diet optimization,
and (b) a decision support system, called PROBO Cadenas and Verdegay (1995), written in
Pascal which is difficult to integrate with current software environments.

This contribution is aimed at partially filling this gap by presenting a ready-to-use implemen-
tation in a modern language so that existing FLP methods can be used by the R community
without much effort1. At the same time, we hope our work will contribute to further software
developments in this direction to make fuzzy mathematical programming models in general
readily available for researchers and practitioners from other areas, spreading this methodol-
ogy beyond the fuzzy community.

The remainder of the present work is structured as follows. Section 2 provides background on
some key concepts concerning fuzzy numbers, although the reader is assumed already familiar
with the foundations of fuzzy sets. Section 3 describes the mathematical models implemented
in our package, along with fragments of R code showing their corresponding implementation
and usage. Section 4 is devoted to conclusions and further work.

1FuzzyLP can be downloaded from http://decsai.ugr.es/~pjvi/FuzzyLP_0.1-3.tar.gz

http://decsai.ugr.es/~pjvi/FuzzyLP_0.1-3.tar.gz

Pablo J. Villacorta, Carlos A. Rabelo, David A. Pelta, José Luis Verdegay 3

Packages used Two contributed packages have been used in implementing our FuzzyLP

package:

� The package FuzzyNumbers Gagolewski (2014) provides classes and methods for working
with fuzzy numbers. More precisely, it allows representing generic fuzzy numbers as
well as some particular types (triangular, trapezoidal, piecewise linear). It offers several
defuzzification functions as well as functions to approximate general fuzzy numbers using
piecewise linear fuzzy numbers. Basic arithmetic can also be done with fuzzy numbers.
Finally, it also has plotting facilities. According to the author, future versions may
include random fuzzy number generation, aggregation and sorting.

� Package ROI (R Optimization Infrastructure Theussl, Meyer, and Hornik (2010)). Since
FLP ultimately relies on crisp LP solving algorithms, this package has been used to
accomplish such task. A large number of optimization packages are available in R;
see the R Task View on Optimization2. Among them, ROI is an attempt to provide a
unified interface for any optimization problem. For this reason, along with the possibility
that future versions of our FuzzyLP package need to deal with other non-linear fuzzy
optimization problems which eventually rely on more complex crisp solvers that ROI
already offers, we have chosen this package.

2. Fuzzy numbers

We assume the reader is familiar with the basics of fuzzy sets and fuzzy numbers, and therefore
we only review those concepts that are highly relevant for our later exposition. The interested
reader may refer to Dubois and Prade (1980); Negoita and Ralescu (1975) for an introduction
to the topic.

Definition 1 A fuzzy number Dubois and Prade (1978) Ã is a convex and normalized subset
of the real line such that

i) ∀α ∈ [0, 1], Ãα = {x ∈ R|µÃ ≥ α} (the α-cuts of Ã) is a convex set.

ii) µÃ is upper semi-continuous

iii) Supp(Ã) = {x ∈ R|µÃ > 0} is a bounded set on R.

Definition 2 Given r < u ≤ U < R ∈ R, a Trapezoidal Fuzzy Number (TrFN) ũ =
(r, u, U,R) is defined as:

µũ(x) =

x−r
u−r if r ≤ x ≤ u

1 if u ≤ x ≤ U

R−x
R−U if U ≤ x ≤ R

0 otherwise

2http://cran.r-project.org/web/views/Optimization.html

http://cran.r-project.org/web/views/Optimization.html

4 FuzzyLP: Fuzzy Linear Programming in R

Proposition 1 (Linear combination of TrFNs Tanaka, Ichihashi, and Asai (1984))
Let B̃ =

∑n
j=1 ũj · aj where aj ∈ R, aj ≥ 0, j = 1, . . . , n, and let ũj, j = 1, . . . , n be TrFNs

defined by ũj = (rj , uj , Uj , Rj). Then the membership function of B̃ is

µB̃(x) =

x−ra
ua−ra if ra ≤ x ≤ ua

1 if ua ≤ x ≤ Ua

Ra−x
Ra−Ua if Ua ≤ x ≤ Ra

0 otherwise

where r = (r1, . . . , rn), u = (u1, . . . , un), U = (U1, . . . , Un) and R = (R1, . . . , Rn). In other
words, B̃ =

∑n
j=1 ũj · aj = (ra,ua,Ua,Ra).

2.1. Operations with fuzzy numbers

In the remainder of this work, only TrFNs will be used exclusively. For this reason and due to
space constraints, we only review operations with TrFNs. It is well known that the product
and quotient operations with TrFNs do not yield another TrFN. However, only addition,
subtraction and product by a scalar are needed for the FLP algorithms implemented here.
Hence we focus on those operations.

Proposition 2 Let x̃i = (ri, ui, Ui, Ri), i = 1, 2, two TrFNs. Then

i) x̃1 + x̃2 = (r1 + r2, u1 + u2, U1 + U2, R1 +R2)

ii) x̃1 − x̃2 = (r1 −R2, u1 − U2, U1 − u2, R1 − r2)

iii) If a ∈ R+, a · x̃1 = a · (r1, u1, U1, R1) = (a · r1, a · u1, a · U1, a ·R1)

iv) If a ∈ R−, a · x̃1 = a · (r1, u1, U1, R1) = (a ·R1, a · U1, a · u1, a · r1)

2.2. Comparison of fuzzy numbers

As will be explained later, FLP ultimately requires comparing fuzzy numbers. This is a
broad topic by itself, and a lot of proposals have been published; see for instance Dubois and
Prade (1983); Prade, Yager, and Dubois (1993). Here the method based on ordering functions
has been applied, although the code is prepared for other customized comparison functions
implemented by the user that can be passed as an argument.

