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Bnk_func Generate biquadratic kernel weights for a univariate variable

Description

This is the biquadratic kernel function, that weights observations by their distances to the target
observation.

Usage

Bnk_func(x0k, Xk, bw.bnk)

Arguments

x0k Numeric scalar. One univariate covariate value of interest from one observation.

Xk Numerical vector. The vector of the same covariate from observations

bw.bnk The bandwith scalar parameter.

Value

This function returns a list of kernel weights with the same length of input Xk.

Note

This function is widely used for generating kernel weights for nonparametrically estimating condi-
tional survival functions. See Section 2.3 of (Wang and Wang 2009).
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References

Wang HJ, Wang L (2009). “Locally weighted censored quantile regression.” Journal of the Ameri-
can Statistical Association, 104(487), 1117–1128.

Examples

Bnk_func(x0k=0, Xk=c(-5:5), bw.bnk=10)

est_mean_ipwe Estimate the marginal mean response of a linear static treatment
regime

Description

Assume we have binary treatment options for each subject in the target population. This function
evaluates a given treatment regime by the estimated marginal mean response. We assume the space
of treatment regimes are linear decision functions indexed by parametric coefficients.

This R function is an empirical value function in the literature of optimal treatment regime estima-
tion. Since the goal here is to maximize population’s marginal mean response, this function, which
estimates the performance of a set of parameters in terms of the marginal mean, is the objective
function in a nonparametric policy-search method.

The user facing application which utilizes this function is IPWE_mean_IndCen.

Usage

est_mean_ipwe(beta, x, censor_y, delta, ph, a, ghat,
check_complete = TRUE)

Arguments

beta Numeric vector. A set of parameter that indexes the regime.

x Numeric Matrix. The baseline covariates from all observed data.

censor_y Numeric vector. The censored survival times from all observed data, i.e. censor_y
= min(Y, C)

delta Numeric vector. The censoring indicators from all observed data. We use 1 for
uncensored, 0 for censored.

ph Numeric vector. The estimated propensity score of being assigned treatment A=1
by the original data generation mechanism for all observed data.

a Numeric vector. The vector of observed treatment level for all observed data.
Treatment levels should be coded as 0/1.
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ghat Numeric vector. The conditional/unconditional probabilities of event that the
censoring variable is larger than the observed survival time given covariates for
each observation. a.k.a F (T > y0 | x0). This can be calculated by function
LocalKM. Estimation of conditional cumulative function value at y0 is imple-
mented in tauhat_func.

check_complete logical. Since this value estimation method is purely nonparametric, we need at
least one unit in collected data such that the observed treatment assignment is the
same what the regime parameter suggests. If check_complete is TRUE. It will
check if any observation satisfies this criterion. When none observation satisfies,
a message is printed to console to raise users awareness that the input regime
parameter beta does not agree with any observed treatment level assignment.
Then a sufficiently small number is returned from this function, to keep the
genetic algorithm running smoothly.

Examples

GenerateData <- function(n)
{

x1 <- runif(n, min=-0.5,max=0.5)
x2 <- runif(n, min=-0.5,max=0.5)
error <- rnorm(n, sd= 1)
ph <- rep(0.5,n)
a <- rbinom(n = n, size = 1, prob=ph)
c <- 1.5 + + runif(n = n, min=0, max=2)
cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
censor_y <- pmin(cmplt_y, c)
delta <- as.numeric(c > cmplt_y)
return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))

}
n <- 100
data <- GenerateData(n)

# here the value for argument ghat uses 0.5 vector for brevity.
mean_hat <- est_mean_ipwe(c(-1,0,2), x=cbind(1, data$x1, data$x2),

censor_y = data$censor_y, delta = data$delta, ph = rep(0.5,n),
a = data$a, ghat = rep(0.5,n))

est_quant_ipwe Estimate the marginal quantile response of a linear static treatment
regime

Description

Assume we have binary treatment options for each subject in the target population. This function
evaluates a given treatment regime by the estimated marginal mean response. We assume the space
of treatment regimes are linear decision functions indexed by parametric coefficients.
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This R function is an empirical value function in the literature of optimal treatment regime esti-
mation. Since the goal here is to maximize population’s marginal quantile, this function, which
estimates the perforamce of a set of parameters in terms of marginal quantile, is the objective
function in a nonparametric policy-search method.

The user facing application which utilizes this function is IPWE_Qopt_IndCen.

Usage

est_quant_ipwe(beta, sign_beta1, x, censor_y, delta, epsi, a, tau,
check_complete = TRUE, Penalty.level = 0)

Arguments

beta Numerical vector. Exclude the coefficient for the first nontrivial covariate. So
if there are k covariates, the length of beta should equal k+1-1=k because the
intercept needs one coefficient as well.

sign_beta1 logical. FALSE if the coefficient for the first continuous variable is fixed to be
negative one; TRUE if positive one.

x Numeric Matrix. The baseline covariates from all observed data.

censor_y Numeric vector. The censored survival times from all observed data, i.e. censor_y
= min(Y, C)

delta Numeric vector. The censoring indicators from all observed data. We use 1 for
uncensored, 0 for censored.

epsi the product of (1) the probability of being assigned the observed treatment level
through the original treatment assignment mechanism and (2) the conditional
survival probability of the censoring variable at censor_y.

a Numeric vector. The vector of observed treatment level for all observed data.
Treatment levels should be coded as 0/1.

tau a value between 0 and 1. This is the quantile of interest.

check_complete logical. Since this value estimation method is purely nonparametric, we need at
least one unit in collected data such that the observed treatment assignment is the
same what the regime parameter suggests. If check_complete is TRUE. It will
check if any observation satisfies this criterion. When none observation satisfies,
a message is printed to console to raise users awareness that the input regime
parameter beta does not agree with any observed treatment level assignment.
Then a sufficiently small number is returned from this function, to keep the
genetic algorithm running smoothly.

