
MCPModGeneral Vignette
Ian Laga

22 August, 2019

1. Introduction
2. Exploratory Stage

• powMCTGen

• sampleSizeMCTGen

3. Data Analysis Stage
• Do things by hand using prepareGen and the DoseFinding package
• Do everything all at once using MCPModGen

1 Introduction

MCPModGeneral is an extension of the DoseFinding package, streamlining the analysis of non-normal endpoints.
Almost all of the functions in the DoseFinding package rely on the user supplying µ, the estimated dose-
response coefficients, and S, the variance-covariance matrix of µ. However, S is difficult to know before-hand,
and for functions like powMCT, differ for each alternative model. The MCPModGeneral package does not require
the user to supply a matrix for S and instead calculates the theoretical variance-covariance matrix for the
negative binomial, binomial, and Poisson distributions. Alternatively, the emperical covariance matrices can
be estimated via simulation.

Users can also use the MCPModGeneral package to fit the full MCPMod procedure on negative binomial,
Poisson, and binomial data, as well as basic survival data. The relevant functions for fitting the models are
prepareGen and MCPModGen. The full capabilities of these functions will be explored later in the vignette.

As with the DoseFinding package, the MCPModGeneral package still requires the user to create and specify
the potential dose-response curves. The DoseFinding package provides the guesst and Mods functions to
create these models, but ultimately, the dose-response curves come from prior knowledge or discussion with
clinicians. For the entirety of this vignette, it is assumed that the user is able to construct the potential
models. Recall that dose-response curves must be constructed on the same scale as the ANOVA output,
meaning if negative binomial data is to be analyzed via a GLM with a log-link, the dose-response curve
should represent the log of the means at each dose. The MCPModGeneral package allows usage with the most
commonly used links. See the family page from the stats package for a list of the common links.

2 Exploratory Stage

Before collecting data, it is useful to understand the properties of the potential data set. The two relevant
functions in the MCPModGeneral package are powMCTGen and sampSizeMCTGen. powMCTGen will calculate the
power of the multiple contrast test for the patient allocation and dose-response curves provided. These are
extensions of the powMCT and sampSizeMCT packages from the DoseFinding package. While the DoseFinding

functions can handle non-normal data, they require a user-provided covariance matrix. We find this
unneccesarily prohibative in common use since the covariance function is unlikely to be known in advance.
Furthermore, only a single covariance matrix may be supplied, while the covariance matrix for non-normal
data typically depends on the expected value at the doses. The MCPModGeneral functions work by calculating
the theoretical covariance matrices from the means of the supplied models and then calling the DoseFinding

functions. All theoretical covariance matrices were derived by hand for the most common links.

1

2.1 Power Calculation

The original powMCT function calculates the power for a multiple contrast test under each alternative model.
As discussed above, the powMCTGen function works by calculating the theoretical covariance matrix at each
of the alternative models and then calling powMCTGen. We added two new capabilities to the powMCTGen

function. First, the user can change the doses in the function instead of having to redefine a new Mods object
with the new doses. Second, the user can supply theoretical responses. Note that only one power calculation
will be provided in this case, since the responses are no longer assumed to come from each of the models.
Now, let us create the set of candidate models we will use for the following examples. We include 5 candidate
models in our study, shown below.

dose.vec = c(0, 5, 10, 20, 30, 40)

models.full = Mods(doses = dose.vec, linear = NULL,

sigEmax = rbind(c(9, 4), c(20, 3)),

emax = 1.25, quadratic = -0.044/2.667,

placEff = 0, maxEff = 2)

plot(models.full)

Dose

M
od

el
 m

ea
ns

0.0
0.5
1.0
1.5
2.0

linear

0 10 20 30 40

sigEmax1 sigEmax2

0 10 20 30 40

emax

0.0
0.5
1.0
1.5
2.0

quadratic

The above plot shows the potential dose-response curves on the link-scale (e.g. on the log-scale for negative
binomial data). The doses considered are (0, 5, 10, 20, 30, 40). Now consider a trial where 30 patients receive
each dose. We wish to calculate the probability of accepting at least one alternative model given the true
underlying dose-response curve. We first assume that the endpoints are negative binomial counts and the
dispersion parameter is 0.1. The following chunks of code demonstrate three ways to calculate these powers.
The “verbose” parameter specifies whether the assumed patient allocation should be printed. This is useful
to ensure that the patient allocation is what was intended.