Ordering functions Let F(R) the set of fuzzy numbers on R. An ordering (or defuzzifi-
cation) function is an application g : F(R) → R so that fuzzy numbers are sorted according
to their corresponding defuzzified real numbers. Therefore, given Ã, B̃ ∈ F(R), we consider
Ã < B̃ ⇔ g(Ã) < g(B̃); Ã > B̃ ⇔ g(Ã) > g(B̃); and Ã = B̃ ⇔ g(Ã) = g(B̃). Function g
is called a linear ordering function if (a) ∀ Ã, B̃ ∈ F(R), g(Ã + B̃) = g(Ã) + g(B̃), and (b)
∀ r ∈ R, r > 0 and ∀ Ã ∈ F(R), g(r · Ã) = r · g(Ã).

The following linear ordering functions have been implemented:

Pablo J. Villacorta, Carlos A. Rabelo, David A. Pelta, José Luis Verdegay 5

1. First Yager’s index Yager (1978):

g(ũ) =

∫
S h(z)µũ(z)dz∫
S µũ(z)dz

(1)

where S = supp(ũ) and h(z) is a measure of importance of each value z. Taking h(z) = z
and assuming TrFNs, this simplifies to

g(ũ) =
1

3

(U2 − u2) + (R2 − r2) + (RU − ru)

(U − u) + (R− r)
(2)

2. Third Yager’s index Yager (1978):

g(ũ) =

∫ 1

0
M(ũα)dα (3)

where ũα is an α-cut of ũ and M(ũα) the mean value of the elements in ũα. When using
TrFNs the above expression simplifies to

g(ũ) =
U + u+R+ r

4
(4)

3. Adamo relation Adamo (1980). For a fixed α ∈ [0, 1]:

gα(ũ) = max{x / µũ(x) ≥ α} (5)

which for TrFNs simplifies to

gα(ũ) = R− α(R− U) (6)

4. Average relation González (1990). For TrFNs:

gλt (ũ) = u− u− r
t+ 1

+ λ

(
U − u+

(R− r)− (U − u)

t+ 1

)
, λ ∈ [0, 1], t ≥ 0 (7)

where λ represents the degree of optimism to be selected by the decision-maker (larger
λ corresponds to a more optimist decision-maker).

3. Fuzzy Linear Programming

A crisp LP problem consists in maximizing/minimizing a function subject to constraints over
the variables:

max z = cx

s.t. : Ax ≤ b

x ≥ 0

where A ∈ Mmxn(R) is a matrix of real numbers, c ∈ Rn is a cost vector and b ∈ Rm a
vector.

6 FuzzyLP: Fuzzy Linear Programming in R

In the above formulation, all coefficients are assumed to be perfectly known. However, this
is not the case in many real cases of application. There may be uncertainty concerning some
coefficients, or they may come from an (approximate) estimation by a human expert/decision
maker who will possibly be more confident when expressing her knowledge in linguistic terms
of the natural language Zadeh (1975). Very often, when a person is asked to express her
expertise in strictly numerical values, he/she feels like being forced to commit an error, hence
the use of natural language, supported by fuzzy numbers to do computations, might be more
suitable. Optimization problems with fuzzy quantities were first presented in Bellman and
Zadeh (1970). Key concepts such as fuzzy constraint and fuzzy goal, which we will explain in
detail later in this section, were conceived there.

In the next sections we explain in detail the three FLP models and several solution methods
implemented in our package.

3.1. Fuzzy constraints

We consider the case where the decision maker can accept a violation of the constraints up
to a certain degree he/she establishes. This can be formalized for each constraint as

aix ≤f bi, i = 1, ...,m

and can be modeled using a membership function

µi : R→ [0, 1], µi(x) =

1 if x ≤ bi

fi(x) if bi ≤ x ≤ bi + ti
0 if x ≥ bi + ti

(8)

where the fi are continuous, non-increasing functions. Membership functions µi capture the
fact that the decision maker tolerates a certain degree of violation of each constraint, up to a
value of bi+ ti. For each x ∈ R, µi(x) stands for the degree of fulfillment of the i-th constraint
for that x. The problem to be solved is

max z = cx

s.t. : Ax ≤f b

x ≥ 0

To illustrate the use of the functions implemented to solve this type of problems, we will use
the fuzzy constraints problem shown on the left, which can be transformed into the problem
on the right if the membership functions are assumed linear with maximum tolerances of 5
and 6.

max z = 3x1 + x2 max z = 3x1 + x2

s.t. : 1.875x1 − 1.5x2 ≤f 4 ⇒ s.t. : 1.875x1 − 1.5x2 ≤ 4 + 5(1− α)

4.75x1 + 2.125x2 ≤f 14.5 ⇒ 4.75x1 + 2.125x2 ≤ 14.5 + 6(1− α)

xi ≥ 0, i = 1, 2, 3 αi ≥ 0, i = 1, 2, 3

The following R commands create the necessary objects:

Pablo J. Villacorta, Carlos A. Rabelo, David A. Pelta, José Luis Verdegay 7

> objective<-c(3, 1)

