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Vignettes are available in both pdf (on CRAN) and html formats (at Github).

There are four base functions in R that can carry out PCA analysis.1 In this vignette we will look at each of
these functions and how they differ.

1 prcomp

prcomp is probably the function most people will use for PCA, as it will handle input data sets of arbitrary
dimensions (meaning, the number of observations n may be greater or less than the number of measured
variables, p). prcomp can do centering or scaling for you, but it also recognizes when the data passed to it
has been previously centered or scaled via the scale function.2 Internally, prcomp is a wrapper for the svd

function (which we’ll discuss below). This means that prcomp uses svd “under the hood” and repackages the
results from svd in a more useful form.

2 princomp

In contrast to prcomp, princomp cannot directly handle the situation where p > n, so it is not as flexible. In
addition, princomp uses function eigen under the hood, and eigen only accepts square matrices as input
(where n = p). However, princomp will accept a rectangular matrix with n > p because internally princomp

will convert the input matrix to either the covariance or correlation matrix before passing the new matrix to
eigen (the choice depends upon the arguments). Both the covariance and correlation matrices are square
matrices that eigen can process. As we shall see below, they give the same scores as the raw data (as long as
the scaling is consistent).

3 Covariance

Let’s take quick look at covariance and correlation. First, we’ll create some data to play with:

A <- matrix(1:20, nrow = 4)

dim(A)

## [1] 4 5

If you center the columns of A, take AT A and then divide by n− 1 you get the covariance matrix. We can
verify this via the built-in function cov. Covariance describes how the variables track each other. Covariance
is unbounded, which means its values can range over ±∞.

Ac <- scale(A, center = TRUE, scale = FALSE)

covA <- (t(Ac) %*% Ac)/(nrow(Ac) -1)

dim(covA) # it's square

## [1] 5 5

identical(covA, cov(A))

## [1] TRUE

4 Correlation

If instead you center the columns of A, i.e. scale the columns by dividing by their standard deviations, take
AT A and then divide by n− 1 you get the correlation matrix. Like covariance, correlation describes how

1And there are numerous functions in user-contributed packages that “wrap” or implement these base functions in particular
contexts.

2This works because the scale function adds attributes to its results, and prcomp checks for these attributes and uses them if
present.
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the variables track each other. However, correlation is bounded on [−1, 1]. In effect, correlation is covariance
normalized to a constant scale. Again we can verify this with the built-in function cor:

Acs <- scale(A, center = TRUE, scale = TRUE)

corA <- (t(Acs) %*% Acs)/(nrow(Acs) -1)

dim(corA) # square like covA

## [1] 5 5

identical(corA, cor(A))

## [1] TRUE

Importantly, the covariance and correlation matrices contain the same information about the relationship of
the original variables, so that PCA of either of these matrices or the original data matrix will give the same
results. This will be demonstrated in the next section.

5 prcomp vs princomp

Let’s compare the results from each function. Let’s use a portion of the mtcars data set that is small enough
that we can directly print and inspect the results. Converting to a matrix is not necessary but saves some
typing later.

data(mtcars)

mt <- as.matrix(mtcars[seq(1, 20, 2), 1:5]) # select every other row to get 10 samples

Next we’ll calculate PCA using both functions. Note that the arguments for prcomp will center and autoscale
the data before doing the key computation. For princomp, the data will be centered and the correlation
matrix computed and analyzed.3

pca <- prcomp(mt, center = TRUE, scale. = TRUE)

prin <- princomp(mt, cor = TRUE)

5.1 Compare the Scores

We can directly examine the results for the scores:

pca$x

## PC1 PC2 PC3 PC4 PC5

## Mazda RX4 -1.0479560 0.02812191 0.20417776 -0.23574115 0.19041257

## Datsun 710 -1.9187384 0.62012252 0.03701878 0.18764497 -0.22980986

## Hornet Sportabout 1.2408888 -0.34050957 0.42754323 0.36253075 0.14423806

## Duster 360 2.0345815 -0.21095796 -0.13943434 -0.29895647 -0.47011484

## Merc 230 -1.8534734 0.48404256 -0.14340048 0.26855557 -0.16691142

## Merc 280C -0.6943891 0.26998531 -0.09844637 -0.54336861 0.22228448

## Merc 450SL 1.1825263 0.02862923 0.67289539 -0.07586040 -0.04125809

## Cadillac Fleetwood 2.6175010 0.33221478 -0.40782360 0.17057754 0.39558239

## Chrysler Imperial 2.1330076 -0.38158713 -0.35443033 0.11037449 -0.13208565

## Honda Civic -3.6939483 -0.83006166 -0.19810003 0.05424331 0.08766235

prin$scores

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

## Mazda RX4 1.1046426 -0.02964310 0.21522225 -0.24849299 -0.20071247

3In princomp there is no argument regarding centering. The documentation is silent on this. However, if you look at the
source code (via stats:::princomp.default) you discover that it calls cov.wt which indeed centers, and gives the covariance
matrix unless you set the argument cor = TRUE in which case you get the correlation matrix.
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## Datsun 710 2.0225279 -0.65366653 0.03902122 0.19779517 0.24224086

