
Single Species Vignette

P Galante

updated 12 October 2023

Single species range change metrics

Translating a species’ current distribution into meaningful conservation metrics in a repeatable and transpar-
ent way to inform conservation planning and decision-making remains an outstanding issue in conservation
biology. By using a species distribution model (SDM), as well as landscape requirements (e.g., forest cover),
we can mask the output of an SDM to only those areas likely to be suitable to estimate the species’ current
range (e.g., in maskRangeR. From these reduced model outputs, upper bounds of IUCN metrics regarding
area of occupancy (AOO) and extent of occurrence (EOO) can be calculated to inform the assessment of
a species’ conservation status, in combination with other information [1]. In addition, we can calculate the
proportion of a species’ range size that is protected, that is threatened, or that is associated with different
land cover types. If past or future model projections or geospatial data on habitat for masking are available,
we can also calculate and visualize change in these metrics over time. These change metrics can then inform
IUCN red-listing and forward-thinking conservation planning. We provide an example below to calculate
these metrics for the olinguito [2] using the changeRangeR package. Beyond single species, we can combine
models from multiple species to calculate community-level metrics of conservation interest to learn more
about this see our multi-species vignettes (see Biodiversity metrics vignette).

[1] IUCN Standards and Petitions Committee. 2022. Guidelines for Using the IUCN Red List Categories
and Criteria. Version 15.1. Prepared by the Standards and Petitions Committee. Available from: https:
//www.iucnredlist.org/resources/redlistguidelines

[2] Helgen, K.M., Miguel Pinto, C., Kays, R., Helgen, L.E., Tsuchiya, M. T. N., Quinn, A., Wilson, D.E.,
Maldonado, J.E. (2013) Taxonomic revision of the olingos (Bassaricyon), with description of a new species,
the Olinguito. Zookeys, 324, 1-83. https://doi.org/10.3897/zookeys.324.5827.

Load the packages you’ll need

library(changeRangeR)

library(raster)

library(sf)

library(dplyr)

Range size

Calculating range size is as simple as multiplying the number of cells in a binary raster by the resolution (in
km) squared. This method is useful when your raster is projected. For unprojected rasters, see ?raster::area

p <- raster(paste0(system.file(package="changeRangeR"), "/extdata/DemoData/SDM/Forest_suitable_projected_coarse.tif"

Check that your raster is projected in meters

crs(p)

1

https://www.iucnredlist.org/resources/redlistguidelines
https://www.iucnredlist.org/resources/redlistguidelines
https://doi.org/10.3897/zookeys.324.5827

Coordinate Reference System:

Deprecated Proj.4 representation:

+proj=utm +zone=18 +south +datum=WGS84 +units=m +no_defs

WKT2 2019 representation:

PROJCRS["unknown",

BASEGEOGCRS["unknown",

DATUM["World Geodetic System 1984",

ELLIPSOID["WGS 84",6378137,298.257223563,

LENGTHUNIT["metre",1]],

ID["EPSG",6326]],

PRIMEM["Greenwich",0,

ANGLEUNIT["degree",0.0174532925199433],

ID["EPSG",8901]]],

CONVERSION["UTM zone 18S",

METHOD["Transverse Mercator",

ID["EPSG",9807]],

PARAMETER["Latitude of natural origin",0,

ANGLEUNIT["degree",0.0174532925199433],

ID["EPSG",8801]],

PARAMETER["Longitude of natural origin",-75,

ANGLEUNIT["degree",0.0174532925199433],

ID["EPSG",8802]],

PARAMETER["Scale factor at natural origin",0.9996,

SCALEUNIT["unity",1],

ID["EPSG",8805]],

PARAMETER["False easting",500000,

LENGTHUNIT["metre",1],

ID["EPSG",8806]],

PARAMETER["False northing",10000000,

LENGTHUNIT["metre",1],

ID["EPSG",8807]],

ID["EPSG",17018]],

CS[Cartesian,2],

AXIS["(E)",east,

ORDER[1],

LENGTHUNIT["metre",1,

ID["EPSG",9001]]],

AXIS["(N)",north,

ORDER[2],

LENGTHUNIT["metre",1,

ID["EPSG",9001]]]]

find the number of cells that are not NA

pCells <- ncell(p[!is.na(p)])

Convert the raster resolution to kmˆs

Resolution <- (res(p)/1000)ˆ2

Multiply the two

area <- pCells * Resolution

paste0("area = ", area[1], " kmˆ2")

[1] "area = 93545.7956265521 km^2"