Penalty.level the level that determines which objective function to use. Penalty.level =
0 indicates no regularization; Penalty.level = 1 indicates the value function
estimation minus the means absolute average coefficient is the output, which is
useful trick to achieve uniqueness of estimated optimal TR when resolution of
input response is low.
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Examples

GenerateData <- function(n)
{

x1 <- runif(n, min=-0.5,max=0.5)
x2 <- runif(n, min=-0.5,max=0.5)
error <- rnorm(n, sd= 1)
ph <- rep(0.5,n)
a <- rbinom(n = n, size = 1, prob=ph)
c <- 1.5 + + runif(n = n, min=0, max=2)
cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
censor_y <- pmin(cmplt_y, c)
delta <- as.numeric(c > cmplt_y)
return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))

}
n <- 100
data <- GenerateData(n)

# here the value for argument epsi uses 0.5 vector for brevity in notation.
quant_hat <- est_quant_ipwe(beta=c(-1,2), sign_beta1=TRUE, x=cbind(1, data$x1, data$x2),

censor_y = data$censor_y, delta = data$delta, tau=0.5,
epsi = rep(0.5,n), a = data$a)

est_quant_TwoStg_ipwe Estimate the marginal quantile response of a specific dynamic TR

Description

Assume we have binary treatment options for two sequential stages with a fixed time duration
between them. This means for each subject in the target population if the censored survival time or
the time-to-event is beyond the timepoint of the second treatment.

This function evaluates a given dynamic treatment regime and returns the estimated marginal quan-
tile response.

We assume the space of two-stage treatment regimes is a cartesian product of two single-stage linear
treatment regime space.

The user facing function that applies this function is IPWE_Qopt_DTR_IndCen.

Usage

est_quant_TwoStg_ipwe(n, beta, sign_beta1.stg1, sign_beta1.stg2, txVec1,
txVec2_na_omit, s_Diff_Time, nvars.stg1, nvars.stg2, p.data1, p.data2,
censor_y, delta, ELG, w_di_vec, tau, check_complete = TRUE,
Penalty.level = 0)
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Arguments

n the sample size

beta the vector of coefficients indexing a two-stage treatment regime

sign_beta1.stg1

Is sign of the coefficient for the first non-intercept variable for the first stage
known? Default is NULL, meaning user does not have contraint on the sign;
FALSE if the coefficient for the first continuous variable is fixed to be -1; TRUE
if 1. We can make the search space discrete because we employ |β1| = 1 scale
normalizaion.

sign_beta1.stg2

Default is NULL. Similar to sign_beta1.stg1.

txVec1 the vector of treatment received at the first stage

txVec2_na_omit the vector of second stage treatment for patients who indeed second stage treat-
ment

s_Diff_Time the length of time between the first stage treatment and the second stage treat-
ment

nvars.stg1 number of coeffients for the decision rule of the first stage

nvars.stg2 number of coeffients for the decision rule of the second stage

p.data1 the design matrix to be used for decision in stage one

p.data2 the design matrix to be used for decision in stage two

censor_y Numeric vector. The censored survival times from all observed data, i.e. censor_y
= min(Y, C)

delta Numeric vector. The censoring indicators from all observed data. We use 1 for
uncensored, 0 for censored.

ELG the boolean vector of whether patients get the second stage treatment

w_di_vec the inverse probability weight for two stage experiments

tau a value between 0 and 1. This is the quantile of interest.

check_complete logical. Since this value estimation method is purely nonparametric, we need at
least one unit in collected data such that the observed treatment assignment is the
same what the regime parameter suggests. If check_complete is TRUE. It will
check if any observation satisfies this criterion. When none observation satisfies,
a message is printed to console to raise users awareness that the input regime
parameter beta does not agree with any observed treatment level assignment.
Then a sufficiently small number is returned from this function, to keep the
genetic algorithm running smoothly.

Penalty.level the level that determines which objective function to use. Penalty.level =
0 indicates no regularization; Penalty.level = 1 indicates the value function
estimation minus the means absolute average coefficient is the output, which is
useful trick to achieve uniqueness of estimated optimal TR when resolution of
input response is low.
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Examples

##########################################################################
# Note: the preprocessing steps prior to calling est_quant_TwoStg_ipwe() #
# are wrapped up in IPWE_Qopt_DTR_IndCen(). #
# w_di_vec is the inverse probability weight for two stage experiments #
# We recommend users to use function IPWE_Qopt_DTR_IndCen() directly. #
# Below is a simple customized calculation of the weight that only works #
# for this example #
##########################################################################

library(survival)
# Simulate data
n=200
s_Diff_Time = 1
D <- simJLSDdata(n, case="a")

# give regime classes
regimeClass.stg1 <- as.formula(a0~x0)
regimeClass.stg2 <- as.formula(a1~x1)

# extract columns that matches each stage's treatment regime formula
p.data1 <- model.matrix(regimeClass.stg1, D)

# p.data2 would only contain observations with non-null value.
p.data2 <- model.matrix(regimeClass.stg2, D)

txVec1 <- D[, "a0"]
# get none-na second stage treatment levels in data
txVec2 <- D[, "a1"]
txVec2_na_omit <- txVec2[which(!is.na(txVec2))]