> A<-matrix(c(1.875, -1.5, 4.75, 2.125), nrow = 2, byrow = T)

> dir = c("<=", "<=") # direction of the inequalities

> b<-c(4, 14.5)

> t<-c(5, 6) # tolerances

Different solutions have been proposed. The solution given in Verdegay (1982) generalizes
those given before by Tanaka, Okuda, and Asai (1974) and Zimmermann (1976), which are
obtained as particular cases depending of the value of a parameter. We implement four
solution methods, whose names begin with FCLP for Fuzzy Constraints Linear Program

Method 1: Verdegay’s approach Verdegay (1982) proved, via the representation theo-
rem, that the problem can be solved by solving the following Parametric Linear Programming
problem:

max z = cx

s.t. : Ax ≤ g(α)

x ≥ 0, α ∈ [0, 1]

where g(α) = (g1(α), . . . , gm(α)) ∈ Rm, with gi = f−1i .

If the fi are linear, the problem simplifies to

max z = cx

s.t. : Ax ≤ b + t(1− α)

x ≥ 0, α ∈ [0, 1]

with t = (t1, . . . , tm) ∈ Rm.

It has been proved Delgado, Herrera, Verdegay, and Vila (1993) that by solving a model with
linear fi, it is possible to obtain the solution to the same fuzzy constraints problem as if it
had been modeled with non-linear functions, hence no generality is loss when assuming linear
functions for the fuzzy constraints.

Two R functions implement this approach in our package:

� FCLP.fixedBeta which, fixed a value for α (called β in our function), solves the model.
In the example below, β = 0.5.

> FCLP.fixedBeta(objective, A, dir, b, t, beta=0.5, T, T)

[1] "Solution is optimal."

beta x1 x2 objective

[1,] 0.5 3.606188 0.1744023 10.99297

� FCLP.sampledBeta samples α in the interval [0, 1] and solves the model for every sam-
pled value. In the example below we set a step size of 0.25 for sampling α, which yields
five α-cuts, for α = {0, 0.25, 0.5, 0.75, 1}:

8 FuzzyLP: Fuzzy Linear Programming in R

> FCLP.sampledBeta(objective, A, dir, b, t, T, min=0,

+ max=1, step=0.25)

beta x1 x2 objective

[1,] 0.00 4.315789 0.0000000 12.947368

[2,] 0.25 4.000000 0.0000000 12.000000

[3,] 0.50 3.606188 0.1744023 10.992968

[4,] 0.75 3.164557 0.4556962 9.949367

[5,] 1.00 2.722925 0.7369902 8.905767

Method 2: Zimmermann’s approach In Zimmermann (1976, 1978) the author discusses
the case in which the decision maker is satisfied with a solution that achieves a goal z0 ∈ R
for the objective function that, despite not being optimal, minimizes the degree of violation
of the constraints. The original formulation is shown on the left. This problem is equivalent
to the one on the right, where an additional fuzzy linear constraint has been added. Please
notice the new constraint can be thought as embedded in the general expression of the linear
constraints, Ax ≤f b if we assume that A and b include an extra row for −c and an element
−z0 respectively.

max cx ≥f z0 max z = cx

s.t. : Ax ≤f b ⇒ s.t. : cx ≥f z0
x ≥ 0 Ax ≤f b,x ≥ 0

When the membership functions of the constraints and the objective are linear the above
problem simplifies to

max α

s.t. : cx ≥ z0 − t0(1− α)

Ax ≤ b + t(1− α)

x ≥ 0, α ∈ [0, 1]

Two R functions implement this approach:

� FCLP.classicObjective for the case that the goal z0 is crisp.

Goal attainable (z0 = 11):

> FCLP.classicObjective(objective, A, dir, b, t, z0=11, TRUE)

Bound reached, FCLP.fixedBeta with beta = 0.4983154 may

obtain better results.

beta x1 x2 objective

[1,] 0.4983154 3.609164 0.1725067 11

Goal not attainable (z0 = 14):

Pablo J. Villacorta, Carlos A. Rabelo, David A. Pelta, José Luis Verdegay 9

> FCLP.classicObjective(objective, A, dir, b, t, z0=14, TRUE)

[1] "Minimal bound not reached."

NULL

� FCLP.fuzzyObjective for a goal (z0 = 14) on which we admit certain tolerance (t0 = 2).

> FCLP.fuzzyObjective(objective, A, dir, b, t, z0=14, t0=2, T)

Bound reached, FCLP.fixedBeta with beta = 0.1636364 may obtain

better results.

beta x1 x2 objective

[1,] 0.1636364 4.109091 0 12.32727

Actually FCLP.fuzzyObjective generalizes FCLP.classicObjective. The latter simply calls
the former setting the tolerance t0 = 0.

Method 3: Werners’s approach Following Zimmermann’s proposal, it may occur that
the decision maker does not want to provide the goal or the tolerance, or does not have an
estimate. Werners Werners (1987) proposes two extreme points:

Z0 = inf{max
x∈X

cx}, Z1 = sup{max
x∈X

cx} (9)

with X = {x ∈ Rn / Ax ≤f b, x ≥ 0}. Taking z0 = Z0 and t0 = Z1 − Z0 and assuming
linear functions for the constraints and the objective, the new problem to be solved can be
formulated as

max α

s.t. : cx ≥ Z0 − (Z1 − Z0)(1− α)

Ax ≤ b + t(1− α)

x ≥ 0, α ∈ [0, 1]

which is a particularization of Zimmermann’s formulation with the aforementioned z0 and t0.

