Package 'Umoments'

October 12, 2022
Type PackageTitle Unbiased Central Moment Estimates
Version 0.1.1
Maintainer Inna Gerlovina innager@berkeley.edu
Description Calculates one-sample unbiased central moment estimates and
two-sample pooled estimates up to 6th order, including estimates ofpowers and products of central moments. Provides the machinery forobtaining unbiased central moment estimators beyond 6th order by generatingexpressions for expectations of raw sample moments and their powers andproducts.
Gerlovina and Hubbard (2019) doi:10.1080/25742558.2019.1701917.
Depends R (>= 3.4.0)
Imports stats, utils
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no
Author Inna Gerlovina [aut, cre],Alan Hubbard [aut]
Repository CRAN
Date/Publication 2020-02-12 10:30:06 UTC
R topics documented:
one_combination 2
uM 3
uM2 4
uM2M3 5
uM2M3pool 6
uM2M4 7
uM2M4pool 8
uM2pool 9
uM2pow2 10
uM2pow2pool 10
uM2pow3 11
uM2pow3pool 12
uM3 13
uM3pool 14
uM3pow2 15
uM3pow2pool 16
uM4 17
uM4pool 18
uM5 19
uM5pool 20
uM6 21
uM6pool 22
uMpool 23
Index 25
one_combination Generate symbolic expression for expectation

Description

Generate a string with symbolic expression for expectation of powers and products of non-central (raw) sample moments of an arbitrary order.

Usage

one_combination(powvect, smpsize = "n")

Arguments

powvect vector of non-negative integers representing exponents j_{1}, \ldots, j_{m} of non-central moments in expectation (see "Details"). The position (index) of an element of this vector indicates a corresponding moment, e.g. for $E\left(\bar{X}^{5} \overline{X^{4}}\right)$, powvect $=c(5,0,0,1)$. Thus the vector will have m elements if m 'th is the highest moment.
smpsize symbol to be used for sample size. Defaults to "n".

Details

For a zero-mean random variable X and a sample X_{1}, \ldots, X_{n}, find $E\left(\bar{X}^{j_{1}}{\overline{X^{2}}}^{j_{2}}{\overline{X^{3}}}^{j_{3}} \cdots{\overline{X^{m}}}^{j_{m}}\right)$, where overline $X^{k}=1 / n \sum_{i=1}^{n} X_{i}^{k}$ is a k 'th non-central sample moment. The expression is given in terms of sample size and true moments μ_{k} of X. These expectations can subsequently be used for generating unbiased central moment estimators of an arbitrary order, Edgeworth expansions, and possibly solving other higher-order problems.

Value

A string representing a symbolic expression for further processing using computer algebra (e.g. with Sage or SymPy), for calculating numeric values, or to be rendered with Latex.

Examples

```
one_combination(c(5, 0, 2, 1))
```


Description

Calculate unbiased estimates of central moments and their powers and products up to specified order.

Usage

uM (smp, order)

Arguments

smp
sample.
order
highest order of the estimates to calclulate. Estimates of lower orders will be included.

Details

Unbiased estimates up to the 6th order can be calculated. Second and third orders contain estimates of the variance and third central moment, fourth order includes estimates of fourth moment and squared variance (μ_{2}^{2}), fifth order - of fifth moment and a product of second and third moments ($\mu_{2} \mu_{3}$), sixth order - of sixth moment, a product of second and fourth moments $\left(\mu_{2} \mu_{4}\right)$, squared third moment $\left(\mu_{3}^{2}\right)$, and cubed variance $\left(\mu_{2}^{3}\right)$.

Value

A named vector of estimates of central moments and their powers and products up to order. The highest order available is 6th. The names of the elements are "M2", "M3", "M4", "M5", "M6" for corresponding central moments, "M2M3", "M2M4" for products of the moments (second and third, second and fourth), and "M2pow2", "M2pow3", "M3pow2" for powers of the moments - corresponding to estimates of squared variance, cubed variance, and squared third moment.

