bestNormalize: Normalizing Transformation Functions

Estimate a suite of normalizing transformations, including a new adaptation of a technique based on ranks which can guarantee normally distributed transformed data if there are no ties: ordered quantile normalization (ORQ). ORQ normalization combines a rank-mapping approach with a shifted logit approximation that allows the transformation to work on data outside the original domain. It is also able to handle new data within the original domain via linear interpolation. The package is built to estimate the best normalizing transformation for a vector consistently and accurately. It implements the Box-Cox transformation, the Yeo-Johnson transformation, three types of Lambert WxF transformations, and the ordered quantile normalization transformation. It estimates the normalization efficacy of other commonly used transformations, and it allows users to specify custom transformations or normalization statistics. Finally, functionality can be integrated into a machine learning workflow via recipes.

Version: 1.9.1
Depends: R (≥ 3.1.0)
Imports: LambertW (≥ 0.6.5), nortest, dplyr, doParallel, foreach, doRNG, recipes, tibble, methods, butcher, purrr, generics
Suggests: knitr, rmarkdown, MASS, testthat, mgcv, parallel, ggplot2, scales, rlang, covr
Published: 2023-08-18
DOI: 10.32614/CRAN.package.bestNormalize
Author: Ryan Andrew Peterson ORCID iD [aut, cre] (<https://orcid.org/0000-0002-4650-5798>)
Maintainer: Ryan Andrew Peterson <ryan.a.peterson at cuanschutz.edu>
License: GPL-3
URL: https://petersonr.github.io/bestNormalize/, https://github.com/petersonR/bestNormalize
NeedsCompilation: no
Citation: bestNormalize citation info
Materials: README NEWS
CRAN checks: bestNormalize results

Documentation:

Reference manual: bestNormalize.pdf
Vignettes: bestNormalize
Customization within bestNormalize

Downloads:

Package source: bestNormalize_1.9.1.tar.gz
Windows binaries: r-devel: bestNormalize_1.9.1.zip, r-release: bestNormalize_1.9.1.zip, r-oldrel: bestNormalize_1.9.1.zip
macOS binaries: r-release (arm64): bestNormalize_1.9.1.tgz, r-oldrel (arm64): bestNormalize_1.9.1.tgz, r-release (x86_64): bestNormalize_1.9.1.tgz, r-oldrel (x86_64): bestNormalize_1.9.1.tgz
Old sources: bestNormalize archive

Reverse dependencies:

Reverse imports: LongDat, phytoclass, povmap, RESIDE, tLOH
Reverse suggests: designit, mlr3pipelines

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bestNormalize to link to this page.