We demonstrate the use of powMCTGen below.

Using the “arm” Ntype

Look at the power for each possible DR-curve

powMCTGen(30, "negative binomial", "log", modelPar = 0.1,

Ntype = "arm", alpha = 0.05, altModels = models.full, verbose = T)

#> the patient allocation is given by:

#> c(0, 5, 10, 20, 30, 40)c(30, 30, 30, 30, 30, 30)

2

#> linear sigEmax1 sigEmax2 emax quadratic

#> 0.8664637 0.9521398 0.9344982 0.8476198 0.8870228

Using the “total” Ntype

powMCTGen(180, "negative binomial", "log", modelPar = 0.1,

Ntype = "total", alpha = 0.05, altModels = models.full, verbose = T)

Using the “actual” Ntype

powMCTGen(c(30,30,30,30,30,30), "negative binomial", "log", modelPar = 0.1,

Ntype = "actual", alpha = 0.05, altModels = models.full, verbose = T)

Now let’s assume our dose-response models define the probability of occurance on the probit scale. We
need only to change the family and link arguments, and remove the modelPar argument. Note that the
modelPar is simply ignored for family = "binomial".

powMCTGen(30, "binomial", "probit",

Ntype = "arm", alpha = 0.05, altModels = models.full)

By default, the doses are assumed to be the same doses used to construct the alternative models. However,
the user now can also supply their own doses to see what effect the choice of doses has on the power. Consider
the next example, where the doses are either very small or very large, which no doses in the middle of the
dose-range. We see that the power decreases for some models, especially “sigEmax2”. This is because certain
choices of doses do a better job of defining the underlying shape of the curves.

powMCTGen(30, "binomial", "probit",

Ntype = "arm", alpha = 0.05, doses = c(0, 1, 2, 36, 38, 40),

altModels = models.full, verbose = TRUE)

#> the patient allocation is given by:

#> c(0, 1, 2, 36, 38, 40)c(30, 30, 30, 30, 30, 30)

#> linear sigEmax1 sigEmax2 emax quadratic

#> 0.9999938 0.9999952 0.9999960 0.9999188 0.9999867

Another nice extension to the DoseFinding package is the power function can now handle theoretical response
values. Instead of supplying a dose-response curve, the user can instead supply theoretical mean values (on
the link scale) at respective doses. These doses do not have to be the same as the doses used to construct the
alternative models.

Now consider power at some theoretical DR-values

powMCTGen(30, "negative binomial", "log", modelPar = 0.1,

theoResp = c(0, 0.2, 1.8), doses = c(0, 20, 40),

alpha = 0.05, altModels = models.full)

#> [1] 0.6432978

This can also be used to test the type-1 error, if needed, although this should always be α.

Can also check type-1 error

powMCTGen(30, "negative binomial", "log", modelPar = 0.01, theoResp = rep(0, 5),

doses = c(0, 50, 10, 20, 30),

alpha = 0.05, altModels = models.full)

#> [1] 0.04947947

3

2.2 Sample Size Calculations

One could keep adjusting the patient allocation in powMCTGen in order to reach some target power, but
sampSizeMCTGen offers an automated process. In addition to the family, link, parameters, and models, the
user also needs to supply a “guess” of the largest sample size needed to reach a certain power, and the desired
power. The following line of code calcualted the optimal sample size for binomial data with more patients
allocated in the ratios 3 : 1 : 2 : 2 : 2 : 2 for the respective doses, in order to reach a minimum power of 0.8.