References

Gerlovina, I. and Hubbard, A.E. (2019). Computer algebra and algorithms for unbiased moment estimation of arbitrary order. Cogent Mathematics \& Statistics, 6(1).

See Also

uMpool for two-sample pooled estimates.

Examples

```
smp <- rgamma(10, shape = 3)
uM(smp, 6)
```

uM2

Unbiased central moment estimates

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM2 (m2, n)

Arguments

$\mathrm{m} 2 \quad$ naive biased variance estimate $m_{2}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{2}\right.$ for a vector X.
$\mathrm{n} \quad$ sample size.

Value

Unbiased variance estimate.

See Also

Other unbiased estimates (one-sample): uM2M3, uM2M4, uM2pow2, uM2pow3, uM3pow2, uM3, uM4, uM5, uM6

Examples

$\mathrm{n}<-10$
smp <- rgamma(n, shape = 3)
$\mathrm{m}<-$ mean (smp)
$m<-c\left(m, \operatorname{mean}\left((s m p-m[1])^{\wedge} 2\right)\right)$
uM2 (m[2], n) - $\operatorname{var}(\mathrm{smp})$

UM2M3 Unbiased central moment estimates

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM2M3(m2, m3, m5, n)

Arguments

m2 naive biased variance estimate $m_{2}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{2}\right.$ for a vector X .
m3 naive biased third central moment estimate $m_{3}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{3}\right.$ for a vector X.
m5 naive biased fifth central moment estimate $m_{5}=\sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{5}\right.$ for a vector X.
$\mathrm{n} \quad$ sample size.

Value

Unbiased estimate of a product of second and third central moments $\mu_{2} \mu_{3}$, where μ_{2} and μ_{3} are second and third central moments respectively.

See Also

Other unbiased estimates (one-sample): uM2M4, uM2pow2, uM2pow3, uM2, uM3pow2, uM3, uM4, uM5, uM6

Examples

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:5) {
    m <- c(m, mean((smp - m[1])^j))
}
uM2M3(m[2], m[3], m[5], n)
```


Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM2M3pool(m2, m3, m5, n_x, n_y)

Arguments

m2
naive biased variance estimate $m_{2}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\right.\right.\right.$ $\bar{Y})^{2}$ for vectors X and Y .
m3 naive biased third central moment estimate $m_{3}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{3}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{3}\right.$ for vectors X and Y .
m5 naive biased fifth central moment estimate $m_{5}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{5}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{5}\right.$ for vectors X and Y .
$\mathrm{n}_{-} \mathrm{x} \quad$ number of observations in the first group.
$n_{-} y \quad$ number of observations in the second group.

Value

Pooled estimate of a product of second and third central moments $\mu_{2} \mu_{3}$, where μ_{2} and μ_{3} are second and third central moments respectively.

See Also

Other pooled estimates (two-sample): uM2M4pool, uM2pool, uM2pow2pool, uM2pow3pool, uM3pool, uM3pow2pool, uM4pool, uM5pool, uM6pool

Examples

```
\(n x<-10\)
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean (smpx)
my <- mean(smpy)
m <- numeric(5)
for (j in 2:5) \{
    \(m[j]<-\) mean \(\left(c\left((s m p x-m x)^{\wedge} j,(s m p y-m y)^{\wedge} j\right)\right)\)
\}
uM2M3pool(m[2], m[3], m[5], nx, ny)
```

