Given a CSV file with titles and abstracts, the package creates a
document-term matrix that is lemmatized and stemmed and can directly be used to
train machine learning methods for automatic title-abstract screening in the
preparation of a meta analysis.
Version: |
0.1.3 |
Depends: |
R (≥ 2.10) |
Imports: |
glmnet, tm, textstem, methods, lexicon, utils |
Suggests: |
knitr, rmarkdown, testthat (≥ 3.0.0), covr, wordcloud, vdiffr |
Published: |
2024-11-07 |
DOI: |
10.32614/CRAN.package.MetaNLP |
Author: |
Nico Bruder [aut]
(<https://orcid.org/0009-0004-9522-2075>),
Samuel Zimmermann
[aut] (<https://orcid.org/0009-0000-4828-9294>),
Johannes Vey
[aut] (<https://orcid.org/0000-0002-2610-9667>),
Maximilian Pilz
[aut, cre] (<https://orcid.org/0000-0002-9685-1613>),
Institute of Medical Biometry - University of Heidelberg [cph] |
Maintainer: |
Maximilian Pilz <maximilian.pilz at itwm.fraunhofer.de> |
BugReports: |
https://github.com/imbi-heidelberg/MetaNLP/issues |
License: |
MIT + file LICENSE |
URL: |
https://github.com/imbi-heidelberg/MetaNLP |
NeedsCompilation: |
no |
Materials: |
README NEWS |
In views: |
MetaAnalysis |
CRAN checks: |
MetaNLP results |