This method is implemented by function FCLP.fuzzyUndefinedObjective, in which the goal
and tolerance are estimated and then, FCLP.fuzzyObjective is called:

> FCLP.fuzzyUndefinedObjective(objective, A, dir, b, t, TRUE)

[1] "Using bound = " "12.9473684210526"

[1] "Using tolerance = " "4.04160189503294"

beta x1 x2 objective

[1,] 0.5080818 3.591912 0.1834957 10.95923

10 FuzzyLP: Fuzzy Linear Programming in R

Method 4: Tanaka’s approach Tanaka Tanaka et al. (1974) proposed normalizing the
objective function z = cx. Let M be the optimum when the problem is solved considering
crisp constraints. Then

f : Rn → [0, 1], f(x) =

1 if cx > M

cx
M if cx ≤M

The new problem to be solved is

max α

s.t. :
cx

M
≥ α

Ax ≤ b + t(1− α)

x ≥ 0, α ∈ [0, 1]

For implementation purposes, we will do the following modification:

cx

M
≥ α⇔ cx ≥Mα = M −M(1− α)

Therefore we replace the first constraint above by cx ≥M −M(1− α).

This approach is implemented in function FCLP.fuzzyUndefinedNormObjective. It first
computes M and then calls FCLP.fuzzyObjective with z0 = t0 = M .

> FCLP.fuzzyUndefinedNormObjective(objective, A, dir, b, t, TRUE)

[1] "Using bound = " "12.9473684210526"

[1] "Using tolerance = " "12.9473684210526"

beta x1 x2 objective

[1,] 0.7639495 3.139915 0.4713919 9.891136

3.2. Fuzzy costs

FLP with fuzzy costs pose uncertainty in the coefficients of the objective function, modeled
as fuzzy numbers. Such problems can be stated as:

max z = c̃x (10)

s.t. : Ax ≤ b

x ≥ 0

where A ∈ Mmxn(R) is a real matrix, c̃ is an n-dimensional vector of fuzzy numbers, and
b ∈ Rm is a real vector.

In Cadenas and Verdegay (1999) the costs membership functions are assumed to have the
form:

µj : R→ [0, 1], µj(x) =

0 if x ≤ rj or x ≥ Rj

hj(x) if rj ≤ x ≤ cj
gj(x) if cj ≤ x ≤ Rj

1 if cj ≤ x ≤ cj

Pablo J. Villacorta, Carlos A. Rabelo, David A. Pelta, José Luis Verdegay 11

with hj and gj continuous, hj strictly increasing, gj strictly decreasing, and such that functions
µj are continuous.

In order to demonstrate the functions of our package dealing with fuzzy costs, we will use the
following example with TrFNs ((Cadenas and Verdegay 1999, pages 94,125)):

max z = (0, 2, 2, 3)x1 + (1, 3, 4, 5)x2

s.t. : x1 + 3x2 ≤ 6

x1 + x2 ≤ 4

xi ≥ 0, i = 1, 2

The following R commands create the necessary objects:

> objective<-c(TrapezoidalFuzzyNumber(0,2,2,3), # fuzzy costs

+ TrapezoidalFuzzyNumber(1,3,4,5)) # vector

> A<-matrix(c(1, 3, 1, 1), nrow = 2, byrow=T)

> dir = c("<=", "<=") # direction of the inequalities

> b<-c(6, 4)

Four approaches will be presented: three of them are based on the Representation Theorem
and the last one, on the comparison of fuzzy numbers.

Method 1: multi-objective approach The results of Verdegay (1982) and Delgado,
Verdegay, and Vila (1987) together with the definition of TrFNs lead us to transform the
above problem in the following parametric linear programming problem. Let X = {x ∈
Rn / Ax ≤ b, x ≥ 0}. Then

max z = cx (11)

s.t. : x ∈ X

Φ(1− α) ≤ c ≤ Ψ(1− α)

α ∈ [0, 1]

where Φ = (h−11 , . . . , h−1n) and Ψ = (g−11 , . . . , g−1n). Symbols hj and gj take part in the
definition of the membership functions µj of every fuzzy cost c̃j .

If we fix α and solve the above problem with it, the solution set is the α-cut of the solution
fuzzy number, which would be completely defined by all its α-cuts as stated by the Repre-
sentation Theorem. If we define Γ(1 − α) = {c ∈ Rn / ci ∈ [Φi(1 − α),Ψi(1 − α)]}, the
new problem constitutes a multi-objective linear programming problem with one objective
for each c ∈ Γ(1−α). According to Bitran (1985) the problem is equivalent to the following:

max {c1x, . . . , c2nx}
s.t. : Ax ≤ b

x ≥ 0

ck ∈ E(1− α), k = 1, 2, . . . , 2n

α ∈ [0, 1]

12 FuzzyLP: Fuzzy Linear Programming in R

where E(1 − α) ⊆ Γ(1 − α) is the subset of those vectors whose components are the upper
bounds of cj , i.e., the Cartesian product:

E(1− α) =
n∏
i=1

{Φi(1− α),Ψi(1− α)}

This problem can be solved by any multi-objective linear programming technique. In our
code, the objectives have been aggregated using a weighting vector with the same weight for
every objective. The objective function thus simplifies to max c1x + . . .+ c2

n
x subject to the

constraints stated above.