# Eligibility flag
ELG <- (D$censor_y > s_Diff_Time)

# Build weights
D$deltaC <- 1 - D$delta
survfit_all <- survfit(Surv(censor_y, event = deltaC)~1, data=D)
survest <- stepfun(survfit_all$time, c(1, survfit_all$surv))
D$ghat <- survest(D$censor_y)
g_s_Diff_Time <- survest(s_Diff_Time)
D$w_di_vec <- rep(-999, n)
for(i in 1:n){

if (!ELG[i]) {
D$w_di_vec[i] <- 0.5 * D$ghat[i]} else {

D$w_di_vec[i] <- 0.5* D$ghat[i] * 0.5
}

}

qhat <- est_quant_TwoStg_ipwe(n=n, beta=c(2.5,2.8),
sign_beta1.stg1 = FALSE, sign_beta1.stg2=FALSE,
txVec1=txVec1, txVec2_na_omit=txVec2_na_omit, s_Diff_Time=1,
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nvars.stg1=2, nvars.stg2=2,
p.data1=p.data1,
p.data2=p.data2,
censor_y=D$censor_y,
delta=D$delta,
ELG=ELG, w_di_vec=D$w_di_vec,
tau=0.3)

Gene_Mean_CenIPWE A low-level function for the generic optimization step in estimating
Mean-optimal treatment regime for censored data

Description

This function supports the IPWE_mean_IndCen function. It does the genetic algorithm based method
with inverse probability weighting for censored data. In the future, if more complicated applica-
tions/scenarios is sought after for mean optimality, users may create their own wrapper function
based on Gene_Mean_CenIPWE.

Usage

Gene_Mean_CenIPWE(data_aug, ph, p_level, regimeClass, Domains = NULL,
cluster = FALSE, s.tol = 1e-04, it.num = 8, pop.size = 3000)

Arguments

data_aug a data.frame of the observed data after preprocessing. It should include be aug-
mented with two new columns: ph for the enstimated propensity scores and
ghat for the estimated conditional survival probabilities.

ph propensity score estimates. For example, if the treatment is denoted by A, then
ph should be P(A=1|X)

p_level printing level

regimeClass a formula indicating the form of treatment regimes

Domains default is NULL. Otherwise, the object should be a nvars *2 matrix used as the
space of parameters, which will be supplied to rgenoud::genoud.

cluster default is FALSE. This can also be an object of the ’cluster’ class returned by
one of the makeCluster commands in the parallel package or a vector of machine
names so rgenoud::genoud can setup the cluster automatically.

s.tol tolerance level for the GA algorithm. This is input for parameter solution.tolerance
in function rgenoud::genoud.

it.num the maximum GA iteration number

pop.size an integer with the default set to be 3000. This is roughly the number individuals
for the first generation in the genetic algorithm (rgenoud::genoud).
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Examples

GenerateData <- function(n)
{

x1 <- runif(n, min=-0.5,max=0.5)
x2 <- runif(n, min=-0.5,max=0.5)
error <- rnorm(n, sd= 1)
ph <- rep(0.5,n)
a <- rbinom(n = n, size = 1, prob=ph)
c <- 1.5 + + runif(n = n, min=0, max=2)
cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
censor_y <- pmin(cmplt_y, c)
delta <- as.numeric(c > cmplt_y)
return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))

}
n <- 100
data <- GenerateData(n)

# preprocessing
data_aug <- data
data_aug$ph <- rep(mean(data$a), n)
data_aug$deltaC <- 1 - data_aug$delta
library(survival)
survfit_all <- survfit(Surv(censor_y, event = deltaC)~1, data=data_aug)
survest <- stepfun(survfit_all$time, c(1, survfit_all$surv))
data_aug$ghat <- survest(data_aug$censor_y)

# estimate the mean-optimal treatment regime
meanopt_fit <- Gene_Mean_CenIPWE(data=data_aug, ph = data_aug$ph, p_level=1, regimeClass=a~x1*x2)

Gene_Quantile_CenIPWE A low-level function for the generic optimization step in estimating
Quanilte-optimal treatment regime for censored data

Description

This function supports several user facing functions for Quantile-optimal treatment regime estima-
tion, namely

IPWE_Qopt_IndCen(), IPWE_Qopt_DTR_IndCen(), IPWE_Qopt_DepCen_trt(), and IPWE_Qopt_DepCen_general().

It implements the genetic algorithm based policy-search method with inverse probability weighting
for censored data, such that the estimator is cube root consistent under the assumption that the
propensity score model and the model for the survival distriution of the censoring time variable are
both correct.

Usage

Gene_Quantile_CenIPWE(data_aug, tau, p_level, regimeClass,
cluster = FALSE, s.tol = 1e-04, it.num = 8, pop.size = 5000,
Domains = NULL, sign_beta1 = NULL, Penalty.level = 0)
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Arguments

data_aug a data.frame of the observed data after preprocessing. It should include be aug-
mented with a new column: epsi for the composite weights.

tau a value between 0 and 1. This is the quantile of interest.

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug).

regimeClass a formula specifying the class of treatment regimes to search, e.g. if regimeClass
= a~x1+x2, and then this function will search the class of treatment regimes of
the form

d(x) = I (β0 + β1x1 + β2x2 > 0) .

Polynomial arguments are also supported.

cluster default is FALSE, meaning do not use parallel computing for the genetic algo-
rithm(GA).

s.tol tolerance level for the GA algorithm. This is input for parameter solution.tolerance
in function rgenoud::genoud.

it.num the maximum GA iteration number

pop.size an integer with the default set to be 3000. This is roughly the number individuals
for the first generation in the genetic algorithm (rgenoud::genoud).

Domains default is NULL. Otherwise, the object should be a nvars *2 matrix used as the
space of parameters, which will be supplied to rgenoud::genoud.

sign_beta1 logical. FALSE if the coefficient for the first continuous variable is fixed to be
negative one; TRUE if positive one.

