Package ‘allometric’

April 21,2024
Title Structured Allometric Models for Trees
Version 2.3.0

Description Access allometric models used in forest resource analysis, such as
volume equations, taper equations, biomass models, among many others. Users
are able to efficiently find and select allometric models suitable for their
project area and use them in analysis. Additionally, 'allometric' provides a
structured framework for adding new models to an open-source models
repository.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Imports dplyr, methods, rlang, stringr, tibble, units, RefManageR,
magrittr, purrr, ISOcodes, tidyr, progress, vctrs, openssl,
curl, jsonlite

Collate 'all_generics.R' 'validity_checks.R' 'AllometricModel.R'
'ModelSet.R' 'ParametricSet.R' 'ParametricModel.R'
'FixedEffectsModel.R' 'FixedEffectsSet.R' 'MixedEffectsModel.R'
'MixedEffectsSet.R' "Publication.R' 'Taxa.R' "Taxon.R'
‘allometric.R' 'boilerplate.R' 'data.R' 'eq.R' 'fromJSON.R'
'install.R' 'load.R' 'model_tbl.R' 'publication_processing.R'
'summary.R' 'toJSON.R' 'util.R' 'utils-pipe.R'
'variable_defs.R' 'zzz.R'

Suggests testthat (>= 3.0.0), knitr, rmarkdown
Config/testthat/edition 3

Depends R (>=2.10)

LazyData true

BugReports https://github.com/allometric/allometric/issues
Contact bfrank70@gmail.com
NeedsCompilation no

Author Bryce Frank [aut, cre] (<https://orcid.org/0000-0003-2980-6860>),
Francisco Mauro [aut] (<https://orcid.org/0000-0002-7832-6268>),
Elijah Allensworth [aut]

https://github.com/allometric/allometric/issues
https://orcid.org/0000-0003-2980-6860
https://orcid.org/0000-0002-7832-6268

R topics documented:

Maintainer Bryce Frank <bfrank70@gmail.com>
Repository CRAN
Date/Publication 2024-04-21 21:12:33 UTC

R topics documented:

Index

allometric-package 3
== FixedEffectsModel FixedEffectsModel-method 3
== MixedEffectsModel, MixedEffectsModel-method 4
add_model e 4
add_Set e 5
AZEIeZAte_tAXA e e e e e e e e e e e e e e 5
brackett_acer e e 6
brackett_rubra 6
check_models_installed e 7
fla trees o e e 7
FixedEffectsModel 8
FixedEffectsSet e 9
get_component_defs 11
get_measure_defs oL 12
get_params_path L. e e 12
get_variable_def. 13
ingest models 13
install models e 14
load_ models e 14
load_parameter_frame 20
map_publications 20
merge.model_tbl 21
MixedEffectsModel 22
MixedEffectsSet 23
model_call. e 25
predicto 26
predict_allo oL 27
Publication e e 28
select_model L e e 29
set_params_path L e e 29
Taxa e e e e 30
Taxon e e e e e e e 30
toJSON . . . e e e 31
toJSON,FixedEffectsModel-method 32
unnest_models L L L e 32
UNNESt_tAXA ot e e e e e e e e e e e e e e 33
unnest_taxa.model_tbl 33
%in%,Taxon,character-method 34

allometric-package

allometric-package allometric: Structured Allometric Models for Trees

Description

To learn more about allometric, refer to the documentation website.

Author(s)

Maintainer: Bryce Frank <bfrank70@gmail.com> (ORCID)
Authors:

* Francisco Mauro <francisco.mauro@uva.es> (ORCID)
* Elijah Allensworth <elijah.allensworth@protonmail.com>

See Also
Useful links:

* Report bugs at https://github.com/allometric/allometric/issues

==,FixedEffectsModel,FixedEffectsModel-method
Check equivalence of fixed effects models

Description
Fixed effects models are considered equal if all of the following are true:

* The model IDs are equal (or not present)

* The response unit names and units are the same

* The covariate names and units are the same and are in the same order
* The specification names and values are the same

* The predict_fn is the same

* The response definitions are the same

¢ The covariate definitions are the same

Usage
S4 method for signature 'FixedEffectsModel,FixedEffectsModel’
el == e2

Arguments
el A FixedEffectsModel object

e2 A FixedEffectsModel object

https://allometric.org
https://orcid.org/0000-0003-2980-6860
https://orcid.org/0000-0002-7832-6268
https://github.com/allometric/allometric/issues

add_model

==,MixedEffectsModel,MixedEffectsModel-method

Check equivalence of mixed effects models

Description

Fixed effects models are considered equal if all of the following are true:

The model IDs are equal (or not present)

The response unit names and units are the same

The covariate names and units are the same and are in the same order
The specification names and values are the same

The predict_fn are the same

The predict_ranef are the same

The fixed_only slots are the same

The response definitions are the same

The covariate definitions are the same

Usage
S4 method for signature 'MixedEffectsModel,MixedEffectsModel’
el == e2
Arguments
el A MixedEffectsModel object
e2 A MixedEffectsModel object
add_model Add a model to a publication
Description

This function adds objects of class FixedEffectsModel or MixedEffectsModel to a publication.
Models added in this way are added as a set containing only one model. This operation is not done
in-place.

Usage

add_model (publication, model)

add_set 5

Arguments

publication The publication for which a set will be added

model The model to add to the publication

Value

A publication with the added model

add_set Add a set of models to a publication

Description
This function adds objects of class FixedEffectsSet or MixedEffectsSet to a publication. This
operation is not done in-place.

Usage

add_set(publication, model_set)

S4 method for signature 'Publication'’
add_set(publication, model_set)

Arguments
publication The publication for which a set will be added
model_set The set of models to add to the publication
Value

A publication with the added set

aggregate_taxa Aggregate family, genus, and species columns of ‘tbl_df* into taxa
data structure

Description

This function facilitates aggregating family, genus, and species columns into the taxa data structure,
which is a nested list composed of multiple "taxons". A taxon is a list containing family, genus, and
species fields.