This approach is implemented by function FOLP.multiObj. Since the problem has to be
solved for every α ∈ [0, 1], the function samples α in [0, 1] according to a user-specified step,
and solves for each α.

> sal<-FOLP.multiObj(objective, A, dir, b, maximum=TRUE, min=0,

+ max=1, step=0.25)

> sal

alpha x1 x2 objective

[1,] 0 3 1 ?

[2,] 0.25 3 1 ?

[3,] 0.5 3 1 ?

[4,] 0.75 3 1 ?

[5,] 1 3 1 ?

> sal[,"objective"] # Display the objective column properly

[[1]]

Trapezoidal fuzzy number with:

support=[1,14],

core=[9,10].

... # output omitted for elements 2, 3, 4 and 5

Method 2: interval arithmetic approach Expression 11 can be viewed as a linear
programming problem in which every coefficient of the objective function takes values in an
interval. Therefore, the problem can be solved resorting to interval arithmetic and relations
≤l, ≤c, ≤lc introduced in Moore (1979) and Alefeld and Herzberger (1984).

Definition 3 Let A = [al, au] =< ac, aw > and B = [bl, bu] =< bc, bw > be two intervals,
where the <· , ·> are based on the center c and width w.

� A ≤l B if al ≤ bl and au ≤ bu

� A ≤c B if ac ≤ bc and aw ≥ bw.

� A ≤lc B if al ≤ bl and ac ≤ bc

� A <l B if A ≤l B and A 6= B

� A <c B if A ≤c B and A 6= B

� A <lc B if A ≤lc B and A 6= B

Pablo J. Villacorta, Carlos A. Rabelo, David A. Pelta, José Luis Verdegay 13

For every x ∈ X,α ∈ [0, 1], define the intervals

Ij(α) = [Φj(1− α),Ψj(1− α)] and z(x, α) =

n∑
j=1

xjIj(α)

For each α, a solution x∗ to the problem is one whose associated interval z(x∗, α) is non-
dominated, i.e. x∗ ∈ X such that @x′ ∈ X : z(x∗, α) ≤lc z(x′, α). Since x∗ does not have to
be unique, we can define the set

S(1− α) = {x ∈ X / @x′ ∈ X : z(x, α) ≤ic z(x′, α)}

These sets are the α-cuts of the fuzzy solution which, according to the Representation Theo-
rem, would yield the solution fuzzy number S̃ =

⋃
α αS(1− α).

For a fixed α, the problem of finding solutions whose associated intervals are non-dominated
can be formulated as the following bi-objective problem.

max{z(α) = (zi(x, α), zc(x, α)) : x ∈ X}

According to Kornbluth and Steuer (1981) this problem can be solved using weights. Let
β1, β2 ∈ [0, 1] : β1 + β2 = 1. The problem can be reformulated as:

max{z(α) = β1z
i(x, α) + β2z

c(x, α) : x ∈ X}

This approach is implemented by function FOLP.interv which receives the problem data and
weight β1 (note β2 can be automatically computed as 1 - β1). The function performs samples
α in [0, 1] with the user-specified step size. A private function computes z(α) from the fuzzy
coefficients.

> sal<-FOLP.interv(objective, A, dir, b, maximum=TRUE, w1=0.7,

+ min=0, max=1, step=0.25)

> sal

The structure of this variable is the same as in the previous section.

Method 3: stratified piecewise reduction In Rommelfanger, Hanuscheck, and Wolf
(1989) the fuzzy cost problem is approached by modeling the uncertainty of the coefficients
using embedded intervals, each with an associated possibility degree:

c̃j = {[r(k)j , R
(k)
j] / α(k); k = 1, . . . , p}

For a given α ∈ [0, 1], consider the intervals obtained from the α-cuts of the fuzzy coefficients.
With a slight abuse of notation (and omitting the α that has been fixed), we will write
c̃j = [rj , Rj].

Let r = (r1, . . . , rn), R = (R1, . . . , Rn), and consider the LP problems

max z = rx max z = Rx

s.t. : Ax ≤ b s.t. : Ax ≤ b

x ≥ 0 x ≥ 0

14 FuzzyLP: Fuzzy Linear Programming in R

Let x∗r and x∗R be their respective solutions.

Let z∗r = rx∗r and z∗R = Rx∗R be the optimal solutions of the objective functions, and let
z
′
r = rx∗R and z

′
R = Rx∗r. Clearly z∗r ≥ z

′
r and z∗R ≥ z

′
R.

The problem can be solved using the auxiliary problem

max λ

s.t. :
rx− z′

r

z∗r − z
′
r

≥ λ

Rx− z′
R

z∗R − z
′
R

≥ λ

Ax ≤ b,x ≥ 0, λ ≥ 0

After solving the above problems for different values of α, the solution to the original fuzzy
costs problem can be found as the intersection of the solutions of the auxiliary problems.

Function FOLP.strat computes the values z∗r , z
′
r, z

∗
R and z

′
R by solving the corresponding

LP problems, and then solves the original problem. This has to be done separately for each
value of α, therefore FOLP.strat samples α ∈ [0, 1] with a user-specified step size.

> sal <- FOLP.strat(objective, A, dir, b, maximum=TRUE, min=0,

+ max=0.4, step=0.05)

> sal

alpha x1 x2 lambda objective

[1,] 0 1.5 1.5 0.5 ?