```
uM2M4 Unbiased central moment estimates
```


Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM2M4 (m2, m3, m4, m6, n)

Arguments

m2 naive biased variance estimate $m_{2}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{2}\right.$ for a vector X .
m3 naive biased third central moment estimate $m_{3}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{3}\right.$ for a vector X.
$\mathrm{m} 4 \quad$ naive biased fourth central moment estimate $m_{4}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{4}\right.$ for a vector X.
m6 naive biased sixth central moment estimate $m_{6}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{6}\right.$ for a vector X .
n sample size.

Value

Unbiased estimate of a product of second and fourth central moments $\mu_{2} \mu_{4}$, where μ_{2} and μ_{4} are second and fourth central moments respectively.

See Also

Other unbiased estimates (one-sample): uM2M3, uM2pow2, uM2pow3, uM2, uM3pow2, uM3, uM4, uM5, uM6

Examples

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:6) {
    m <- c(m, mean((smp - m[1])^j))
}
uM2M4(m[2], m[3], m[4], m[6], n)
```

```
uM2M4pool Pooled central moment estimates - two-sample
```


Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM2M4pool(m2, m3, m4, m6, n_x, n_y)

Arguments

m2
m3 naive biased third central moment estimate $m_{3}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{3}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{3}\right.$ for vectors X and Y .
m4 naive biased fourth central moment estimate $m_{4}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{4}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{4}\right.$ for vectors X and Y .
m6 naive biased sixth central moment estimate $m_{6}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{6}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{6}\right.$ for vectors X and Y .
$\mathrm{n}_{\mathrm{Z}} \mathrm{x} \quad$ number of observations in the first group.
$n_{-} y \quad$ number of observations in the second group.

Value

Pooled estimate of a product of second and fourth central moments $\mu_{2} \mu_{4}$, where μ_{2} and μ_{4} are second and fourth central moments respectively.

See Also

Other pooled estimates (two-sample): uM2M3pool, uM2pool, uM2pow2pool, uM2pow3pool, uM3pool, uM3pow2pool, uM4pool, uM5pool, uM6pool

Examples

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(6)
for (j in 2:6) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM2M4pool(m[2], m[3], m[4], m[6], nx, ny)
```

uM2pool
Pooled central moment estimates - two-sample

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM2pool(m2, n_x, n_y)

Arguments

m2 naive biased variance estimate $m_{2}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\right.\right.\right.$ $\bar{Y})^{2}$ for vectors X and Y .
$\mathrm{n} _\mathrm{x} \quad$ number of observations in the first group.
n_y number of observations in the second group.

Value

Pooled variance estimate.

See Also

Other pooled estimates (two-sample): uM2M3pool, uM2M4pool, uM2pow2pool, uM2pow3pool, uM3pool, uM3pow2pool, uM4pool, uM5pool, uM6pool

Examples

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
m2 <- mean(c((smpx - mean(smpx))^2, (smpy - mean(smpy))^2))
uM2pool(m2, nx, ny)
```

uM2pow2 Unbiased central moment estimates

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM2pow2(m2, m4, n)

Arguments

m2
m4
$\mathrm{n} \quad$ sample size.

Value

Unbiased estimate of squared variance μ_{2}^{2}, where μ_{2} is a variance.

See Also

Other unbiased estimates (one-sample): uM2M3, uM2M4, uM2pow3, uM2, uM3pow2, uM3, uM4, uM5, uM6

Examples

n <- 10
smp <- rgamma $(n$, shape $=3$)
m <- mean(smp)
for (j in 2:4) \{
$m<-c\left(m, \operatorname{mean}\left((s m p-m[1])^{\wedge} j\right)\right)$
\}
uM2pow2 (m[2], m[4], n)
uM2pow2pool
Pooled central moment estimates - two-sample

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM2pow2pool(m2, m4, n_x, n_y)

Arguments

m2
naive biased variance estimate $m_{2}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\right.\right.\right.$ $\bar{Y})^{2}$ for vectors X and Y.
$\mathrm{m} 4 \quad$ naive biased fourth central moment estimate $m_{4}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{4}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{4}\right.$ for vectors X and Y.
$n_{-} \quad$ number of observations in the first group.
$\mathrm{n}_{-} \mathrm{y}$ number of observations in the second group.