2

EOO

EOO Occurrences

IUCN’s EOO is defined as the area contained within the shortest imaginary (continuous) boundary drawn
to encompass all the known (current) occurrences of a taxon, excluding vagrant localities. This measure
may exclude discontinuities or disjunctions within the overall distribution of a taxon (e.g., large areas of
unsuitable habitat, but see AOO below). The EOO is typically measured by drawing a minimum convex
polygon (MCP, also called a convex hull) around occurrence localities, but this may include many large
areas of obviously unsuitable or unoccupied habitat, making a convex hull around a thresholded SDM more
appropriate. It is important to follow the guidelines of the relevant IUCN SSC SG when contributing EOO
or AOO measurements to enable consistency across assessments. You can read more about IUCN definitions
here. In changeRangeR, users can calculate IUCN’s EOO via two options 1) MCP/convex hull around
occurrence localities, 2) MCP/convex hull area of thresholded (MTP) SDM.

Calculate the extent of occupancy around occurrence localities

locs <- read.csv(paste0(system.file(package="changeRangeR"), "/extdata/DemoData/locs/10KM_thin_2017.csv"))

Look at the first 5 rows. Not that there are three columns: Species, Longitude, Latitude

head(locs)

long lat species X X.1

1 -76.5815 3.5009 Bassaricyon neblina NA 1

2 -75.4988 6.2083 Bassaricyon neblina NA 3

3 -78.7491 -0.4550 Bassaricyon neblina NA 4

4 -76.1152 6.3753 Bassaricyon neblina NA 7

5 -76.4453 1.9270 Bassaricyon neblina NA 8

6 -76.8830 2.5330 Bassaricyon neblina NA 10

Create a minimum convex polygon around the occurrences

eoo <- mcp(locs[,1:2])

WARNING: this minimum convex polygon has no coordinate reference system.

Define the coordinate reference system as unprojected

crs(eoo) <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"

area <- area(eoo)/1000000

area is measured in metersˆ2

paste0(area, " km ˆ2")

[1] "91721.7270949235 km ^2"

EOO SDM

Calculate the extent of occupancy from a thresholded SDM

p <- raster(paste0(system.file(package="changeRangeR"), "/extdata/DemoData/SDM/Climatically_suitable_projected_coarse.tif"

Threshold of the minimum training presence

thr <- min(values(p), na.rm=T)

p[p<thr] <- NA

p.pts <- rasterToPoints(p)

eooSDM <- mcp(p.pts[,1:2])

3

https://www.iucnredlist.org/resources/categories-and-criteria

WARNING: this minimum convex polygon has no coordinate reference system.

aeoosdm <- area(eooSDM)/1000000

paste0(aeoosdm, " meters ˆ2")

[1] "306002.704624902 meters ^2"

AOO

Within the calculated EOO area above, users can calculate the sum of 2x2 km grid cells to calculate the upper
bounds of IUCN’s area of occupancy or AOO. AOO is intended to account for unsuitable or unoccupied
habitats that may be included in the EOO calculations. AOO should be calculated with a standard grid
cell size of 2 km (a cell area of 4 km2) in order to ensure consistency and comparability of results in IUCN
assessments. In changeRanger, users can calculate AOO either 1) with occurrence points, 2) from the pre-
masked thresholded SDM, and 3) from the masked thresholded SDM. It is suggested that users reproject
ranges to an equal area projection for more accurate area-based calculations.

Calculating the areas of occupancy measured in grid cells where the resolution is 2km

AOO occurrence points

Calculate the area of occupancy that contains occurrence records

p <- raster(paste0(system.file(package="changeRangeR"), "/extdata/DemoData/SDM/Climatically_suitable_projected_coarse.tif"

Using unfiltered records

locs <- read.csv(paste0(system.file(package="changeRangeR"), "/extdata/DemoData/locs/All_localities_30n.csv"

locs <- locs[,1:2]

p[!is.na(p)] <- 1

AOOlocs <- AOOarea(r = p, locs = locs)

print(AOOlocs)

$area

Metric km2

1 AOO with records 120

##

$aooRaster

class : RasterLayer

dimensions : 728, 318, 231504 (nrow, ncol, ncell)

resolution : 0.01666667, 0.01666667 (x, y)

extent : -79.87219, -74.57219, -3.986526, 8.14681 (xmin, xmax, ymin, ymax)

crs : +proj=longlat +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +no_defs

source : memory

names : Climatically_suitable_projected_coarse

values : 1, 1 (min, max)

##

##

$aooPixels

class : RasterLayer

dimensions : 728, 318, 231504 (nrow, ncol, ncell)

resolution : 0.01666667, 0.01666667 (x, y)