Penalty.level the level that determines which objective function to use. Penalty.level =
0 indicates no regularization; Penalty.level = 1 indicates the value function
estimation minus the means absolute average coefficient is the output, which is
useful trick to achieve uniqueness of estimated optimal TR when resolution of
input response is low.

Examples

GenerateData <- function(n)
{

x1 <- runif(n, min=-0.5,max=0.5)
x2 <- runif(n, min=-0.5,max=0.5)
error <- rnorm(n, sd= 1)
ph <- rep(0.5,n)
a <- rbinom(n = n, size = 1, prob=ph)
c <- 1.5 + + runif(n = n, min=0, max=2)
cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
censor_y <- pmin(cmplt_y, c)
delta <- as.numeric(c > cmplt_y)
return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))

}
n <- 100
data <- GenerateData(n)
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# preprocessing
data_aug <- data
data_aug$ph <- rep(mean(data$a), n)
data_aug$deltaC <- 1 - data_aug$delta
library(survival)
survfit_all <- survfit(Surv(censor_y, event = deltaC)~1, data=data_aug)
survest <- stepfun(survfit_all$time, c(1, survfit_all$surv))
data_aug$ghat <- survest(data_aug$censor_y)
data_aug$epsi <- (data_aug$ph * data_aug$a + (1 - data_aug$ph) * (1 - data_aug$a)) * data_aug$ghat

# estimate the median-optimal treatment regime

quantopt_fit <- Gene_Quantile_CenIPWE(data_aug=data_aug,tau=0.5,
p_level=1, regimeClass=a~x1+x2^2,
sign_beta1=FALSE)

Gene_Quantile_CenIPWE_DTR

A low-level function for the generic optimization step in estimating
dynamic Quanilte-optimal treatment regime for censored data

Description

This function supports wrapper functions for two stage Quantile-optimal treatment regime estima-
tion, namely IPWE_Qopt_DTR_IndCen.

Usage

Gene_Quantile_CenIPWE_DTR(data, max, tau, regimeClass.stg1,
regimeClass.stg2, s_Diff_Time, txVec1, txVec2, nvars.stg1, nvars.stg2,
p.data1, p.data2, sign_beta1.stg1, sign_beta1.stg2, p_level, cluster,
s.tol, it.num, pop.size, Domains1 = NULL, Domains2 = NULL,
Penalty.level = 0)

Arguments

data raw data.frame

max Maximization (TRUE) or Minimizing (FALSE). Determines if genoud mini-
mizes or maximizes the objective function.

tau a quantile level of interest
regimeClass.stg1

the class of treatment regimes for stage one
regimeClass.stg2

the class of treatment regimes for stage two
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s_Diff_Time the length of time between the first stage treatment and the second stage treat-
ment

txVec1 the vector of treatment received at the first stage

txVec2 the vector of treatment received at the second stage, it expects entries to be NA
for patients who did not receive the second treatment

nvars.stg1 number of coeffients for the decision rule of the first stage

nvars.stg2 number of coeffients for the decision rule of the second stage

p.data1 the design matrix to be used for decision in stage one

p.data2 the design matrix to be used for decision in stage two
sign_beta1.stg1

Is sign of the coefficient for the first non-intercept variable for the first stage
known? Default is NULL, meaning user does not have contraint on the sign;
FALSE if the coefficient for the first continuous variable is fixed to be -1; TRUE
if 1. We can make the search space discrete because we employ |β1| = 1 scale
normalizaion.

sign_beta1.stg2

Default is NULL. Similar to sign_beta1.stg1.

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug).

cluster default is FALSE, meaning do not use parallel computing for the genetic algo-
rithm(GA).

s.tol tolerance level for the GA algorithm. This is input for parameter solution.tolerance
in function rgenoud::genoud.

it.num the maximum GA iteration number

pop.size an integer with the default set to be 3000. This is roughly the number individuals
for the first generation in the genetic algorithm (rgenoud::genoud).

Domains1 This is optional. If not NULL, please provide the two-column matrix for the
searching range of coeffients in stage one. The coefficient taking value of posi-
tive/negative one should not be included.

Domains2 This is optional. If not NULL, please provide the two-column matrix for the
searching range of coeffients in stage two. The coefficient taking value of posi-
tive/negative one should not be included.

Penalty.level the level that determines which objective function to use. Penalty.level =
0 indicates no regularization; Penalty.level = 1 indicates the value function
estimation minus the means absolute average coefficient is the output, which is
useful trick to achieve uniqueness of estimated optimal TR when resolution of
input response is low.

Examples

library(survival)
# Simulate data
n=200
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s_Diff_Time = 1
D <- simJLSDdata(n, case="a")

# give regime classes
regimeClass.stg1 <- as.formula(a0~x0)
regimeClass.stg2 <- as.formula(a1~x1)

# extract columns that matches each stage's treatment regime formula
p.data1 <- model.matrix(regimeClass.stg1, D)

# p.data2 would only contain observations with non-null value.
p.data2 <- model.matrix(regimeClass.stg2, D)

txVec1 <- D[, "a0"]
txVec2 <- D[, "a1"]