Value

Pooled estimate of squared variance μ_{2}^{2}, where μ_{2} is a variance.

See Also

Other pooled estimates (two-sample): uM2M3pool, uM2M4pool, uM2pool, uM2pow3pool, uM3pool, uM3pow2pool, uM4pool, uM5pool, uM6pool

Examples

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(4)
for (j in 2:4) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM2pow2pool(m[2], m[4], nx, ny)
```

uM2pow3

Unbiased central moment estimates

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM2pow3 (m2, m3, m4, m6, n)

Arguments

m2
m3
m4
m6
n
naive biased variance estimate $m_{2}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{2}\right.$ for a vector X .
3 naive biased third central moment estimate $m_{3}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{3}\right.$ for a vector X.
naive biased fourth central moment estimate $m_{4}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{4}\right.$ for a vector X .
naive biased sixth central moment estimate $m_{6}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{6}\right.$ for a vector X.
sample size.

Value

Unbiased estimate of cubed second central moment μ_{2}^{3}, where μ_{2} is a variance.

See Also

Other unbiased estimates (one-sample): uM2M3, uM2M4, uM2pow2, uM2, uM3pow2, uM3, uM4, uM5, uM6

Examples

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:6) {
    m <- c(m, mean((smp - m[1])^j))
}
uM2pow3(m[2], m[3], m[4], m[6], n)
```

uM2pow3pool

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM2pow3pool(m2, m3, m4, m6, n_x, n_y)

Arguments

m2
naive biased variance estimate $m_{2}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\right.\right.\right.$ $\bar{Y})^{2}$ for vectors X and Y .
m3 naive biased third central moment estimate $m_{3}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{3}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{3}\right.$ for vectors X and Y .

```
    m4
                naive biased fourth central moment estimate \(m_{4}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.\) \(\bar{X})^{4}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{4}\right.\) for vectors X and Y .
m6 naive biased sixth central moment estimate \(m_{6}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.\) \(\bar{X})^{6}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{6}\right.\) for vectors X and Y .
```

```
n_x number of observations in the first group.
```

n_x number of observations in the first group.
n_y number of observations in the second group.

```
n_y number of observations in the second group.
```


Value

Pooled estimate of cubed variance central moment μ_{2}^{3}, where μ_{2} is a variance.

See Also

Other pooled estimates (two-sample): uM2M3pool, uM2M4pool, uM2pool, uM2pow2pool, uM3pool, uM3pow2pool, uM4pool, uM5pool, uM6pool

Examples

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(6)
for (j in 2:6) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM2pow3pool(m[2], m[3], m[4], m[6], nx, ny)
```


Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM3 (m3, n)

Arguments

m3
n
naive biased third central moment estimate $m_{3}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{3}\right.$ for a vector X.
sample size.

Value

Unbiased estimate of a third central moment.

See Also

Other unbiased estimates (one-sample): uM2M3, uM2M4, uM2pow2, uM2pow3, uM2, uM3pow2, uM4, uM5, uM6

Examples

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:3) {
    m <- c(m, mean((smp - m[1])^j))
}
uM3(m[3], n)
```

uM3pool Pooled central moment estimates - two-sample

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM3pool(m3, n_x, n_y)

Arguments

m3 naive biased third central moment estimate $m_{3}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{3}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{3}\right.$ for vectors X and Y .
$n_{-} \quad$ number of observations in the first group.
n_y number of observations in the second group.

Value

Pooled estimate of a third central moment.