sampSizeMCTGen("binomial", "logit", upperN = 50, Ntype = "arm",

altModels = models.full, alpha = 0.05, alRatio = c(3/2, 1/2, 1, 1, 1, 1),

sumFct = "min", power = 0.8)

#> Sample size calculation

#>

#> alRatio: 3 1 2 2 2 2

#> Total sample size: 84

#> Sample size per arm: 21 7 14 14 14 14

#> targFunc: 0.8125

If verbose = TRUE, current iteration, N, and power is printed at each step. Let’s pay more attention to
the sumFct argument. Recall that powMCTGen returns a vector of powers, one for each alternative model.
sumFct converts this vector into a single value. The default is to consider the minimum of the powers, so
that in the worst case (the true model is the model which has the lowest power), the power is still above
the target. Like sampSizeMCT, default functions are “min”, “mean”, and “max”. However, sumFct can also
handle user-supplied functions, as long as the function accepts a patient allocation argument of the Ntype

specified, and returns a numeric value.

sampSizeMCTGen("negative binomial", "log", modelPar = 0.1, upperN = 50, Ntype = "arm",

altModels = models.full, alpha = 0.05,

sumFct = "max", power = 0.8, verbose = T)

#> Iter: 1, N = 31, current value = 0.9566

#> Iter: 2, N = 22, current value = 0.8798

#> Iter: 3, N = 17, current value = 0.7964

#> Iter: 4, N = 20, current value = 0.8522

#> Iter: 5, N = 18, current value = 0.8173

#> Sample size calculation

#>

#> alRatio: 1 1 1 1 1 1

#> Total sample size: 108

#> Sample size per arm: 18 18 18 18 18 18

#> targFunc: 0.8173

Just like powMCTGen, sampSizeMCTGen can also handle theoretical responses at supplied doses.

sampSizeMCTGen("negative binomial", "log", modelPar = 0.1, upperN = 100, Ntype = "total",

alRatio = c(3/2, 1/2, 1),

theoResp = c(0, 0.2, 1.8), doses = c(0, 20, 40),

altModels = models.full, alpha = 0.05)

#> Sample size calculation

#>

#> alRatio: 3 1 2

#> Total sample size: 114

#> Sample size per arm: 57 19 38

#> targFunc: 0.8017

4

3 Data Analysis Stage

In this section, we will explore the two methods for analyzing non-normal data using the MCPModGeneral

package. The first method uses the prepareGen function to retrieve the µ̂ vector and Ŝ matrix, and then
passes these objects into DoseFinding functions. The second method combines the two steps into one via
the MCPModGen function.

3.1 Binomial Data

First, consider the data. This data set is provided in the DoseFinding package, and the primary endpoint
was the binary value “pain freedom at 2 hours postdose.” We also construct three candidate models for
demonstration. These models were not based off any prior knowledge, and serve only as demonstration of the
approach.

data(migraine)

migraine$pfrat = migraine$painfree / migraine$ntrt

migraine

#> dose painfree ntrt pfrat

#> 1 0.0 13 133 0.09774436

#> 2 2.5 4 32 0.12500000

#> 3 5.0 5 44 0.11363636

#> 4 10.0 16 63 0.25396825

#> 5 20.0 12 63 0.19047619

#> 6 50.0 14 65 0.21538462

#> 7 100.0 14 59 0.23728814

#> 8 200.0 21 58 0.36206897

models = Mods(linear = NULL, emax = 10, quadratic = c(-0.004), doses = migraine$dose)

plot(models)

Dose

M
od

el
 m

ea
ns

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

linear

0 50 100 150 200

emax

0 50 100 150 200

quadratic

We can prepare the data manually using the prepareGen function and then forward the output to the MCPMod

function from the DoseFinding package. This two step process is shown below.

mu.S = prepareGen(family = "binomial", link = "logit", w = "ntrt", dose = "dose",

resp = "pfrat", data = migraine)