# Eligibility flag
ELG <- (D$censor_y > s_Diff_Time)

# Build weights
D$deltaC <- 1 - D$delta
survfit_all <- survfit(Surv(censor_y, event = deltaC)~1, data=D)
survest <- stepfun(survfit_all$time, c(1, survfit_all$surv))
D$ghat <- survest(D$censor_y)
g_s_Diff_Time <- survest(s_Diff_Time)
D$w_di_vec <- rep(-999, n)
for(i in 1:n){

if (!ELG[i]) {
D$w_di_vec[i] <- 0.5 * D$ghat[i]} else {

D$w_di_vec[i] <- 0.5* D$ghat[i] * 0.5
}

}

fit1 <- Gene_Quantile_CenIPWE_DTR(data=D, max=TRUE,
tau=0.3,
regimeClass.stg1 = regimeClass.stg1,
regimeClass.stg2 = regimeClass.stg2,
s_Diff_Time = s_Diff_Time,
txVec1 = txVec1,
txVec2 = txVec2,
nvars.stg1=2,
nvars.stg2=2,
p.data1=p.data1,
p.data2=p.data2,
sign_beta1.stg1=FALSE,
sign_beta1.stg2=NULL,
p_level=1,
cluster=FALSE,
s.tol=1e-6,
it.num=5,
pop.size=6000,
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Domains1 = NULL,
Domains2 = NULL,
Penalty.level = 0
)

IPWE_mean_IndCen Estimate the mean-optimal treatment regime for data with indepen-
dently censored response

Description

This function estimates the Mean-optimal Treatment Regime with censored response. The imple-
mented function only works for scenarios in which treatment is binary and the censoring time is
independent of baseline covariates, treatment group and all potential survival times.

Usage

IPWE_mean_IndCen(data, regimeClass, moPropen = "BinaryRandom",
Domains = NULL, cluster = FALSE, p_level = 1, s.tol = 1e-04,
it.num = 8, pop.size = 3000)

Arguments

data a data.frame, containing variables in the moPropen and RegimeClass and also
the response variables, namely censor_y as the censored response, and delta
as the censoring indicator.

regimeClass a formula specifying the class of treatment regimes to search, e.g. if regimeClass
= a~x1+x2, and then this function will search the class of treatment regimes of
the form

d(x) = I (β0 + β1x1 + β2x2 > 0) .

Polynomial arguments are also supported.

moPropen The propensity score model for the probability of receiving treatment level 1.
When moPropen equals the string "BinaryRandom", the proportion of observa-
tions receiving treatment level 1 in the sample will be plugged in as an estimate
of the propensity. Otherwise, this argument should be a formula/string, based
on which this function will fit a logistic regression on the treatment level. e.g.
a1~x1.

Domains default is NULL. Otherwise, the object should be a nvars *2 matrix used as the
space of parameters, which will be supplied to rgenoud::genoud. nvars is the
total number of parameters.

cluster default is FALSE, meaning do not use parallel computing for the genetic algo-
rithm(GA).
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p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug).

s.tol tolerance level for the GA algorithm. This is input for parameter solution.tolerance
in function rgenoud::genoud.

it.num the maximum GA iteration number

pop.size an integer with the default set to be 3000. This is roughly the number individuals
for the first generation in the genetic algorithm (rgenoud::genoud).

Value

This function returns an object with 6 objects:

• coefficients the estimated parameter indexing the mean-optimal treatment regime. Since
we focus the space of linear treatment regimes, the estimated decision rule cannot be uniquely
identified without scale normalized. In this package, we normalized by |β1| = 1, which was
proposed in Horowitz (Horowitz 1992).

• hatQ the estimated optimal marginal mean response

• moPropen log of the input argument of moPropen

• regimeClass log of the input argument of regimeClass

• data_aug Training data with additional columns used in the algorithm. Note that data_aug
is used for plotting of survival function of the censoring time

• survfitCensorTime the estimated survival function of the censoring time

References

Zhou Y (2018). Quantile-Optimal Treatment Regimes with Censored Data. Ph.D. thesis, University
of Minnesota.

Horowitz JL (1992). “A smoothed maximum score estimator for the binary response model.”
Econometrica: journal of the Econometric Society, 505–531.

Examples

GenerateData <- function(n)
{

x1 <- runif(n, min=-0.5,max=0.5)
x2 <- runif(n, min=-0.5,max=0.5)
error <- rnorm(n, sd= 1)
ph <- exp(-0.5+1*(x1+x2))/(1+exp(-0.5 + 1*(x1+x2)))
a <- rbinom(n = n, size = 1, prob=ph)
c <- 1.5 + + runif(n = n, min=0, max=2)
cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
censor_y <- pmin(cmplt_y, c)
delta <- as.numeric(c > cmplt_y)
return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))

}
n <- 400
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D <- GenerateData(n)
fit1 <- IPWE_mean_IndCen(data = D, regimeClass = a~x1+x2)

IPWE_Qopt_DepCen_general

Estimate Quantile-optimal Treatment Regime for covariates-
dependent random censoring data

Description

This function estimates the Quantile-optimal Treatment Regime for a given quantile level of interest
under the assumption that the distribution of censoring time is independent of the set of potential
survival times given a set of baseline covariates and treatment actually received.

More specifically, we do stratification by treatment first and then used kernel smoothing to estimate
local survival function of censoring time for each treatment group.