Usage

aggregate_taxa(table, grouping_col = NULL)

6 brackett rubra

Arguments

table The table for which the taxa will be aggregated

grouping_col An optional column to group on when creating taxa. Rows with the same group-
ing_col value will be stored into the same taxa.

Value

A tibble with family, genus, and species columns added

brackett_acer Brackett Acer Volume Model

Description

An example allometric model that predicts volume for the genus Acer.

Usage

brackett_acer

Format

An object of class FixedEffectsModel of length 1.

brackett_rubra An object of class FixedEffectsModel

Description

Brackett Rubra Volume Model

Usage

brackett_rubra

Format

An object of class FixedEffectsModel of length 1.

Details

An example allometric model that predicts volume for Alnus rubra.

check_models_installed

check_models_installed
Check if allometric models are currently installed

Description

Check if allometric models are currently installed

Usage
check_models_installed(verbose = FALSE)

Arguments
verbose Print verbose messages if TRUE
fia_trees FIA Trees Data
Description

A subset of data from FIA plots located in Oregon.

Usage

fia_trees

Format

fia_trees:

A data frame with 298 rows and 5 columns.

PLOT A plot ID

SPCD The FIA species code for the tree

DIA The diameter of the tree in inches

HT The height of the tree in feet

TPA_UNADJ The unadjusted trees per acre of the tree

Source

https://experience.arcgis.com/experience/364 1cea45d614ab88791aef54f3a1849/

8 FixedEffectsModel
FixedEffectsModel Create a fixed effects model
Description
FixedEffectsModel represents an allometric model that only uses fixed effects.
Usage
FixedEffectsModel(
response,
covariates,
predict_fn,
parameters,
descriptors = list(),
response_definition = NA_character_,
covariate_definitions = list()
)
Arguments
response A named list containing one element, with a name representing the response
variable and a value representing the units of the response variable using the
units::as_units function.
covariates A named list containing the covariate specifications, with names representing
the covariate name and the values representing the units of the coavariate using
the units::as_units function
predict_fn A function that takes the covariate names as arguments and returns a prediction
of the response variable. This function should be vectorized.
parameters A named list of parameters and their values
descriptors An optional named list of descriptors that describe the context of the allometric
model
response_definition
A string containing an optional custom response definition, which is used instead
of the description given by the variable naming system.
covariate_definitions
An optional named list of custom covariate definitions that will supersede the
definitions given by the variable naming system. The names of the list must
match the covariate names given in covariates.
Value

An object of class FixedEffectsModel

FixedEffectsSet 9

Slots

response_unit A one-element list with the name indicating the response variable and the value
as the response variable units obtained using units: :as_units()

covariate_units A list containing the covariate names as names and values as the values of the
covariate units obtained using units: :as_units()

predict_fn The prediction function, which takes covariates as arguments and returns model pre-
dictions

descriptors A tibble::tbl_df containing the model descriptors
set_descriptors A tibble::tbl_df containing the set descriptors
pub_descriptors A tibble::tbl_df containing the publication descriptors
citation A RefManageR::BibEntry object containing the reference publication
covariate_definitions User-provided covariate definitions

model_type The model type, which is parsed from the response_unit name
parameters A named list of parameters and their values

predict_fn_populated The prediction function populated with the parameter values

specification A tibble::tbl_df of the model specification, which are the parameters and the de-
scriptors together

Examples

FixedEffectsModel (
response = list(
hst = units::as_units("m")
),
covariates = list(
dsob = units::as_units("cm")
),
parameters = list(
beta_0 = 51.9954,
beta_1 = -0.0208,
beta_2 = 1.0182
),
predict_fn = function(dsob) {
1.37 + beta_@ * (1 - exp(beta_1l * dsob)”beta_2)
}
)

FixedEffectsSet Create a set of fixed effects models

Description

A FixedEffectsSet represents a group of fixed-effects models that all have the same functional
structure. Fitting a large family of models (e.g., for many different species) using the same func-
tional structure is a common pattern in allometric studies, and FixedEffectsSet facilitates the
installation of these groups of models by allowing the user to specify the parameter estimates and
descriptions in a dataframe.

10 FixedEffectsSet

Usage

FixedEffectsSet(
response,
covariates,
parameter_names,
predict_fn,
model_specifications,
descriptors = list(),
response_definition = NA_character_,
covariate_definitions = list()

)
Arguments
response A named list containing one element, with a name representing the response
variable and a value representing the units of the response variable using the
units::as_units function.
covariates A named list containing the covariate specifications, with names representing

the covariate name and the values representing the units of the coavariate using
the units::as_units function

parameter_names
A character vector naming the columns in model_specifications that repre-
sent the parameters

predict_fn A function that takes the covariate names as arguments and returns a prediction
of the response variable. This function should be vectorized.

model_specifications
A dataframe such that each row of the dataframe provides model-level descrip-
tors and parameter estimates for that model. Models must be uniquely identifi-
able using the descriptors. This is usually established using the 1oad_parameter_frame()
function.

descriptors An optional named list of descriptors that describe the context of the allometric
model

response_definition
A string containing an optional custom response definition, which is used instead
of the description given by the variable naming system.

covariate_definitions
An optional named list of custom covariate definitions that will supersede the
definitions given by the variable naming system. The names of the list must
match the covariate names given in covariates.