5

mcp.hand = MCPMod(dose = mu.S$data$dose, resp = mu.S$data$resp, models = models,

S = mu.S$S, Delta = 0.2, type = "general")

plot(mcp.hand)

dose

re
sp

−2.0

−1.5

−1.0

−0.5

0 50 100 150 200

linear

0 50 100 150 200

emax

0 50 100 150 200

quadratic

mcp.hand

#> MCPMod

#>

#> Multiple Contrast Test:

#> t-Stat adj-p

#> emax 4.061 < 0.001

#> linear 3.703 < 0.001

#> quadratic 3.079 0.00231

#>

#> Estimated Dose Response Models:

#> linear model

#> e0 delta

#> -1.710 0.006

#>

#> emax model

#> e0 eMax ed50

#> -2.219 1.387 8.473

#>

#> quadratic model

#> e0 b1 b2

#> -1.776 0.010 0.000

#>

#> Selected model (AIC): emax

#>

#> Estimated TD, Delta=0.2

#> linear emax quadratic

#> 33.8758 1.4274 20.9810

Alternatively, we can perform the same calculations, but in one step via the MCPModGen function.

mcp.gen = MCPModGen("binomial", "logit", returnS = F, w = "ntrt", dose = "dose",

resp = "pfrat", data = migraine, models = models, Delta = 0.2)

6

mcp.gen

#> MCPMod

#>

#> Multiple Contrast Test:

#> t-Stat adj-p

#> emax 4.061 <0.001

#> linear 3.703 <0.001

#> quadratic 3.079 0.0024

#>

#> Estimated Dose Response Models:

#> linear model

#> e0 delta

#> -1.710 0.006

#>

#> emax model

#> e0 eMax ed50

#> -2.219 1.387 8.473

#>

#> quadratic model

#> e0 b1 b2

#> -1.776 0.010 0.000

#>

#> Selected model (AIC): emax

#>

#> Estimated TD, Delta=0.2

#> linear emax quadratic

#> 33.8758 1.4274 20.9810

Notice that the results for the two methods are almost identical. Slightly different values are given (e.g. the
adj-p values), but this is due to the computation method.

3.2 Negative Binomial Data

The DoseFinding package does not have any negative binomial data, so we will simulate data according to
the same model curves we used for the binomial data. Five random observations are shown from the data set
to demonstrate the structure of the data. To demonstrate the affect that additional covariates has on the
model, we will use extremely large sample sizes for each arm (300 patients per arm) and a very large gender
effect.

Simulate some negative binomial data according to one of the models

set.seed(188)

mean.vec = getResp(models)[,2]

dose.dat = c()

resp.dat = c()

gender.dat = c()

for(i in 1:length(migraine$dose)){

gender.tmp = rbinom(300, 1, prob = 0.3)

gender.dat = c(gender.dat, gender.tmp)

dose.dat = c(dose.dat, rep(migraine$dose[i], 300))

resp.dat = c(resp.dat, rnbinom(300, mu = exp(mean.vec[i] + 5*gender.tmp), size = 1))

}

nb.dat = data.frame(dose = dose.dat, resp = resp.dat, gender = gender.dat)

nb.dat[sample(1:nrow(nb.dat), 5),]

#> dose resp gender

7

#> 876 5.0 24 1

#> 398 2.5 1 0

#> 2281 200.0 3 0

#> 1780 50.0 9 0

#> 2126 200.0 453 1

Now we will perform the MCP-Mod procedure on the negative binomial data, both using the default approach,
and also on the placebo adjusted data. Note that we also show the different ways to supply the dose and
resp arguments, which differ slightly from the DoseFinding package which does not use character vectors.
We show only the results for two of the objects (one default, one placebo adjusted). Note that if returnS is
TRUE, the returned object will have three arguments. One with the MCPMod object, one with µ̂ and the
doses, and one with Ŝ.