Usage

IPWE_Qopt_DepCen_general(data, regimeClass, tau, Domains = NULL, bw,
moPropen = "BinaryRandom", DepCens = NULL, UseTrueG = FALSE,
trueG_value = NULL, cluster = FALSE, p_level = 1, s.tol = 1e-05,
it.num = 8, pop.size = 5000)

Arguments

data raw data.frame
regimeClass the class of treatment regimes. e.g., ’txname ~ x1+x2’.
tau the quantile of interest
Domains default is NULL.
bw the bandwidth of local KM model (e.g. see Wang-wang 2008)
moPropen an optional string for the working model of treatment assignment
DepCens an optional vector of baseline variable names that the censoring variable depends

on. Note that the treatment variable is always treated as dependent with the
censoring time. If unspecified (DepCens=NULL), then all variables on the right
side of regimeClass are used for DepCens

UseTrueG logical. Whether the true survival probability of each patient is provided.
trueG_value default is NULL. IF UseTrueG=FALSE, trueG_value should be NULL.
cluster default is FALSE. This can also be an object of the ’cluster’ class returned by

one of the makeCluster commands in the parallel package or a vector of machine
names so rgenoud::genoud can setup the cluster automatically.

p_level print level
s.tol tolerance level
it.num the maximum iteration number
pop.size the initial population size
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Examples

GenerateData <- function(n)
{

x1 <- runif(n, min=-0.5,max=0.5)
x2 <- runif(n, min=-0.5,max=0.5)
error <- rnorm(n, sd= 1)
ph <- exp(-0.5+1*(x1+x2))/(1+exp(-0.5 + 1*(x1+x2)))
a <- rbinom(n = n, size = 1, prob=ph)
c <- 1.5 + + runif(n = n, min=0, max=2)
cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
censor_y <- pmin(cmplt_y, c)
delta <- as.numeric(c > cmplt_y)
return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))

}

n <- 400
data <- GenerateData(n)
fit1 <- IPWE_Qopt_DepCen_general(data = data, regimeClass = a~x1+x2, moPropen = a~x1+x2,

tau = 0.2, bw = 20/n,
pop.size=3000, it.num = 3)

IPWE_Qopt_DepCen_trt Estimate the Quantile-opt Treatment Regime under the assumption
that the censoring time’s distribution only depends on treatment level

Description

Here we assume the censoring variable is independent of covariates and potential outcomes given
the treatment assignment. For example, if evidence shows that patients at certain treatment level are
prone to experience censoring earlier.

Usage

IPWE_Qopt_DepCen_trt(data, regimeClass, tau, moPropen = "BinaryRandom",
cluster = FALSE, p_level = 1, s.tol = 1e-04, it.num = 8,
pop.size = 6000)

Arguments

data raw data.frame
regimeClass a formula specifying the class of treatment regimes to search, e.g. if regimeClass

= a~x1+x2, and then this function will search the class of treatment regimes of
the form

d(x) = I (β0 + β1x1 + β2x2 > 0) .

Polynomial arguments are also supported.
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tau the quantile of interest

moPropen The propensity score model for the probability of receiving treatment level 1.
When moPropen equals the string "BinaryRandom", the proportion of observa-
tions receiving treatment level 1 in the sample will be plugged in as an estimate
of the propensity. Otherwise, this argument should be a formula/string, based
on which this function will fit a logistic regression on the treatment level. e.g.
a1~x1.

cluster default is FALSE, meaning do not use parallel computing for the genetic algo-
rithm(GA).

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug).

s.tol tolerance level for the GA algorithm. This is input for parameter solution.tolerance
in function rgenoud::genoud.

it.num the maximum GA iteration number

pop.size an integer with the default set to be 3000. This is roughly the number individuals
for the first generation in the genetic algorithm (rgenoud::genoud).

Details

data is a dataframe that contains: a(observed treatment assignment), censor_y, and delta

Examples

GenerateData_DepCen_trt <- function(n)
{

x1 <- runif(n, min=-0.5,max=0.5)
x2 <- runif(n, min=-0.5,max=0.5)
error <- rnorm(n, sd= 1)
ph <- exp(-0.5+1*(x1+x2))/(1+exp(-0.5 + 1*(x1+x2)))
a <- rbinom(n = n, size = 1, prob=ph)
c <- 1 + 1*a + runif(n = n, min=0, max=2)
# distribution of `c' depends on treatment level `a'
cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
censor_y <- pmin(cmplt_y, c)
delta <- as.numeric(c > cmplt_y)
return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))

}

n <- 400
data <- GenerateData_DepCen_trt(n)
fit1 <- IPWE_Qopt_DepCen_trt(data = data, regimeClass = a~x1+x2, moPropen = a~x1+x2,

tau = 0.2)



20 IPWE_Qopt_DTR_IndCen

IPWE_Qopt_DTR_IndCen Function to estimate the two-stage quantile-optimal dynamic treat-
ment regime for censored data: the independent censoring Case

Description

This function inplements the estimator of two-stage quantile-optimal treatment regime with cen-
sored outcome by inverse probability of weighting, which is proposed in Chapter 3 of (Zhou 2018).
We assume the censoring is independent of everything else, including the treatment covariates, and
potential outcomes.

Specifically, we do grid search on the sign of the coefficient for the first non-intercept variables in
stage 1 and stage 2 and apply genetic algorithm on the remaining coeffients simultaneously. So if
stage one has d1 covariates excluding the intercept, stage two has d2, the resulting coefficient has
dimension d1+d2+2.

Usage

IPWE_Qopt_DTR_IndCen(data, tau, regimeClass.stg1, regimeClass.stg2,
s_Diff_Time = 1, moPropen1 = "BinaryRandom",
moPropen2 = "BinaryRandom", sign_beta1.stg1 = NULL,
sign_beta1.stg2 = NULL, Penalty.level = 0, s.tol = 1e-06,
it.num = 4, max = TRUE, Domains1 = NULL, Domains2 = NULL,
cluster = FALSE, p_level = 1, pop.size = 10000)

Arguments

data a data.frame, containing variables in the moPropen and RegimeClass and also
the response variables, namely censor_y as the censored response, and delta
as the censoring indicator.

tau a value between 0 and 1. This is the quantile of interest.
regimeClass.stg1

a formula specifying the class of treatment regimes for the first stage. For de-
tails of the general formulation of a linear treatment regime see regimeClass in
IPWE_Qopt_IndCen.

regimeClass.stg2

a formula specifying the class of treatment regimes for the second stage
s_Diff_Time Numeric. The fixed length of time between the first stage treatment and the

second stage treatment
moPropen1 the first stage propensity score model. Default is "BinaryRandom".
moPropen2 the second stage propensity score model. Default is "BinaryRandom".
sign_beta1.stg1

Is sign of the coefficient for the first non-intercept variable for the first stage
known? Default is NULL, meaning user does not have contraint on the sign;
FALSE if the coefficient for the first continuous variable is fixed to be -1; TRUE
if 1. We can make the search space discrete because we employ |β1| = 1 scale
normalizaion.
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sign_beta1.stg2

Default is NULL. Similar to sign_beta1.stg1.