Value

A set of fixed effects models

Slots

response_unit A one-element list with the name indicating the response variable and the value
as the response variable units obtained using units::as_units()

get_component_defs 11

covariate_units A list containing the covariate names as names and values as the values of the
covariate units obtained using units: :as_units()

predict_fn The prediction function, which takes covariates as arguments and returns model pre-
dictions

descriptors A tibble::tbl_df containing the model descriptors

set_descriptors A tibble::tbl_df containing the set descriptors

pub_descriptors A tibble::tbl_df containing the publication descriptors

citation A RefManageR::BibEntry object containing the reference publication

covariate_definitions User-provided covariate definitions

model_type The model type, which is parsed from the response_unit name

parameter_names A character vector indicating the parameter names

model_specifications A tibble::tbl_df of model specifications, where each row reprents one
model identified with descriptors and containing the parameter estimates.

Examples

fixef_set <- FixedEffectsSet(
response = list(
vsia = units::as_units("ft*3")
),
covariates = list(
dsob = units::as_units("in")

) ’
predict_fn = function(dsob) {
a * dsob”2
} ’
parameter_names = "a",
model_specifications = tibble::tibble(mod = c(1,2), a = c(1, 2))
)
get_component_defs Load the component definitions
Description

Loads the component definitions from a locally stored csv file

Usage

get_component_defs()

Value

A tibble::tbl_df containing the component definitions

Examples

get_component_defs()

12

get_params_path

get_measure_defs Load the measure definitions

Description

Loads the measure definitions from a locally stored csv file

Usage

get_measure_defs()

Value

A tibble::tbl_df containing the measure definitions

Examples

get_measure_defs()

get_params_path Get the parameter search path

Description

Get the parameter search path

Usage

get_params_path()

Value

A string containing the currently set parameter search path

get_variable_def 13

get_variable_def Get the definition of a variable in the variable naming system.

Description

When possible, variables are given standard names using the variable naming system. The defini-
tions for a variable can be found using this function. The search_str argument works using partial
matching of the beginning of each variable name. For example input "d"” will return all diame-
ter definitions but input "dsob” will only return the definition for diameter outside bark at breast
height.

Usage

get_variable_def(search_str, return_exact_only = FALSE)

Arguments

search_str The string to search with.
return_exact_only

Some variables are completely defined but will return "addditional" matches.
For example, "hst" refers to the total height of a tree, but "hstix" refers to a site
index. If this argument is false, all strings starting with "hst" will be returned. If
true, then only "hst" will be returned.

Value

A data.frame containing the matched variable definitions.

ingest_models Ingest a set of models by running the publication files

Description

Ingest a set of models by running the publication files

Usage

ingest_models(verbose, pub_path = NULL, params_path = NULL)

Arguments
verbose If TRUE, print verbose messages
pub_path A path to a directory containing publication files

params_path A path to a directory containing parameter files

14 load _models

install_models Install allometric models from the models repository

Description

Allometric models are stored in a remote repository located on GitHub located here. The user must
install these models themselves using this function. This function clones the models repository
within the allometric package directory and constructs a local dataframe containing the models.
Refer to load_models() for information about loading the models dataframe.

Usage

install_models(ingest = FALSE, redownload = TRUE, verbose = TRUE)

Arguments
ingest If TRUE, model publication files are run locally, otherwise a previously prepared
.RDS file is used as the models data.
redownload If TRUE, models are re-downloaded from the remote repository.
verbose If TRUE, print verbose messages as models are installed.
Value

No return value, installs models into the package directory.

load_models Load a locally installed table of allometric models

Description

This function loads all locally installed allometric models if they are downloaded and installed, if
not run the install_models function. The result is of class model_tb1, which behaves very much
like a tibble::tbl_df or a data.frame.

Usage

load_models()

https://github.com/allometric/models

load _models

Details

15

Printing the head of allometric_models, we can see the structure of the data

allometric_models <- load_models()
strings not representable in native encoding will be translated to UTF-
'Malaga' cannot be translated to UTF-8, is it valid in 'UTI

#> Warning in
#> Warning in

#> Warning in
#> Warning in
#> Warning in
#> Warning in
#> Warning in
#> Warning in
#> Warning in
#> Warning in
#> Warning in

#> Warning in

#> Warning in
#> Warning in

#> Warning in

#> Warning in
#> Warning in

#> Warning in
#> Warning in

#> Warning in
#> Warning in

#> Warning in
#> Warning in
#> Warning in
#> Warning in
#> Warning in

#> Warning in

readRDS(rds_path):
readRDS(rds_path):

readRDS(rds_path):
readRDS(rds_path):
readRDS(rds_path):
readRDS(rds_path):
readRDS(rds_path):
readRDS(rds_path):
readRDS(rds_path):
readRDS(rds_path):
readRDS(rds_path):
readRDS(rds_path):

readRDS(rds_path):
readRDS(rds_path):

readRDS(rds_path):

readRDS(rds_path):
readRDS(rds_path):

readRDS(rds_path):
readRDS(rds_path):

readRDS(rds_path):
readRDS(rds_path):

readRDS(rds_path):
readRDS(rds_path):
readRDS(rds_path):
readRDS(rds_path):
readRDS(rds_path):

readRDS(rds_path):

input string
input string
input string
input string
input string
input string
input string
input string
input string
input string

input string

input string
input string

input string

input string
input string

input string
input string

input string
input string

input string
input string
input string
input string
input string

input string

'Malaga' cannot be translated to UTF-8, is it valid in "UTI
'Caceres' cannot be translated to UTF-8, is it valid in 'U
'Malaga' cannot be translated to UTF-8, is it valid in 'UTI
'Caceres' cannot be translated to UTF-8, is it valid in 'U]
'Malaga' cannot be translated to UTF-8, is it valid in 'UTI
'Caceres’' cannot be translated to UTF-8, is it valid in 'U]
'Malaga' cannot be translated to UTF-8, is it valid in "UTI