mcp.nb1 = MCPModGen("negative binomial", link = "log", returnS = T,

dose = "dose", resp = "resp", data = nb.dat, models = models, Delta = 0.6)

mcp.nb2 = MCPModGen("negative binomial", link = "log", returnS = T,

dose = dose.dat, resp = resp.dat, models = models, Delta = 0.6)

mcp.nb3 = MCPModGen("negative binomial", link = "log", returnS = T, placAdj = T,

dose = "dose", resp = "resp", data = nb.dat, models = models, Delta = 0.6)

mcp.nb4 = MCPModGen("negative binomial", link = "log", returnS = T, placAdj = T,

dose = dose.dat, resp = resp.dat, models = models, Delta = 0.6)

names(mcp.nb1)

#> [1] "MCPMod" "data" "S"

mcp.nb1$data

#> dose resp

#> 1 0.0 3.975311

#> 2 2.5 4.037421

#> 3 5.0 3.969348

#> 4 10.0 4.156954

#> 5 20.0 4.558707

#> 6 50.0 4.435765

#> 7 100.0 4.774885

#> 8 200.0 4.908036

mcp.nb1$MCPMod$doseEst

#> linear emax quadratic

#> 130.84452 41.37549 67.10633

#> attr(,"addPar")

#> [1] 0.6

mcp.nb4$MCPMod$doseEst

#> linear emax quadratic

#> 130.84452 41.37549 67.10633

#> attr(,"addPar")

#> [1] 0.6

plot(mcp.nb1$MCPMod)

8

dose

re
sp

4.0

4.2

4.4

4.6

4.8

5.0

0 50 100 150 200

linear

0 50 100 150 200

emax

0 50 100 150 200

quadratic

plot(mcp.nb4$MCPMod)

dose

re
sp

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200

linear

0 50 100 150 200

emax

0 50 100 150 200

quadratic

Additional Covariates

The MCPModGeneral function can also incorporate additional covariates. Consider the same constructed
negative binomial data from above. Notice how we removed the effect of gender on the results. We will
now easily consider the gender of the patients using the addCovars parameter. Notice how gender is a
categorical variable, so when we provide the formula in the addCovars argument, we need to specify that we
want to treat it as a factor. If gender is already a factor in the data frame, then the model will still treat it
as a factor.

mcp.covars = MCPModGen("negative binomial", link = "log", returnS = F, addCovars = ~ factor(gender),

dose = "dose", resp = "resp", data = nb.dat, models = models, Delta = 0.6)

mcp.covars

#> MCPMod

9

#>

#> Multiple Contrast Test:

#> t-Stat adj-p

#> emax 15.509 <0.001

#> quadratic 14.384 <0.001

#> linear 12.122 <0.001

#>

#> Estimated Dose Response Models:

#> linear model

#> e0 delta

#> 0.313 0.004

#>

#> emax model

#> e0 eMax ed50

#> -0.082 1.152 14.330

#>

#> quadratic model

#> e0 b1 b2

#> 0.143 0.015 0.000

#>

#> Selected model (AIC): emax

#>

#> Estimated TD, Delta=0.6

#> linear emax quadratic

#> 139.1470 15.5723 49.2665

plot(mcp.covars)

dose

re
sp

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200

linear

0 50 100 150 200

emax

0 50 100 150 200

quadratic

Let’s now see the target dose estimates for our models against the true target dose.

TD(models, Delta = 0.6)[2]

#> emax

#> 13.33333

mcp.nb1$MCPMod$doseEst[mcp.nb1$MCPMod$selMod]

#> emax

10

#> 41.37549

mcp.covars$doseEst[mcp.covars$selMod]

#> emax

#> 15.57234

We can clearly see that including the covariates greatly improves the accuracy of the TD estimate.

Relative Risk

The relative risk measures either the risk ratio for binomial data or the rate ratio for count data. The main
advantage of using the relative risk is that interpretation is incredibly easy and consistent under different
data distributions. While the canonical link for negative binomial data is the log-link, it is often difficult to
propose candidate models in terms of log-mean. Other links are even more confusing.