See Also

Other pooled estimates (two-sample): uM2M3pool, uM2M4pool, uM2pool, uM2pow2pool, uM2pow3pool, uM3pow2pool, uM4pool, uM5pool, uM6pool

Examples

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(3)
for (j in 2:3) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM3pool(m[3], nx, ny)
```

uM3pow2 Unbiased central moment estimates

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM3pow2 (m2, m3, m4, m6, n)

Arguments

m2
m3 naive biased third central moment estimate $m_{3}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{3}\right.$ for a vector X.
$\mathrm{m} 4 \quad$ naive biased fourth central moment estimate $m_{4}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{4}\right.$ for a vector X.
m6
$\mathrm{n} \quad$ sample size.

Value

Unbiased estimate of squared third central moment μ_{3}^{2}, where μ_{3} is a third central moment.

See Also

Other unbiased estimates (one-sample): uM2M3, uM2M4, uM2pow2, uM2pow3, uM2, uM3, uM4, uM5, uM6

Examples

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:6) {
    m <- c(m, mean((smp - m[1])^j))
}
uM3pow2(m[2], m[3], m[4], m[6], n)
```

uM3pow2pool
Pooled central moment estimates - two-sample

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM3pow2pool(m2, m3, m4, m6, n_x, n_y)

Arguments

m2
naive biased variance estimate $m_{2}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\right.\right.\right.$ $\bar{Y})^{2}$ for vectors X and Y .
m3 naive biased third central moment estimate $m_{3}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{3}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{3}\right.$ for vectors X and Y .
m4 naive biased fourth central moment estimate $m_{4}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{4}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{4}\right.$ for vectors X and Y .
m6 \quad naive biased sixth central moment estimate $m_{6}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{6}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{6}\right.$ for vectors X and Y .
$n_{-} \quad$ number of observations in the first group.
n_y number of observations in the second group.

Value

Pooled estimate of squared third central moment μ_{3}^{2}, where μ_{3} is a third central moment.

See Also

Other pooled estimates (two-sample): uM2M3pool, uM2M4pool, uM2pool, uM2pow2pool, uM2pow3pool, uM3pool, uM4pool, uM5pool, uM6pool

Examples

```
    nx <- 10
    ny <- 8
    shp <- 3
    smpx <- rgamma(nx, shape = shp) - shp
    smpy <- rgamma(ny, shape = shp)
    mx <- mean(smpx)
    my <- mean(smpy)
    m <- numeric(6)
    for (j in 2:6) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
    }
    uM3pow2pool(m[2], m[3], m[4], m[6], nx, ny)
```

 uM4
 Unbiased central moment estimates

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

$\mathrm{uM4}(\mathrm{~m} 2, \mathrm{~m} 4, \mathrm{n})$

Arguments

$\mathrm{m} 2 \quad$ naive biased variance estimate $m_{2}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{2}\right.$ for a vector X .
m4 naive biased fourth central moment estimate $m_{4}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{4}\right.$ for a vector X.
$\mathrm{n} \quad$ sample size.

Value

Unbiased estimate of a fourth central moment.

See Also

Other unbiased estimates (one-sample): uM2M3, uM2M4, uM2pow2, uM2pow3, uM2, uM3pow2, uM3, uM5, uM6

Examples

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:4) {
    m <- c(m, mean((smp - m[1])^j))
}
uM4(m[2],m[4], n)
```

uM4pool Pooled central moment estimates - two-sample

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM4pool(m2, m4, n_x, n_y)

Arguments

m2
m4
$n _x \quad$ number of observations in the first group.
n - y number of observations in the second group.

Value

Pooled estimate of a fourth central moment.

See Also

Other pooled estimates (two-sample): uM2M3pool, uM2M4pool, uM2pool, uM2pow2pool, uM2pow3pool, uM3pool, uM3pow2pool, uM5pool, uM6pool

Examples

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(4)
for (j in 2:4) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM4pool(m[2], m[4], nx, ny)
```

```
uM5
Unbiased central moment estimates
```


Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM5 (m2, m3, m5, n)

Arguments

$\mathrm{m} 2 \quad$ naive biased variance estimate $m_{2}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{2}\right.$ for a vector X.
m3 naive biased third central moment estimate $m_{3}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{3}\right.$ for a vector X .
naive biased fifth central moment estimate $m_{5}=\sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{5}\right.$ for a vector X.
$\mathrm{n} \quad$ sample size.