'Malaga' cannot be translated to UTF-8, is it valid in 'UTI

'Malaga' cannot be translated to UTF-8, is it valid in 'UTI

'Malaga' cannot be translated to UTF-8, is it valid in 'UTI

'Malaga' cannot be translated to UTF-8, is it valid in 'UTI
'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-

'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-

'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
'Malaga' cannot be translated to UTF-8, is it valid in "UTI

'Malaga' cannot be translated to UTF-8, is it valid in "UTI

'Malaga' cannot be translated to UTF-8, is it valid in 'UTI

'Malaga' cannot be translated to UTF-8, is it valid in 'UTI
'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-

'Cadiz' cannot be

'Cadiz' cannot be

'Cadiz' cannot be

'Cadiz' cannot be

'Cadiz' cannot be

'Cadiz' cannot be

translated to UTF-8, i
translated to UTF-8, i
translated to UTF-8, i
translated to UTF-8, i
translated to UTF-8, i

translated to UTF-8, i

it valid in

it valid in

it valid in

it valid in

it valid in

it valid in

"UTF-

'UTF-

'UTF-

"UTF-

'UTF-

"UTF-

16

#> Warning in

readRDS(rds_path):

input string

load _models

'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-

#> Warning in readRDS(rds_path): input string 'Caceres' cannot be translated to UTF-8, is it valid in 'U’
#> Warning in readRDS(rds_path): input string 'Caceres' cannot be translated to UTF-8, is it valid in 'U
#> Warning in readRDS(rds_path): input string 'Caceres' cannot be translated to UTF-8, is it valid in 'U
#> Warning in readRDS(rds_path): input string 'Caceres' cannot be translated to UTF-8, is it valid in 'U’
#> Warning in readRDS(rds_path): input string 'Caceres' cannot be translated to UTF-8, is it valid in 'U
#> Warning in readRDS(rds_path): input string 'Caceres' cannot be translated to UTF-8, is it valid in 'U
#> Warning in readRDS(rds_path): input string 'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
#> Warning in readRDS(rds_path): input string 'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
#> Warning in readRDS(rds_path): input string 'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
#> Warning in readRDS(rds_path): input string 'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
#> Warning in readRDS(rds_path): input string 'Malaga' cannot be translated to UTF-8, is it valid in 'UTI
#> Warning in readRDS(rds_path): input string 'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
#> Warning in readRDS(rds_path): input string 'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
#> Warning in readRDS(rds_path): input string 'Caceres' cannot be translated to UTF-8, is it valid in 'U
#> Warning in readRDS(rds_path): input string 'Malaga' cannot be translated to UTF-8, is it valid in 'UTI
#> Warning in readRDS(rds_path): input string 'Caceres' cannot be translated to UTF-8, is it valid in 'U
#> Warning in readRDS(rds_path): input string 'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
#> Warning in readRDS(rds_path): input string 'Malaga' cannot be translated to UTF-8, is it valid in 'UTF
#> Warning in readRDS(rds_path): input string 'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
#> Warning in readRDS(rds_path): input string 'Caceres' cannot be translated to UTF-8, is it valid in 'U
#> Warning in readRDS(rds_path): input string 'Malaga' cannot be translated to UTF-8, is it valid in 'UTI
#> Warning in readRDS(rds_path): input string 'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
#> Warning in readRDS(rds_path): input string 'Malaga' cannot be translated to UTF-8, is it valid in 'UTI
#> Warning in readRDS(rds_path): input string 'Caceres' cannot be translated to UTF-8, is it valid in 'U’
#> Warning in readRDS(rds_path): input string 'Malaga' cannot be translated to UTF-8, is it valid in 'UTI
#> Warning in readRDS(rds_path): input string 'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
#> Warning in readRDS(rds_path): input string 'Caceres' cannot be translated to UTF-8, is it valid in 'U
#> Warning in readRDS(rds_path): input string 'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
#> Warning in readRDS(rds_path): input string 'Cadiz' cannot be translated to UTF-8, is it valid in 'UTF-
head(allometric_models)

#> # A tibble: 6 x 10

#> id model_type country region taxa pub_id model family_name covt_name pub_year

#> <chr> <chr> <list> <list> <list><chr> <list> <list> <list> <dbl>

#> 1 76cccl6a site index <chr [11> <chr [2]> <Taxa> barnes_1962 <FxdEffcM> <chr [1]> <chr [2]> 1962
#> 2 cc2078aa site index <chr [1]> <chr [2]> <Taxa> barrett_1978 <FxdEffcM> <chr [1]> <chr [2]> 1978
#> 3 3955ab4f stem height <chr [1]> <chr [3]> <Taxa> barrett_2006 <FxdEffcM> <chr [1]> <chr [1]> 200¢
#> 4 48b4aecf stem height <chr [1]> <chr [3]> <Taxa> barrett_2006 <FxdEffcM> <chr [1]> <chr [1]> 200¢

load _models 17

#> 5 2fa084c2 stem height <chr [1]1> <chr [3]> <Taxa> barrett_2006 <FxdEffcM> <chr [1]> <chr [1]> 200¢
#> 6 7a585d5e stem height <chr [1]> <chr [3]> <Taxa> barrett_2006 <FxdEffcM> <chr [1]> <chr [1]> 200¢

The columns are:

* id - A unique ID for the model.

* model_type - The type of model (e.g., stem volume, site index, etc.)

* country - The country or countries from which the model data is from.

* region - The region or regions (e.g., state, province, etc.) from which the model data is from.
* taxa - The taxonomic specification of the trees that are modeled.

* model - The model object itself.

* pub_id - A unique ID representing the publication.

* family_name - The names of the contributing authors.

* covt_name - The names of the covariates used in the model.

* pub_year - The publication year.