Penalty.level 0: stop if the marginal quantiles cannot be further optimized; 1: continue the
search among treatment regimes with with same value for the TR with the small-
est intended proportion of treatment.

s.tol tolerance level for the GA algorithm. This is input for parameter solution.tolerance
in function rgenoud::genoud.

it.num the maximum GA iteration number

max logical. TRUE if the goal is maximization of the quantile. FALSE is the goal is
minimization of the quantile.

Domains1 This is optional. If not NULL, please provide the two-column matrix for the
searching range of coeffients in stage one. The coefficient taking value of posi-
tive/negative one should not be included.

Domains2 This is optional. If not NULL, please provide the two-column matrix for the
searching range of coeffients in stage two. The coefficient taking value of posi-
tive/negative one should not be included.

cluster default is FALSE, meaning do not use parallel computing for the genetic algo-
rithm(GA).

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug).

pop.size an integer with the default set to be 3000. This is roughly the number individuals
for the first generation in the genetic algorithm (rgenoud::genoud).

Details

In our setting, if a subject was censored or had experienced the event of interest before s_Diff_Time
units of time had elapsed after the first stage of treatment, s/he would not be eligible to receive a
second stage treatment.

Author(s)

Yu Zhou, <zhou0269@umn.edu>

References

Zhou Y (2018). Quantile-Optimal Treatment Regimes with Censored Data. Ph.D. thesis, University
of Minnesota.

Examples

D <- simJLSDdata(400, case="a")
fit_2stage <-IPWE_Qopt_DTR_IndCen(data=D, tau= 0.3, regimeClass.stg1 = a0~x0,

regimeClass.stg2 = a1~x1,
sign_beta1.stg1 = FALSE,
sign_beta1.stg2 = FALSE)
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IPWE_Qopt_IndCen Function to estimate the quantile-optimal treatment regime: the inde-
pendent censoring Case

Description

This function implements the estimation method proposed in Chapter 2 of (Zhou 2018). It estimates
the quantile-optimal treatment regime for a given quantile level of interest from a single-stage clin-
ical randomized experiment or a single-stage observational study under the independent censoring
assumption. In other words, we estimate the parameters indexing the quantile-optimal treatment
regime.

Our assumption of independent censoring means the distribution of the censoring time is the same
conditional on baseline covariates, treatment group and the two potential survival times.

Usage

IPWE_Qopt_IndCen(data, regimeClass, tau, moPropen = "BinaryRandom",
Domains = NULL, cluster = FALSE, p_level = 1, s.tol = 1e-04,
it.num = 8, pop.size = 6000, sign_beta1 = NULL,
Penalty.level = 0)

Arguments

data a data.frame, containing variables in the moPropen and RegimeClass and also
the response variables, namely censor_y as the censored response, and delta
as the censoring indicator.

regimeClass a formula specifying the class of treatment regimes to search, e.g. if regimeClass
= a~x1+x2, and then this function will search the class of treatment regimes of
the form

d(x) = I (β0 + β1x1 + β2x2 > 0) .

Polynomial arguments are also supported.

tau a value between 0 and 1. This is the quantile of interest.

moPropen The propensity score model for the probability of receiving treatment level 1.
When moPropen equals the string "BinaryRandom", the proportion of observa-
tions receiving treatment level 1 in the sample will be plugged in as an estimate
of the propensity. Otherwise, this argument should be a formula/string, based
on which this function will fit a logistic regression on the treatment level. e.g.
a1~x1.

Domains default is NULL. Otherwise, the object should be a nvars *2 matrix used as the
space of parameters, which will be supplied to rgenoud::genoud.
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cluster default is FALSE, meaning do not use parallel computing for the genetic algo-
rithm(GA).

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic
function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (de-
bug).

s.tol tolerance level for the GA algorithm. This is input for parameter solution.tolerance
in function rgenoud::genoud.

it.num the maximum GA iteration number

pop.size an integer with the default set to be 3000. This is roughly the number individuals
for the first generation in the genetic algorithm (rgenoud::genoud).

sign_beta1 logical. Default is NULL. FALSE if the coefficient for the first continuous vari-
able is fixed to be negative one; TRUE if positive one.

Penalty.level 0: stop if the marginal quantiles cannot be further optimized; 1: continue the
search among treatment regimes with with same value for the TR with the small-
est intended proportion of treatment.

Details

The input argument data is the dataframe that contains:

1. a observed treatment assignment

2. censor_y the censored response variable

3. delta the censoring indicator

The naming of these three columns should be strict.

Note that this function currently only works for scenarios in which treatment is binary.

References

Zhou Y (2018). Quantile-Optimal Treatment Regimes with Censored Data. Ph.D. thesis, University
of Minnesota.

Horowitz JL (1992). “A smoothed maximum score estimator for the binary response model.”
Econometrica: journal of the Econometric Society, 505–531.