Value

Unbiased estimate of a fifth central moment.

See Also

Other unbiased estimates (one-sample): uM2M3, uM2M4, uM2pow2, uM2pow3, uM2, uM3pow2, uM3, uM4, uM6

Examples

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:5) {
    m <- c(m, mean((smp - m[1])^j))
}
uM5(m[2], m[3], m[5], n)
```


Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM5pool(m2, m3, m5, n_x, n_y)

Arguments

m2
m3 naive biased third central moment estimate $m_{3}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{3}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{3}\right.$ for vectors X and Y .
m5 naive biased fifth central moment estimate $m_{5}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{5}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{5}\right.$ for vectors X and Y.
$n_{-} x \quad$ number of observations in the first group.
$\mathrm{n} _\mathrm{y} \quad$ number of observations in the second group.

Value

Pooled estimate of a fifth central moment.

See Also

Other pooled estimates (two-sample): uM2M3pool, uM2M4pool, uM2pool, uM2pow2pool, uM2pow3pool, uM3pool, uM3pow2pool, uM4pool, uM6pool

Examples

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(5)
for (j in 2:5) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM5pool(m[2], m[3], m[5], nx, ny)
```

uM6 Unbiased central moment estimates

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM6 (m2, m3, m4, m6, n)

Arguments

$\mathrm{m} 2 \quad$ naive biased variance estimate $m_{2}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{2}\right.$ for a vector X.
m3 naive biased third central moment estimate $m_{3}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{3}\right.$ for a vector X.
m4 naive biased fourth central moment estimate $m_{4}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{4}\right.$ for a vector X.
m6 naive biased sixth central moment estimate $m_{6}=1 / n \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{6}\right.$ for a vector X.
$\mathrm{n} \quad$ sample size.

Value

Unbiased estimate of a sixth central moment.

See Also

Other unbiased estimates (one-sample): uM2M3, uM2M4, uM2pow2, uM2pow3, uM2, uM3pow2, uM3, uM4, uM5

Examples

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:6) {
    m <- c(m, mean((smp - m[1])^j))
}
uM6(m[2], m[3], m[4], m[6], n)
```


Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM6pool(m2, m3, m4, m6, n_x, n_y)

Arguments

m2
m3 naive biased third central moment estimate $m_{3}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{3}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{3}\right.$ for vectors X and Y .
m4 naive biased fourth central moment estimate $m_{4}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{4}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{4}\right.$ for vectors X and Y .
m6 naive biased sixth central moment estimate $m_{6}=1 /\left(n_{x}+n_{y}\right) \sum_{i=1}^{n_{x}}\left(\left(X_{i}-\right.\right.$ $\bar{X})^{6}+\sum_{i=1}^{n_{y}}\left(\left(Y_{i}-\bar{Y}\right)^{6}\right.$ for vectors X and Y .
$\mathrm{n}_{-} \mathrm{x} \quad$ number of observations in the first group.
$n_{-} \quad$ number of observations in the second group.

Value

Unbiased estimate of a sixth central moment.

See Also

Other pooled estimates (two-sample): uM2M3pool, uM2M4pool, uM2pool, uM2pow2pool, uM2pow3pool, uM3pool, uM3pow2pool, uM4pool, uM5pool

Examples

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(6)
for (j in 2:6) {
    m[j] <- mean(c((smpx - mx ^)j, (smpy - my)^j))
}
uM6pool(m[2], m[3], m[4], m[6], nx, ny)
```


uMpool Pooled central moment estimates - two-sample

Description

Calculate unbiased pooled estimates of central moments and their powers and products up to specified order.

Usage

uMpool(smp, a, order)

Arguments

smp
sample.
a vector of the same length as smp specifying categories of observations (should contain two unique values).
order highest order of the estimates to calclulate. Estimates of lower orders will be included.