## Hornet Sportabout -1.3080117 0.35892860 0.45067014 0.38214097 -0.15204026

## Duster 360 -2.1446372 0.22236922 -0.14697670 -0.31512779 0.49554455

## Merc 230 1.9537325 -0.51022565 -0.15115738 0.28308243 0.17594008

## Merc 280C 0.7319504 -0.28458951 -0.10377159 -0.57276081 -0.23430841

## Merc 450SL -1.2464922 -0.03017786 0.70929402 -0.07996388 0.04348984

## Cadillac Fleetwood -2.7590883 -0.35018513 -0.42988382 0.17980451 -0.41698045

## Chrysler Imperial -2.2483874 0.40222815 -0.37360237 0.11634493 0.13923050

## Honda Civic 3.8937634 0.87496181 -0.20881577 0.05717747 -0.09240423

Notice that the absolute values of the scores are similar, but not identical. This is because different algorithms
were used in each case. Notice too that the pattern of positive and negative values is complex, it’s not as if
one is simply the negative of the other. We’ll have more to say about this momentarily.

all.equal(abs(prin$scores), abs(pca$x), check.attributes = FALSE)

## [1] "Mean relative difference: 0.0513167"

Another way to compare these results is to overlay a plot of the scores from each method. Figure 1 shows the
results. The pattern of positive and negative scores becomes much clearer in this plot.

5.2 Compare The Loadings

Let’s do the same for the loadings. For the princomp results we have to extract the loadings because they
are stored in an usual form by today’s practices.

pca$rotation

## PC1 PC2 PC3 PC4 PC5

## mpg -0.4436384 -0.5668868 0.3843013 0.4943128 -0.2996526

## cyl 0.4445134 -0.5119978 0.5168597 -0.3609456 0.3779423

## disp 0.4496206 -0.3071229 -0.4852451 0.6128739 0.3040389

## hp 0.4545077 -0.2474375 -0.1952584 -0.2123927 -0.8055811

## drat -0.4436856 -0.5108305 -0.5581934 -0.4523805 0.1611437

prin_loads <- matrix(prin$loadings, ncol = 5, byrow = FALSE)

prin_loads

## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.4436384 0.5668868 0.3843013 0.4943128 0.2996526

## [2,] -0.4445134 0.5119978 0.5168597 -0.3609456 -0.3779423

## [3,] -0.4496206 0.3071229 -0.4852451 0.6128739 -0.3040389

## [4,] -0.4545077 0.2474375 -0.1952584 -0.2123927 0.8055811

## [5,] 0.4436856 0.5108305 -0.5581934 -0.4523805 -0.1611437

all.equal(abs(pca$rotation), abs(prin_loads), check.attributes = FALSE)

## [1] TRUE

The absolute value of the loadings from each method are identical, while the actual pattern of positive and
negative values is complex as we saw for the scores. Why is this? Recall from the Understanding Scores
and Loadings vignette that the loadings are the cosines of the angles through which the original axes are
rotated to get to the new coordinate system. As cosine is a periodic function, if one rotates the reference
frame 30 degrees to line up with the data better, the same alignment can also be achieved by rotating 30 +
180 degrees or 30 - 180 degrees. However, the latter two operations will give the opposite sign for the cosine
value. This is the origin of the pattern of signs in the loadings; essentially there are positive and negative
cosine values that both describe the needed reorientation equally well. Once the sign of the first value is
chosen, the signs of the other values are meaningful only in that context.
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Figure 1: Comparison of scores computed by prcomp (black points) and princomp (pink points). Note that
they are related by a 180 degreee rotation about an axis out of paper at the origin (plus a little wiggle due to
algorithm differences).
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As for the scores, a visual comparison of the results from each method will help us understand the relationship.
In this case, we’ll just look at the signs of the loadings, and we’ll display the loadings for PC1 followed by the
loadings for PC2 etc. Figure 2 makes clear that the two methods return loadings which sometimes have the
same sign, and sometimes the opposite sign.

loadings

si
gn

−
1

1

PC1 PC2 PC3 PC4 PC5

Figure 2: A comparison of the signs of the first loadings from prcomp (black circles) and princomp (pink
circles). Where the circles coincide, the value of the loading from each method is the same.

The key takeaway here is that regardless of the signs of the scores and the loadings, the results from a
particular function are internally consistent.