Examples

GenerateData <- function(n)
{

x1 <- runif(n, min=-0.5,max=0.5)
x2 <- runif(n, min=-0.5,max=0.5)
error <- rnorm(n, sd= 1)
ph <- exp(-0.5+1*(x1+x2))/(1+exp(-0.5 + 1*(x1+x2)))
a <- rbinom(n = n, size = 1, prob=ph)
c <- 1 + 1*a + runif(n = n, min=0, max=2)
cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
censor_y <- pmin(cmplt_y, c)
delta <- as.numeric(c > cmplt_y)
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return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))
}
n <- 400

data <- GenerateData(n)
fit1 <- IPWE_Qopt_IndCen(data = data, regimeClass = a~x1+x2, tau=0.25)

# We can used the returned model to visualize the Kaplan-meier
# estimate of survival function of the censoring time variable,
# justified by the independent censoring assumption.
library(survminer)
ggsurvplot(fit1$survfitCensorTime, data=fit1$data_aug, risk.table = TRUE)

LocalKM Kernel-based Local Kaplan-Meier Estimator

Description

This is the local KM estimator customized for this library to run in batch mode. It returns the
estimated conditional survival probabilities given a user specified set of covariate names that the
survival time depends on, a.k.a F (T > y0 | x0).

More specifically, for uncensored data points, we return (1 - tauhat_func()) . If the observed
data point is censored, then this function returns value -1 as a flag meaning we cannot .

Usage

LocalKM(D, bw, NamesCov)

Arguments

D a data.frame with column censor_y, column delta, and additional covaraites.

bw the bandwidth parameter

NamesCov the vector of column names in data.frame D such that the survival time depends
on.

Value

A vector of estimated conditional survival probability evaluated at the observed actual survival time
on the same individual
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Examples

GenerateData <- function(n)
{

x1 <- runif(n, min=-0.5,max=0.5)
x2 <- runif(n, min=-0.5,max=0.5)
error <- rnorm(n, sd= 1)
ph <- exp(-0.5+1*(x1+x2))/(1+exp(-0.5 + 1*(x1+x2)))
a <- rbinom(n = n, size = 1, prob=ph)
c <- 1.5 + + runif(n = n, min=0, max=2)
cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
censor_y <- pmin(cmplt_y, c)
delta <- as.numeric(c > cmplt_y)
return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))

}
n <- 20
D <- GenerateData(n)
mean_hat <- LocalKM(D, 5, c("x1","x2"))

simJLSDdata Function to generate simulation data from a sequentially randomized
experiment designed in (Jiang et al. 2017)

Description

Function to generate simulation data from a sequentially randomized experiment designed in (Jiang
et al. 2017)

Usage

simJLSDdata(n, case = "a", s_Diff_Time = 1, C_max = 5,
Censored = TRUE, fix_x0_value = NULL)

Arguments

n sample size

case string. One of "a", "b", "c", corresponding to three models.

s_Diff_Time Numeric. Default is 1. This is the length of time between two stages of treatment

C_max Numeric. Default is 5. This the upper bound of the uniform distribution of the
censoring time variable. Changing this value shifts the overall censoring rate
easily.

Censored Boolean. Default is TRUE. Whether the data has censoring or not. If TRUE, all
survival time would not be censored at all in the returned data.

fix_x0_value Numeric. Default is Null. If supplied, it will generate simulated data with a
fixed value, fix_x0_value, of the univariate baseline covarate.
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Details

This generative model is proposed in (Jiang et al. 2017), Section 5, the second example. It uniformly
defined three sets of conditional distributions of the survival times given the observable covariates
at each stage within the same framework.

All three models satisfy the independent censoring assumption.

Value

This function returns a data.frame with simulated subject trajectories.

• x0 the baseline covariate, always observable at relative time point 0;

• a0 the observed first-stage treatment level at relative time point 0;

• x1 an updated covariate observable to the relative time point s_Diff_Time, when the a second
stage treatment is scheduled

• a1 the observed second-stage treatment level at relative time point s_Diff_Time.

References

Jiang R, Lu W, Song R, Davidian M (2017). “On estimation of optimal treatment regimes for max-
imizing t-year survival probability.” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(4), 1165–1185.

Examples

dataA <- simJLSDdata(500,case="a")
dataB <- simJLSDdata(500,case="b")
dataC <- simJLSDdata(500,case="c")

tauhat_func Kernel-based Local Kaplan-Meier Estimator for the Conditional
Probability of the Survival Time

Description

This function estimates the value of

F (T <= y0 | x0),

the conditional cumulative distribution function of a survival time T given covaraites vector x0 at
value y0. This estimator is described in detail in (Wang and Wang 2009).

Usage

tauhat_func(y0, x0, z, x, delta, bw)



tauhat_func 27

Arguments

y0 the vector of censored outcome of a single observation

x0 the vector of given covariate of a single observation

z observed vector of response variable from observed data

x the observed matrix of covariates, the dimension is # of observations by number
of covariates. Note that the vector of ones should NOT be included in x.

delta the vector of censoring indicators

bw the scalar bandwidth parameter in kernel

Details

For cases with multivariate covariates, we adopted a product kernel. For example, in the bivariate
case we use

K(x1, x2) = K1(x1)K2(x2),

where K1 and K2 are both biquadratickernel functions.

References

Wang HJ, Wang L (2009). “Locally weighted censored quantile regression.” Journal of the Ameri-
can Statistical Association, 104(487), 1117–1128.

Examples

tauhat_func(y0=10, x0=c(2,3), z=c(10, 12, 11),
x=matrix(c(1,1,2,2,3,3), nrow=3, byrow=TRUE),
delta=c(1,1,0), bw=10)
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