[2,] 0.05 1.5 1.5 0.5 ?

[3,] 0.1 1.5 1.5 0.5 ?

[4,] 0.15 1.5 1.5 0.5 ?

[5,] 0.2 1.5 1.5 0.5 ?

[6,] 0.25 3 1 1 ?

[7,] 0.3 NA NA NA NA

[8,] 0.35 NA NA NA NA

[9,] 0.4 NA NA NA NA

> sal[,"objective"] # display the objective column properly

[[1]]

Trapezoidal fuzzy number with:

support=[1.5,12],

core=[7.5,9].

... # output omitted for list elements 2 to 9

Method 4: ordering functions The problem 10 can be transformed into a crisp one by
using a linear ordering function g : F(R)→ R, so that the fuzzy objective function is replaced
by max z = g(c̃1)x1 + ...+ g(c̃n)xn, subject to the same crisp constraints.

Function FOLP.ordFun implements this approach. It receives the problem data and a string
indicating the ordering function to be used (argument ordf). This can be one of the four

Pablo J. Villacorta, Carlos A. Rabelo, David A. Pelta, José Luis Verdegay 15

built-in functions, namely "Yager1" for the first Yager’s index (Equation 2), "Yager3" for
the third (Equation 4), "Adamo" for the Adamo relation (Equation 6), and "Average" for the
average index (Equation 7). Some of them require additional arguments, as described in detail
in the package documentation. If a user-defined custom linear function is to be used, the string
should be "Custom". The custom function is passed to FOLP.ordFun in the FUN argument.
The custom function must accept at least one argument of class FuzzyNumber, and may also
accept additional arguments that must be named when passing them to FOLP.ordFun. It is
the user’s responsibility to give them names that do not interfere with existing ones, and to
care that the function is linear.

Example call using first Yager’s index:

> sal<-FOLP.ordFun(objective, A, dir, b, maximum=TRUE,

+ ordf="Yager1")

For Adamo’s index, which requires an additional parameter α:

> sal<-FOLP.ordFun(objective, A, dir, b, maximum=TRUE,

+ ordf="Adamo", alpha=0.5)

For a custom function that computes the mean of the core multiplied by another real number:

> custom.f <- function(tfn,a){ a * mean(core(tfn)) }

> sal<-FOLP.ordFun(objective, A, dir, b, TRUE, "Custom",

+ FUN=custom.f, a=2)

3.3. General model

The most general setting is that with fuzzy costs, fuzzy coefficients in the technology matrix,
and fuzzy constraints that can be violated up to a certain degree. Calling m to the number
of constraints, it can be formalized as the problem on the left. This formulation can be
transformed into the problem on the right, according to the Representation Theorem and
assuming that the decision maker agrees with considering the same degree of satisfaction
both in the fuzzy costs and in the fuzzy technological matrix3.

max z = c̃x max z = c̃x

s.t. : ãix ≤f b̃i, ⇒ s.t. : ãix ≤ b̃i + t̃i(1− α), i = 1, ...,m

x ≥ 0 x ≥ 0

where ãi and bi(i = 1, ...,m) are n-dimensional vectors of fuzzy numbers, c̃ is another n-
dimensional vector of fuzzy numbers, and t̃i is the fuzzy tolerance admitted for violating the
i-th constraint.

Let g1 and g2 be two linear ordering functions for the objective and for the constraints,
respectively. With them, and because g1 and g2 are linear, the problem can be defuzzified to

3Otherwise, different α- and β-cuts should be needed and the problem would become more difficult

16 FuzzyLP: Fuzzy Linear Programming in R

obtain the following crisp LP problem:

max z = g1(c̃)x

s.t. : g2(ãi)x ≤ g2(b̃i) + g2(̃ti)(1− α), i = 1, ...,m

x ≥ 0

The function implementing this approach is called GFLP. It receives the two linear ordering
functions to be used (one for the objective function and the other for the constraints). They
must be one of the functions described in section 3.2. Since the problem has to be solved for
a fixed α and then the Representation Theorem is used, the function samples α ∈ [0, 1] with
a user-specified step size.

The function will be demonstrated with the following example:

max z = (1, 3, 4, 5)x1 + (0, 1, 1, 2)x2

s.t. : (0, 2, 2, 3.5)x1 + (0, 1, 1, 4)x2 ≤ (2, 2, 2, 3) + (1, 2, 2, 3)(1− α)

(3, 5, 5, 6)x1 + (1.5, 2, 2, 3)x2 ≤ 12

x1 ≥ 0, x2 ≥ 0

The R commands below create the necessary objects:

> objective<-c(TrapezoidalFuzzyNumber(1,3,4,5),

+ TrapezoidalFuzzyNumber(0,1,1,2))

> A<-matrix(c(TrapezoidalFuzzyNumber(0,2,2,3.5),

+ TrapezoidalFuzzyNumber(3,5,5,6),

+ TrapezoidalFuzzyNumber(0,1,1,4),

+ TrapezoidalFuzzyNumber(1.5,2,2,3)), nrow= 2)

> dir = c("<=", "<=")

> b<-c(TrapezoidalFuzzyNumber(2,2,2,3), 12)

> t<-c(TrapezoidalFuzzyNumber(1,2,2,3),0)

The example employs the average index (which receives two additional parameters λ and t)
for the objective function, and Adamo for the constraints. As the latter only requires one
parameter, it can be passed directly without using a tagged vector.