Models can be searched by their attributes. Note that some of the columns are 1ist columns, which
contain lists as their elements. Filtering on data in these columns requires the use of purrr: :map_lgl
which is used to determine truthiness of expressions for each element in a 1ist column. While this
may seem complicated, we believe the nested data structures are more descriptive and concise for
storing the models, and users will quickly find that searching models in this way can be very pow-
erful.

Value

A model_tbl containing the locally installed models.

Finding Contributing Authors

Using purr::map_lgl to filter the family_name column, we are able to find publications that
contain specific authors of interst. For example, we may want models only authored by "Hann".
This is elementary to do in allometric:

hann_models <- dplyr::filter(
allometric_models,
purrr::map_lgl(family_name, ~ 'Hann' %in% .)

)

head(hann_models)

#> # A tibble: 6 x 10

#> id model_type country region taxa pub_id model family_name covt_name pub_year

#> <chr> <chr> <list> <list> <list><chr> <list> <list> <list> <dbl>

#> 1 8970949f stem volume <chr [1]> <chr [2]> <Taxa> hann_1978 <FxdEffcM> <chr [2]> <chr [2]> 1978
#> 2 0d53539a stem volume <chr [1]> <chr [2]> <Taxa> hann_1978 <FxdEffcM> <chr [2]> <chr [2]> 1978
#> 3 0d109f2c stem volume <chr [1]> <chr [2]> <Taxa> hann_1978 <FxdEffcM> <chr [2]> <chr [2]> 1978
#> 4 86dcc7ff stem volume <chr [1]> <chr [2]> <Taxa> hann_1978 <FxdEffcM> <chr [2]> <chr [2]> 1978
#> 5 037a7989 stem volume <chr [1]1> <chr [2]> <Taxa> hann_1978 <FxdEffcM> <chr [2]> <chr [2]> 1978

18 load _models

#> 6 0261474 stem volume <chr [1]> <chr [2]> <Taxa> hann_1978 <FxdEffcM> <chr [2]> <chr [2]> 1978
nrow(hann_models)
#> [1] 87

Picking apart the above code block, we see that we are using the standard dplyr: : filter function
on the allometric_models dataframe. The second argument is a call using purrr:map_1gl, which
will map over each list (contained as elements in the family_names column). The second argument
to this function, ~ 'Hann' %in% . is itself a function that checks if 'Hann' is in the current list.
Imagine we are marching down each row of allometric_models, . represents the element of
family_names we are considering, which is itself a list of author names.

Finding First Authors

Maybe we are only interested in models where 'Hann' is the first author. Using a simple modifica-
tion we can easily do this.

hann_first_author_models <- dplyr::filter(
allometric_models,
purrr::map_lgl(family_name, ~ 'Hann' == .[[1]])
)

head(hann_first_author_models)

#> # A tibble: 6 x 10

#> id model_type country region taxa pub_id model family_name covt_name pub_year

#> <chr> <chr> <list> <list> <list><chr> <list> <list> <list> <dbl>

#> 1 8970949f stem volume <chr [1]> <chr [2]> <Taxa> hann_1978 <FxdEffcM> <chr [2]> <chr [2]> 1978
#> 2 0d53539a stem volume <chr [1]> <chr [2]> <Taxa> hann_1978 <FxdEffcM> <chr [2]> <chr [2]> 1978
#> 3 0d109f2c stem volume <chr [1]1> <chr [2]> <Taxa> hann_1978 <FxdEffcM> <chr [2]> <chr [2]> 1978
#> 4 86dcc7ff stem volume <chr [1]> <chr [2]> <Taxa> hann_1978 <FxdEffcM> <chr [2]> <chr [2]> 1978
#> 5 037a7989 stem volume <chr [1]> <chr [2]> <Taxa> hann_1978 <FxdEffcM> <chr [2]> <chr [2]> 1978
#> 6 02614f74 stem volume <chr [1]> <chr [2]> <Taxa> hann_1978 <FxdEffcM> <chr [2]> <chr [2]> 1978
nrow(hann_first_author_models)

#> [1] 50

We can see that 'Hann' is the first author for 50 models in this package.

Finding Models for a Given Species

One of the most common things people need is a model for a particular species. For this, we must
interact with the taxa column. For example, to find models for the Pinus genus we can use

pinus_models <- dplyr::filter(
allometric_models,
purrr::map_lgl(taxa, ~ "Pinus"” %in% .)

)

head(pinus_models)
#> # A tibble: 6 x 10
#> id model_type country region taxa pub_id model family_name covt_name pub_year

load_models 19

#> <chr> <chr> <list> <list> <list><chr> <list> <list> <list>
#> 1 cc2078aa site index <chr [1]> <chr [2]> <Taxa> barrett_1978 <FxdEffcM> <chr [1]>
#> 2 502152d1 stem height <chr [1]> <chr [3]> <Taxa> barrett_2006 <FxdEffcM> <chr [1]>
#> 3 3fb70119 stem height <chr [1]1> <chr [3]> <Taxa> barrett_2006 <FxdEffcM> <chr [1]>
#> 4 925de182 stem height <chr [1]1> <chr [3]> <Taxa> barrett_2006 <FxdEffcM> <chr [1]>
#> 5 910dddb1 stem height <chr [1]> <chr [3]> <Taxa> barrett_2006 <FxdEffcM> <chr [1]>
#> 6 5b3e21e7 stem height <chr [11> <chr [3]> <Taxa> barrett_2006 <FxdEffcM> <chr [1]>
nrow(pinus_models)

#> [1] 351

Users can also search with a specific taxon, which allows a full specification from family to species.

For example, if we want models that apply to Ponderosa pine, first declare the necessary taxon, then
use it to filter as before

ponderosa_taxon <- Taxon(
family = "Pinaceae”, genus = "Pinus”, species = "ponderosa”

)

ponderosa_models <- dplyr::filter(
allometric_models,
purrr::map_lgl(taxa, ~ ponderosa_taxon %in% .)