5.3 Compare the Variance Explained

For completeness, let’s make sure that each method returns the same variance explained values.

summary(pca)

## Importance of components:

## PC1 PC2 PC3 PC4 PC5

## Standard deviation 2.1297 0.44706 0.34311 0.2846 0.25636

## Proportion of Variance 0.9071 0.03997 0.02354 0.0162 0.01314

## Cumulative Proportion 0.9071 0.94711 0.97066 0.9869 1.00000

summary(prin)

## Importance of components:

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

## Standard deviation 2.1297181 0.44706195 0.34311033 0.28459249 0.2563571

## Proportion of Variance 0.9071398 0.03997288 0.02354494 0.01619858 0.0131438

## Cumulative Proportion 0.9071398 0.94711269 0.97065763 0.98685620 1.0000000

Clearly the numerical results are the same. You can see that the labeling of the results is different between
the two functions. These labels are internally stored attributes. In the several places below we’ll ignore those
labels and just check that the numerical output is the same.
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5.4 Reconstruct the Original Data

While the pattern of positive and negative scores and loadings differs between algorithms, in any particular
case the signs of the loadings and scores work together properly. We can use the function PCAtoXhat from
this package to reconstruct the original data, and compare it to the known original data. This function
recognizes the results from either prcomp or princomp and reconstructs the original data, accounting for any
scaling and centering.

MTpca <- PCAtoXhat(pca) # not checking attributes as the internal labeling varies between functions

all.equal(MTpca, mt, check.attributes = FALSE)

## [1] TRUE

MTprin <- PCAtoXhat(prin)

all.equal(MTprin, mt, check.attributes = FALSE)

## [1] TRUE

As you can see each function is reconstructing the data faithfully. And in the process we have shown that
one gets the same results starting from either the centered and scaled original matrix, or the matrix which
has been centered, scaled and then converted to its correlation matrix. Hence either approach extracts the
same information, proving that the correlation matrix contains the same relationships that are present in the
raw data.4

6 svd

As stated earlier, prcomp uses svd under the hood. Therefore we should be able to show that either function
gives the same results. The key difference is that svd is “bare bones” and we have to prepare the data
ourselves, and reconstruct the data ourselves. Let’s go.

First, we’ll center and scale the data, because svd doesn’t provide such conveniences.

mt_cen_scl <- scale(mt, center = TRUE, scale = TRUE)

Then conduct svd:

sing <- svd(mt_cen_scl)

6.1 Compare to the Scores from prcomp

The math behind extracting the scores and loadings is discussed more fully in the Math Behind PCA vignette.
Here we use the results shown there to compare scores and loadings.

svd_scores <- mt_cen_scl %*% sing$v

all.equal(svd_scores, pca$x, check.attributes = FALSE)

## [1] TRUE

6.2 Compare to the Loadings from prcomp

all.equal(sing$v, pca$rotation, check.attributes = FALSE)

## [1] TRUE

4Proof that the covariance matrix gives the same results is left as an exercise!
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7 eigen

princomp uses eigen under the hood, and so we should be able to show that these functions give the same
results. Like svd, eigen is “bare bones” so we’ll start from the centered and scaled data set. In this case
however, we also need to compute the correlation matrix, something that princomp did for us, but eigen

expects you to provide a square matrix (either raw data that happens to be square, but more likely the
covariance or correlation matrix).

mt_cen_scl_cor <- cor(mt_cen_scl)

eig <- eigen(mt_cen_scl_cor)

7.1 Compare to the Scores from princomp

As we discovered earlier, we need to take the absolute value prior to comparison.

eig_scores <- mt_cen_scl %*% eig$vectors

all.equal(abs(eig_scores), abs(prin$scores), check.attributes = FALSE)

## [1] "Mean relative difference: 0.05409255"

7.2 Compare to the Loadings from princomp

all.equal(abs(eig$vectors), abs(prin_loads), check.attributes = FALSE)

## [1] TRUE

8 Wrap Up

Table 1 summarizes much of what we covered above.

prcomp svd princomp eigen
algorithm uses svd svd uses eigen eigen
input dimensions n× p n× p n× p n× n

user pre-processing center; scale center; scale don’t do it! center; scale; cov or cor
internal pre-processing center; scale none center; cov or cor none
call pca← prcomp(X) sing ← svd(X) prin← princomp(X) eig ← eigen(X)
scores pca$x X × sing$v prin$scores X × eig$vectors

loadings pca$rotation sing$v prin$loadings eig$vectors

pct variance explained
100 ∗ pca$sdev2

sum(pca$sdev2)

100 ∗ sing$d2

sum(sing$d2)

100 ∗ prin$sdev2

sum(prin$sdev2)

100 ∗ eig$values

sum(eig$values)

Table 1: A comparison of R functions for PCA. Input data must be centered in all cases. Scaling is optional.

9 Works Consulted

In addition to references and links in this document, please see the Works Consulted section of the Start

Here vignette for general background.
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