Details

Pooled estimates up to the 6th order can be calculated. Second and third orders contain estimates of the variance and third central moment, fourth order includes estimates of fourth moment and squared variance $\left(\mu_{2}^{2}\right)$, fifth order - of fifth moment and a product of second and third moments $\left(\mu_{2} \mu_{3}\right)$, sixth order - of sixth moment, a product of second and fourth moments $\left(\mu_{2} \mu_{4}\right)$, squared third moment $\left(\mu_{3}^{2}\right)$, and cubed variance $\left(\mu_{2}^{3}\right)$.

Value

A named vector of estimates of central moments and their powers and products up to order. The highest order available is 6th. The names of the elements are "M2", "M3", "M4", "M5", "M6" for corresponding central moments, "M2M3", "M2M4" for products of the moments (second and third, second and fourth), and "M2pow2", "M2pow3", "M3pow2" for powers of the moments - corresponding to estimates of squared variance, cubed variance, and squared third moment.

References

Gerlovina, I. and Hubbard, A.E. (2019). Computer algebra and algorithms for unbiased moment estimation of arbitrary order. Cogent Mathematics \& Statistics, 6(1).

See Also

uM for one-sample unbiased estimates.

Examples

```
nsmp <- 23
smp <- rgamma(nsmp, shape = 3)
treatment <- sample(0:1, size = nsmp, replace = TRUE)
uMpool(smp, treatment, 6)
```


Index

```
* pooled estimates (two-sample)
    uM2M3pool, }
    uM2M4pool, 8
    uM2pool, }
    uM2pow2pool, 10
    uM2pow3pool, 12
    uM3pool, 14
    uM3pow2pool, 16
    uM4pool, 18
    uM5pool, 20
    uM6pool, 22
* unbiased estimates (one-sample)
    uM2,4
    uM2M3,5
    uM2M4,7
    uM2pow2, 10
    uM2pow3, 11
    uM3, 13
    uM3pow2, 15
    uM4, 17
    uM5, 19
    uM6, 21
one_combination, 2
uM, 3, 23
uM2, 4, 5, 7, 10, 12, 14, 15, 17, 19,21
uM2M3, 4, 5, 7, 10, 12, 14, 15,17, 19, 21
uM2M3pool, 6, 8, 9, 11,13,14,16,18, 20,22
uM2M4, 4, 5, 7, 10, 12, 14, 15, 17, 19, 21
uM2M4pool, 6, 8, 9, 11, 13, 14, 16, 18, 20, 22
uM2pool, 6, 8, 9, 11, 13, 14, 16, 18, 20, 22
uM2pow2, 4, 5, 7, 10, 12, 14, 15, 17, 19, 21
uM2pow2pool, 6, 8, 9, 10, 13, 14, 16,18, 20, 22
uM2pow3, 4, 5, 7, 10, 11, 14, 15, 17, 19, 21
uM2pow3pool, 6, 8, 9, 11, 12, 14, 16, 18, 20, 22
uM3, 4, 5, 7, 10, 12, 13, 15, 17, 19, 21
uM3pool, 6, 8, 9, 11, 13, 14, 16, 18, 20, 22
uM3pow2, 4, 5, 7, 10, 12, 14, 15, 17, 19, 21
uM3pow2pool, 6, 8, 9, 11, 13,14,16,18, 20, 22
```

uM4, 4, 5, 7, 10, 12, 14, 15, 17, 19, 21
uM4pool, $6,8,9,11,13,14,16,18,20,22$
uM5, 4, 5, 7, 10, 12, 14, 15, 17, 19, 21
uM5pool, 6, 8, 9, 11, 13, 14, 16, 18, 20, 22
uM6, 4, 5, 7, 10, 12, 14, 15, 17, 19, 21
uM6pool, $6,8,9,11,13,14,16,18,20,22$
uMpool, 4, 23