)

nrow(ponderosa_models)
#> [1] 57

Finding a Model with Specific Data Requirements

We can even check for models that contain certain types of data requirements. For example, the
following block finds diameter-height models, specifically models that use diameter outside bark at
breast height as the only covariate. The utility here is obvious, since many inventories are vastly
limited by their available tree measurements.

dia_ht_models <- dplyr::filter(

allometric_models,

model_type == 'stem height',

purrr::map_lgl(covt_name, ~ length(.)==1 & .[[1]] == 'dsob'),
)

nrow(dia_ht_models)
#> [1] 282

Breaking this down, we have the first condition model_type=="'stem_height' selecting only mod-
els concerned with stem heights as a response variable. The second line maps over each element of
the covt_name column, which is a character vector. The . represents a given character vector for
that row. First, we ensure that the vector is only one element in size using length(.)==1, then we
ensure that the first (and only) element of this vector is equal to 'dsob', (diameter outside bark at
breast height). In this case, 282 are available in the package.

<dbl>
<chr [2]>
<chr [11>
<chr [1]1>
<chr [11>
<chr [1]>
<chr [11>

1978
200¢
200¢
200¢
200¢
200¢

20 map_publications

Finding a Model for a Region

By now the user should be sensing a pattern. We can apply the exact same logic as the Finding
Contributing Authors section to find all models developed using data from US-OR

us_or_models <- dplyr::filter(
allometric_models,
purrr::map_lgl(region, ~ "US-OR" %in% .),
)

nrow(us_or_models)
#> [1] 537

We can see that 537 allometric models are defined for the state of Oregon, US.

load_parameter_frame Load a parameter frame from the models/parameters directory

Description

This is a convenience that allows a user to easily load parameter files from the models/parameters di-
rectory. Itis typically used when constructing the model_specifications argument for ModelSet.

Usage

load_parameter_frame(name)

Arguments

name The name of the file, excluding the extension

Value

A tibble::tbl_df of the parameter data.

map_publications Iteratively process publication files

Description

This function allows a user to flexibly extract information as it loops over the publication files. Two
main internal use-cases exist for this. First, it is used to install models as is done in insall_models()
and, second, it is used to populate the remote MongoDB. Most users will not be interested in this
function, but it is exposed for usage in the allodata package.

merge.model_tbl 21

Usage

map_publications(verbose, func, pub_path = NULL, params_path = NULL)

Arguments
verbose Whether or not to print verbose messages to console
func The publication processing function. It should take a Publication object as its
only argument.
pub_path An optional path to a publication directory, by default the internally stored set
of publications is used.
params_path An optional path to a parameters directory, by default the internally stored set of
parameter files is used.
merge.model_tbl Merge a model_tbl with another data frame.
Description

This merge function ensures that, when model_tbl is used in a merge that the resultant dataframe
is still a model_tbl.

Usage
S3 method for class 'model_tbl'
merge(X, y, ...)

Arguments
X A data frame or model_tbl
y A data frame or model_tbl

Additional arguments passed to merge

Value

A model_tbl merged with the inputs

22 MixedEffectsModel

MixedEffectsModel Create a mixed effects model

Description

MixedEffectsModel represents an allometric model that uses fixed and random effects.

Usage

MixedEffectsModel (
response,
covariates,
predict_ranef,
predict_fn,
parameters,
fixed_only = FALSE,
descriptors = list(),
response_definition = NA_character_,
covariate_definitions = list()

)
Arguments
response A named list containing one element, with a name representing the response
variable and a value representing the units of the response variable using the
units::as_units function.
covariates A named list containing the covariate specifications, with names representing

the covariate name and the values representing the units of the coavariate using
the units::as_units function

predict_ranef A function that predicts the random effects, takes any named covariates in covariates
as arguments

predict_fn A function that takes the covariate names as arguments and returns a prediction
of the response variable. This function should be vectorized.

parameters A named list of parameters and their values

fixed_only A boolean value indicating if the model produces predictions using only fixed

effects. This is useful when publications do not provide sufficient information
to predict the random effects.

descriptors An optional named list of descriptors that describe the context of the allometric
model

response_definition
A string containing an optional custom response definition, which is used instead
of the description given by the variable naming system.

covariate_definitions
An optional named list of custom covariate definitions that will supersede the
definitions given by the variable naming system. The names of the list must
match the covariate names given in covariates.

MixedEffectsSet 23

Value

An instance of MixedEffectsModel

Slots

parameters A named list of parameters and their values
predict_fn_populated The prediction function populated with the parameter values

specification A tibble::tbl_df of the model specification, which are the parameters and the de-
scriptors together

predict_ranef The function that predicts the random effects

predict_ranef_populated The function that predicts the random effects populated with the fixed
effect parameter estimates

fixed_only A boolean value indicating if the model produces predictions using only fixed effects

Examples

MixedEffectsModel (
response = list(
hst = units::as_units("m")
)?
covariates = list(
dsob = units::as_units("cm")
)Y
parameters = list(
beta_0 = 40.4218,
beta_1 = -0.0276,
beta_2 = 0.936
),
predict_ranef = function() {
list(b_0_i = 0, b_2_i = 0)
3,
predict_fn = function(dsob) {
1.37 + (beta_@ + b_0_i) x (1 - exp(beta_1 * dsob)*(beta_2 + b_2_1i))
3,
fixed_only = TRUE

MixedEffectsSet Create a set of mixed effects models

Description

A MixedEffectsSet represents a group of mixed-effects models that all have the same functional
structure. Fitting a large family of models (e.g., for many different species) using the same func-
tional structure is a common pattern in allometric studies, and MixedEffectsSet facilitates the
installation of these groups of models by allowing the user to specify the parameter estimates and
descriptions in a dataframe or spreadsheet.