> sal<-GFLP(objective, A, dir, b, t, TRUE, "Average",

+ ordf_obj_param=c(lambda=0.5, t=3),

+ ordf_res="Adamo", ordf_res_param = 0.5)

> sal

beta x1 x2 objective

[1,] 0 1.818182 0 ?

[2,] 0.25 1.590909 0 ?

[3,] 0.5 1.363636 0 ?

[4,] 0.75 1.136364 0 ?

[5,] 1 0.9090909 0 ?

Pablo J. Villacorta, Carlos A. Rabelo, David A. Pelta, José Luis Verdegay 17

> sal[,"objective"]

[[1]]

Trapezoidal fuzzy number with:

support=[1.81818,9.09091],

core=[5.45455,7.27273].

... output omitted for elements 2 to 5

4. Conclusions and further work

An R package for solving FLP problems has been presented and demonstrated in simple use
cases. It can deal with fuzzy constraints, fuzzy costs and a fuzzy technology matrix, and
provides specific functions for solving each type of problem. The computations are done
with TrFNs as they ease the application of several theoretical results. Our code relies on
packages FuzzyNumbers for creating and working with TrFNs, and ROI for solving the crisp
LP problems in which the FLP problems are transformed.

To the best of our knowledge, this is the first open-source implementation of FLP solving
methods, and possibly the only one available in a modern language, as R is. It has been
developed as a library of functions, which broadens its usability. Nevertheless, much more
can still be done in this direction, such as incorporating more solving techniques for other
types of FLP problems, and spanning the functionality to fuzzy non-linear optimization, such
as Fuzzy Quadratic Programming (FQP).

Acknowledgments

David A. Pelta and José Luis Verdegay want to acknowledge Ronald Yager for his support,
help and sincere friendship. This work is supported by projects TIN2011-27696-C02-01 from
the Spanish Ministry of Science and Innovation, P11-TIC-8001 from the Andalusian Gov-
ernment, and FEDER funds. The first author acknowledges an FPU scholarship from the
Spanish Ministry of Education.

References

Adamo JM (1980). “Fuzzy decision trees.” Fuzzy Sets and Systems, 4, 207–219.

Alefeld G, Herzberger J (1984). Introduction to interval computations. Academic Press, NY.

Bellman R, Zadeh L (1970). “Decision Making in a Fuzzy Environment.” Management Science
17 (B) 4, pp. 141–164.

Bitran G (1985). “Linear multiple objective Problems with Interval Coefficients.” Management
Science, 26(7), 694–706.

Cadenas J, Liern V, Sala R, Verdegay J (2010). Fuzzy Optimization, chapter Fuzzy Linear
Programming in Practice: An Application to the Spanish Football League, pp. 503–528.
Studies in Fuzziness and Soft Computing. Springer.

18 FuzzyLP: Fuzzy Linear Programming in R

Cadenas J, Pelta D, Pelta H, Verdegay J (2004). “Application of fuzzy optimization to diet
problems in Argentinean farms.” European Journal of Operational Research, 158, 218–228.

Cadenas J, Pelta D, Verdegay J (2003). “Introducing SACRA: a decision support system for
the construction of cattle diets.” In Applied Decision Support with Soft Computing, pp.
391–401. Springer.

Cadenas JM, Verdegay JL (1995). “PROBO: an interactive system in fuzzy linear program-
ming.” Fuzzy Sets and Systems, 76, 319–332.

Cadenas JM, Verdegay JL (1999). Optimization models with imprecise data (in Spanish).
Servicio de Publicaciones, University of Murcia.

Dantzig GB (1987). “Origins of the simplex method.” Technical Report SOL 87-5, Department
of Operations Research, Stanford University, Stanford, CA.

Delgado M, Herrera F, Verdegay JL, Vila MA (1993). “Post-optimality analisys on the mem-
bership function of a fuzzy linear programming problem.” Fuzzy Sets and Systems, 53,
289–297.

Delgado M, Verdegay JL, Vila MA (1987). “Imprecise costs in mathematical programming
problems.” Control and Cybernetics, 16(2), 113–121.

Dubois D, Prade H (1978). “Operations on Fuzzy Numbers.” International Journal of Systems
Science, 9, 613–626.

Dubois D, Prade H (1980). Fuzzy Sets and Systems. Theory and Applications. Academic
Press.

Dubois D, Prade H (1983). “Ranking fuzzy numbers in the setting of possibility theory.”
Information Sciences, 30(3), 183 – 224.

Fedrizzi M, Kacprzyk J, Verdegay J (1991). “A Survey of Fuzzy Optimization and Mathe-
matical Programming.” In M Fedrizzi, J Kacprzyk, M Roubens (eds.), Interactive Fuzzy
Optimization, volume 368 of Lecture Notes in Economics and Mathematical Systems, pp.
15–28. Springer Berlin Heidelberg.

Gagolewski M (2014). FuzzyNumbers Package: Tools to Deal with Fuzzy Numbers in R.
http://FuzzyNumbers.rexamine.com/.

González A (1990). “A study of the ranking function approach through mean values.” Fuzzy
Sets and Systems, 35, 29–41.

Kornbluth JSH, Steuer RE (1981). “Multiple Objective Linear Fractional Programming.”
Management Science, 27(9), 1024–1039.