For binary data, the relative risk is better known as the risk ratio, where the relative risk for dose a against
the placebo p is given by

RRa =
(
∑na

i=1
I(outcome)a,i) /na

(
∑np

i=1
I(outcome)p,i

)

/np

(1)

where na denotes the number of patients who received dose a.

For count data (e.g. negative binomial and Poisson), the relative risk is better known as the rate ratio, where
the relative risk for dose a against the placebo p is given by

RRa =
(
∑na

i=1
#eventsa,i) / (

∑na

i=1
timea,i)

(
∑np

i=1
#eventsp,i

)

/
(
∑np

i=1
timep,i

) (2)

where #eventsa,i denotes the number events that occurred for patient i of dose a in the recording time
timea,i.

Users can specify candidate models on the relative risk scale and apply the traditional MCP-Mod procedure
via the MCPModGeneral package. For power analysis, the user must also supply the mean at the placebo,
denoted placEff. An example of data generated from a candidate relative risk dose-response curve and
analysis of the data is shown in the following chunk of code.

set.seed(1786)

doses = c(0, 0.1, 0.5, 0.75, 1)

n.vec = c(30, 20, 23, 19, 32)

n.doses = length(doses)

models = Mods(doses = doses, linear = NULL, emax = 0.1, exponential = 0.2,

quadratic = -0.75, placEff = 1, maxEff = -0.3)

Perform power-analysis

powMCTGen(n.vec, "binomial", "risk ratio", altModels = models, placEff = 0.9,

Ntype = "actual")

#> using 'placAdj' specification from contMat object

#> using 'placAdj' specification from contMat object

#> using 'placAdj' specification from contMat object

#> using 'placAdj' specification from contMat object

#> linear emax exponential quadratic

#> 0.8987091 0.9597508 0.8011131 0.9106507

11

Simulate the data according to the exponential curve

means = getResp(models)[,3]*0.9

cbind(Dose = doses, Means = means)

#> Dose Means

#> 0 0.00 0.9000000

#> 0.1 0.10 0.8988118

#> 0.5 0.50 0.8795183

#> 0.75 0.75 0.8239505

#> 1 1.00 0.6300000

resp.dat = c()

for(i in 1:n.doses){

resp.dat = c(resp.dat, rbinom(1, size = n.vec[i], prob = means[i]))

}

bin.dat = data.frame(dose = doses, resp = resp.dat/n.vec, w = n.vec)

Fit using the package

mod.pack = MCPModGen("binomial", "risk ratio", returnS = F, w = "w", dose = "dose", resp = "resp",

data = bin.dat, models = models, Delta = 0.1)

#> Forcing 'placAdj = TRUE' for risk ratio links

plot(mod.pack)

dose

re
sp

−0.4
−0.3
−0.2
−0.1

0.0

0.0 0.2 0.4 0.6 0.8 1.0

linear emax

exponential

0.0 0.2 0.4 0.6 0.8 1.0

−0.4
−0.3
−0.2
−0.1
0.0

quadratic

Look at the MED estimate

mod.pack$doseEst[mod.pack$selMod]

#> exponential

#> 0.7955145

TD(models, Delta = 0.1, direction = "decreasing")[3]

#> exponential

#> 0.7829547

12

Conclusion

The MCPModGeneral package allows users to use the methods from the DoseFinding package without having
to code additional data analysis. While fitting the actual MCP-Mod procedure for non-normal data is often
very straightforward, full power-analysis requires extensive coding, which the MCPModGeneral package does
for the user. The other significant contribution to the DoseFinding package is the inclusion of the relative risk
link. Together, the MCPModGeneral package and DoseFinding package can apply the MCP-Mod procedure
to the most common data distributions.

13

	1 Introduction
	2 Exploratory Stage
	2.1 Power Calculation
	Using the ``arm'' Ntype
	Using the ``total'' Ntype
	Using the ``actual'' Ntype

	2.2 Sample Size Calculations

	3 Data Analysis Stage
	3.1 Binomial Data
	3.2 Negative Binomial Data
	Additional Covariates

	Relative Risk
	Conclusion