24 MixedEffectsSet

Usage

MixedEffectsSet(
response,
covariates,
parameter_names,
predict_fn,
model_specifications,
predict_ranef,
fixed_only = FALSE,
descriptors = list(),
response_definition = NA_character_,
covariate_definitions = list()

)
Arguments
response A named list containing one element, with a name representing the response
variable and a value representing the units of the response variable using the
units::as_units function.
covariates A named list containing the covariate specifications, with names representing

the covariate name and the values representing the units of the coavariate using
the units::as_units function

parameter_names
A character vector naming the columns in model_specifications that repre-
sent the parameters

predict_fn A function that takes the covariate names as arguments and returns a prediction
of the response variable. This function should be vectorized.
model_specifications
A dataframe such that each row of the dataframe provides model-level descrip-
tors and parameter estimates for that model. Models must be uniquely identifi-
able using the descriptors. This is usually established using the load_parameter_frame()
function.

predict_ranef A function that predicts the random effects, takes any named covariates in covariates
as arguments

fixed_only A boolean value indicating if the model produces predictions using only fixed
effects. This is useful when publications do not provide sufficient information
to predict the random effects.

descriptors An optional named list of descriptors that describe the context of the allometric
model

response_definition
A string containing an optional custom response definition, which is used instead
of the description given by the variable naming system.

covariate_definitions
An optional named list of custom covariate definitions that will supersede the
definitions given by the variable naming system. The names of the list must
match the covariate names given in covariates.

model_call 25

Details

Because mixed-effects models already accommodate a grouping structure, MixedEffectsSet tends
to be a much rarer occurrence than FixedEffectsSet and MixedEffectsModel.

Value

An instance of MixedEffectsSet

Slots

parameters A named list of parameters and their values
predict_fn_populated The prediction function populated with the parameter values

specification A tibble::tbl_df of the model specification, which are the parameters and the de-
scriptors together

predict_ranef The function that predicts the random effects

predict_ranef_populated The function that predicts the random effects populated with the fixed
effect parameter estimates

fixed_only A boolean value indicating if the model produces predictions using only fixed effects

model_specifications A tibble::tbl_df of model specifications, where each row reprents one
model identified with descriptors and containing the parameter estimates.

Examples

mixed_effects_set <- MixedEffectsSet(
response = list(
vsia = units::as_units("ft*3")
),
covariates = list(
dsob = units::as_units("in”
),
parameter_names = "a",
predict_ranef = function(dsob, hst) {
list(a_i = 1)
3,
predict_fn = function(dsob) {
(a + a_i) * dsob*2

}?
model_specifications = tibble::tibble(a = c(1, 2))
)
model_call Get the function call for a model
Description

The function call is the allometric model expressed as a function of its covariates. Accessing the
function call is important when determining the order of the covariates given to the prediction
function.

26 predict

Usage

model_call(object)

Arguments

object The allometric model or set for which a function call will be retrieved

Value

A string of the function call

Examples

model_call(brackett_rubra)

predict Predict with an allometric model

Description

Predict with an allometric model
Usage
predict(model, ...)

S4 method for signature 'FixedEffectsModel'
predict(model, ..., output_units = NULL)

S4 method for signature 'MixedEffectsModel’

predict(model, ..., newdata = NULL, output_units = NULL)
Arguments
model The allometric model used for prediction

Additional arguments passed to the predict_fn of the input model

output_units Optionally specify the output units of the model as a string, e.g., "ft*3". The
provided string must be compatible with the units::set_units() function.

newdata A dataframe containing columns that match the names of the arguments given
to predict_ranef. The values of this data represents information from a new
group of observations for which predictions are desired (e.g., a new stand or

plot).

Value

A vector of allometric model predictions

predict_allo 27

Examples

predict(brackett_rubra, 10, 50)
predict(brackett_rubra, 10, 50, output_units = "m*3")

predict_allo Predict allometric attributes using a column of allometric models

Description

A frequent pattern in forest inventory anaylsis is the need to produce predictions of models with the
same functional form, but using different models. predict_allo enables this by allowing the user
to pass a list-column of models as an argument, along with the associated covariates. This pattern
plays well with dplyr functions such as dplyr: :mutate().

Usage
predict_allo(model_list, ...)
Arguments
model_list A list-column of models
Additional arguments passed to each model’s predict_fn
Value

A vector of predictions

Examples

tree_data <- tibble::tibble(
dbh = c(10, 20), ht = c(50, 75), model = c(list(brackett_rubra), list(brackett_acer))
)

tree_data %>%
dplyr::mutate(vol = predict_allo(model, dbh, ht))

28 Publication

Publication Create a publication that contains allometric models

Description

Publication represents a technical or scientific document that contains allometric models. Ini-
tially, publications do not contain models, and models are added using the add_model or add_set
methods.

Usage

Publication(citation, descriptors = 1list())

Arguments
citation The citation of the paper declared using the RefManageR: :BibEntry class
descriptors A named list of descriptors that are defined for all models contained in the pub-
lication.
Value

An instance of class Publication

Slots

citation A RefManageR::BibEntry of the reference publication
response_sets A list containing the model sets indexed by the response variable names

descriptors A named list containing descriptors that are defined for all models in the publication.

Examples

pub <- Publication(
citation = RefManageR: :BibEntry(
key = "test_2000",
bibtype = "article”,

author = "test",
title = "test”,
journal = "test”,
year = 2000,
volume = @

),
descriptors = list(
region = "US-WA"
)
)

select_model 29

select_model Select an allometric model

Description

This is a generic function used to select allometric models out of larger collections, like model_tbl.