Moore RE (1979). Methods and Applications of Interval Analysis. SIAM Studies in Applied
and Numerical Mathematics, book 2. SIAM.

Negoita CV, Ralescu DA (1975). Applications of Fuzzy Sets to Systems Analysis. John Wiley
and Sons, Ltd.

http://FuzzyNumbers.rexamine.com/

Pablo J. Villacorta, Carlos A. Rabelo, David A. Pelta, José Luis Verdegay 19

Peidro D, Mula J, Poler R (2007). “Supply chain planning under uncertainty: a fuzzy linear
programming approach.” In Proceedings of the 2007 IEEE Fuzzy Systems Conference, pp.
1–6.

Prade H, Yager RR, Dubois D (eds.) (1993). Readings in Fuzzy Sets for Intelligent Systems.
Morgan Kaufmann Publishers.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. URL http://www.

R-project.org/.

Rommelfanger H (1996). “Fuzzy linear programming and applications.” European Journal of
Operational Research, 92, 512–527.

Rommelfanger H, Hanuscheck R, Wolf J (1989). “Linear programming with fuzzy objectives.”
Fuzzy Sets and Systems, 29, 31–48.

Rosenthal RE (2014). GAMS: A User’s Guide. GAMS Development Corporation, Washington
DC.

Sadeghi M, Hosseini HM (2013). “Evaluation of Fuzzy Linear Programming Application in
Energy Models.” International Journal of Energy Optimization and Engineering, 2(1),
50–59.

Silva RC, Cruz C, Verdegay JL, Yamakami A (2010). “A Survey of Fuzzy Convex Program-
ming Models.” In WA Lodwick, J Kacprzyk (eds.), Fuzzy Optimization, volume 254 of
Studies in Fuzziness and Soft Computing, pp. 127–143. Springer Berlin Heidelberg.

Tanaka H, Ichihashi H, Asai F (1984). “A formulation of fuzzy linear programming problems
based a comparison of fuzzy numbers.” Control and Cybernetics, 13, 185–194.

Tanaka H, Okuda T, Asai K (1974). “On Fuzzy Mathematical Programming.” Journal of
Cybernetics, 3,4, 37–46.

Theussl S, Meyer D, Hornik K (2010). “Many Solvers, One Interface: ROI, the R Optimization
Infrastructure Package.” In useR! conference, p. 161. URL http://www.r-project.org/

conferences/useR-2010/abstracts/_Abstracts.pdf.

Tsakiris G, Spiliotis M (2004). “Fuzzy Linear Programming for problems of water allocation
under uncertainty.” European Water, 7-8, 25–37.

Vasant PM (2003). “Application of Fuzzy Linear Programming in Production Planning.”
Fuzzy Optimization and Decision Making, 2(3), 229–241.

Verdegay JL (1982). “Fuzzy Mathematical Programming.” In: Fuzzy Information and Deci-
sion Processes, pp. 231–237. M.M. Gupta and E. Sánchez (eds).

W N Venables and D M Smith and the R Core Team (2014). An Introduction to R, version
3.1.2. R Foundation for Statistical Computing, Vienna. URL http://cran.r-project.

org/doc/manuals/R-intro.pdf.

Werners B (1987). “An interactive fuzzy programming system.” Fuzzy Sets and Systems, 23,
131–147.

http://www.R-project.org/
http://www.R-project.org/
http://www.r-project.org/conferences/useR-2010/abstracts/_Abstracts.pdf
http://www.r-project.org/conferences/useR-2010/abstracts/_Abstracts.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf

20 FuzzyLP: Fuzzy Linear Programming in R

Yager RR (1978). “Ranking fuzzy subsets over the unit interval.” In Proc. of the IEEE
Conference on Decision and Control, pp. 1435–1437.

Zadeh L (1975). “The Concept of a Linguistic Variable and its Applications to Approximate
Reasoning, part I, II and III.” Information Sciences, 8:199-249, 8:301-357, 9:43-80.

Zimmermann HJ (1976). “Description and Optimization of fuzzy Systems.” International
Journal of General Systems, 2, 209–215.

Zimmermann HJ (1978). “Fuzzy programming and linear programming with several objective
functions.” Fuzzy Sets and Systems, 1(1), 45–55.

Affiliation:

Pablo J. Villacorta, Carlos A. Rabelo, David A. Pelta, José L. Verdegay
Models of Decision and Optimization (MODO) Research Group
CITIC-UGR, Department of Computer Science and Artificial Intelligence
University of Granada
18071 Granada, Spain
E-mail: pjvi@decsai.ugr.es, carabelo@gmail.com, dpelta@decsai.ugr.es,
verdegay@decsai.ugr.es

URL: http://decsai.ugr.es/~pjvi, http://decsai.ugr.es/~dpelta,
http://decsai.ugr.es/~verdegay, http://tic169.ugr.es

mailto:pjvi@decsai.ugr.es
mailto:carabelo@gmail.com
mailto:dpelta@decsai.ugr.es
mailto:verdegay@decsai.ugr.es
http://decsai.ugr.es/~pjvi
http://decsai.ugr.es/~dpelta
http://decsai.ugr.es/~verdegay
http://tic169.ugr.es

	Introduction
	Fuzzy numbers
	Operations with fuzzy numbers
	Comparison of fuzzy numbers

	Fuzzy Linear Programming
	Fuzzy constraints
	Fuzzy costs
	General model

	Conclusions and further work