Usage

select_model (model_tbl, id)

Arguments
model_tbl A model_tbl object
id The model id or index
Value

An allometric model object

set_params_path Set the parameter search path

Description

Set the parameter search path

Usage

set_params_path(params_path)

Arguments

params_path The file path containing parameter files

30 Taxon

Taxa Group taxons together

Description

Taxa represents a set of taxons. See Taxon(). These are typically used to specify species and other
taxonomic groups that belong to a model.

Usage

Taxa(...)

Arguments

A set of Taxon objects.

Value

An instance of class Taxa

Examples
Taxa(
Taxon(
family = "Pinaceae”,
genus = "Pinus”,
species = "ponderosa”
),
Taxon(
family = "Betulaceae”
)
)
Taxon Create a taxonomic hierarchy
Description

Taxon represents a taxonomic hierarchy (from family through species). This class represents a
number of validity checks to ensure the taxon is correctly structured. A taxon must have at least a
family specified, and neither genus nor species can be specified without the "shallower" layers of
the hierarchy specified first. Group Taxons together with Taxa().

Usage

Taxon(family = NA_character_, genus = NA_character_, species = NA_character_)

toJSON 31

Arguments
family The taxonomic family
genus The taxonomic genus
species The taxonomic species
Value

An instance of class Taxon

Examples

Taxon(
family = "Pinaceae”,
genus = "Pinus”,
species = "ponderosa”

)

Taxon(
family = "Betulaceae”

)

toJSON Convert a model or publication to a JSON representation

Description

This function converts an allometric model or publication into a JSON representation. Primarily,
this is used internally to populate a remotely hosted MongoDatabase.

Usage
toJSON(object, ...)
Arguments
object An allometric model or publication
Additional arguments passed to jsonlite::toJSON
Value

A string containing the JSON representation of the object

Examples

toJSON(brackett_rubra)

32 unnest_models

toJSON, FixedEffectsModel-method
Convert a fixed effects model to a JSON representation

Description

This function converts a fixed effects model into a JSON representation. Primarily, this is used
internally to populate a remotely hosted MongoDatabase.

Usage
S4 method for signature 'FixedEffectsModel'’
toJSON(object, ...)

Arguments
object A fixed effects model

Additional arguments passed to jsonlite::toJSON

Value

A string containing the JSON representation of the object

Examples

toJSON(brackett_rubra, pretty = TRUE)

unnest_models Unnest columns of a dataframe

Description

Unnest columns of a dataframe

Usage

unnest_models(data, cols)

Arguments

data A dataframe

cols A character vector indicating the columns to unnest
Value

The unnested model_tbl

unnest_taxa 33

unnest_taxa Unnest the taxa column of a model_tbl

Description

In some cases it is convenient to expand the taxonomic specifications for each model contained in
the taxa column. This function achieves this, and adds family, genus, and species character
columns. Models with more than one taxon are replicated as new rows.

Usage

unnest_taxa(data)

Arguments

data A model_tbl

Value

A model_tbl with family, genus and species columns attached

unnest_taxa.model_tbl Unnest the taxa column of a model_tbl

Description

In some cases it is convenient to expand the taxonomic specifications for each model contained in
the taxa column. This function achieves this, and adds family, genus, and species character
columns. Models with more than one taxon are replicated as new rows.

Usage

S3 method for class 'model_tbl'
unnest_taxa(data)

Arguments

data A model_tbl

Value

A model_tbl with family, genus and species columns attached

34 %in%, Taxon,character-method

%in%, Taxon,character-method
Check if a Taxon contains a character

Description

Check if a Taxon contains a character

Usage

S4 method for signature 'Taxon,character'
X %in% table

Arguments
X A Taxon object
table A character vector
Value

TRUE or FALSE indicating if any of the Taxa fields appear in the character.

Index

x datasets model_call, 25
brackett_acer, 6
brackett_rubra, 6 predict, 26
fia_trees,7 predict,FixedEffectsModel-method
==,FixedEffectsModel, FixedEffectsModel-method, (predict), 26
3 predict,MixedEffectsModel-method
== MixedEffectsModel,MixedEffectsModel-method, (predict), 26
4 predict_allo, 27
%in%,Taxon, character-method, 34 Publication, 28
add_model, 4 select_model, 29
add_set, 5 set_params_path, 29

add_set,Publication-method (add_set), 5

aggregate_taxa, 5 Taxa, 30
allometric (allometric-package), 3 Taxon, 30
toJSON, 31

allometric-package, 3 .
toJSON, FixedEffectsModel-method, 32

brackett_acer, 6

brackett_rubra, 6 unnest_models, 32

unnest_taxa, 33
check_models_installed, 7 unnest_taxa.model_tbl, 33

fia_trees, 7
FixedEffectsModel, 8
FixedEffectsSet, 9

get_component_defs, 11
get_measure_defs, 12
get_params_path, 12
get_variable_def, 13

ingest_models, 13
install_models, 14

load_models, 14
load_parameter_frame, 20

map_publications, 20
merge.model_tbl, 21
MixedEffectsModel, 22
MixedEffectsSet, 23

35

	allometric-package
	==,FixedEffectsModel,FixedEffectsModel-method
	==,MixedEffectsModel,MixedEffectsModel-method
	add_model
	add_set
	aggregate_taxa
	brackett_acer
	brackett_rubra
	check_models_installed
	fia_trees
	FixedEffectsModel
	FixedEffectsSet
	get_component_defs
	get_measure_defs
	get_params_path
	get_variable_def
	ingest_models
	install_models
	load_models
	load_parameter_frame
	map_publications
	merge.model_tbl
	MixedEffectsModel
	MixedEffectsSet
	model_call
	predict
	predict_allo
	Publication
	select_model
	set_params_path
	Taxa
	Taxon
	toJSON
	toJSON,FixedEffectsModel-method
	unnest_models
	unnest_taxa
	unnest_taxa.model_tbl
	%in%,Taxon,character-method
	Index