4

extent : -79.87219, -74.57219, -3.986526, 8.14681 (xmin, xmax, ymin, ymax)

crs : +proj=longlat +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +no_defs

source : memory

names : layer

values : 1, 30 (min, max)

AOO pre-masked SDM

p <- raster(paste0(system.file(package="changeRangeR"), "/extdata/DemoData/SDM/Climatically_suitable_projected_coarse.tif"

Convert to binary

p[!is.na(p)] <- 1

AOO <- AOOarea(r = p)

print(AOO)

$area

Metric km2

1 AOO 106916

##

$aooRaster

class : RasterLayer

dimensions : 574, 248, 142352 (nrow, ncol, ncell)

resolution : 2315.769, 2315.769 (x, y)

extent : -31701.99, 542608.8, 9565472, 10894724 (xmin, xmax, ymin, ymax)

crs : +proj=utm +zone=18 +south +datum=WGS84 +units=m +no_defs

source : memory

names : Climatically_suitable_projected_coarse

values : 1, 1 (min, max)

##

##

$aooPixels

NULL

AOO masked SDM

p <- raster(paste0(system.file(package="changeRangeR"), "/extdata/DemoData/SDM/Forest_suitable_projected_coarse.tif"

Convert to binary

p[!is.na(p)] <- 1

AOO <- AOOarea(r = p)

print(AOO)

$area

Metric km2

1 AOO 86876

##

$aooRaster

class : RasterLayer

dimensions : 574, 248, 142352 (nrow, ncol, ncell)

resolution : 2315.769, 2315.769 (x, y)

extent : -31701.99, 542608.8, 9565472, 10894724 (xmin, xmax, ymin, ymax)

5

crs : +proj=utm +zone=18 +south +datum=WGS84 +units=m +no_defs

source : memory

names : Forest_suitable_projected_coarse

values : 1, 1 (min, max)

##

##

$aooPixels

NULL

Optimized Model Threshold

Choice of model threshold can have downstream implications for calculations of metrics such as IUCN’s
EOO and AOO, when calculated using SDM inputs. changeRanger includes a function for users to choose
model threshold

Determining the best threshold and area for the SDM. For each increment of 0.01 between a user-specified
threshold and the maximum SDM prediction value, the prediction is thresholded to this value to make a
binary raster. This raster is then converted to points, which are used to delineate a trial MCP. Each trial
MCP is spatially intersected with the original MCP (based on the occurrence coordinates) and the original
occurrence points. The Jaccard similarity index is calculated to determine geographic similarity between the
trial and observed MCP. The trial MCP is also spatially intersected with the original occurrence points to
determine how many were omitted. The “best” MCP is the one that has the highest JSI and also omits the
least original occurrence points.

p <- raster(paste0(system.file(package="changeRangeR"), "/extdata/DemoData/SDM/olinguitoSDM_coarse.tif"))

xy <- read.csv(paste0(system.file(package="changeRangeR"), "/extdata/DemoData/locs/10KM_thin_2017.csv"))

ch.orig <- mcp(xy[,1:2])

WARNING: this minimum convex polygon has no coordinate reference system.

thr <- 0.3380209

sf_use_s2(FALSE)

Spherical geometry (s2) switched off

SDMeoo <- mcpSDM(p = p, xy = xy[,1:2], ch.orig = ch.orig, thr = thr)

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

6

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

7

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

although coordinates are longitude/latitude, st_intersection assumes that they

are planar

Check the output

SDMeoo

$jsi

8

[1] 0.0520949123 0.0520999611 0.0523725493 0.0524454042 0.0526794692

[6] 0.0563632017 0.0588234360 0.0588312191 0.0589303597 0.0589689001

[11] 0.0592527595 0.0593836749 0.0594161268 0.0598221225 0.0600188602

[16] 0.0601101614 0.0603700060 0.0603805727 0.0603805727 0.0609056693

[21] 0.0609251320 0.0612313249 0.0619024619 0.0620456869 0.0621879378

[26] 0.0621998926 0.0621998926 0.0628490252 0.0630336531 0.0633911471

[31] 0.0635252300 0.0635441324 0.0638238938 0.0639645525 0.0640185440

[36] 0.0644597243 0.0646646319 0.0647971887 0.0698927310 0.0700242843

[41] 0.0703382357 0.0707539347 0.0713006332 0.0717607409 0.0718935971

[46] 0.0725529982 0.0732138637 0.0732789739 0.0743536101 0.0751226010

[51] 0.0008306471 0.0008515118 0.0007272680 0.0015238333 0.0010513026

[56] 0.0009064591 0.0000000000 0.0000000000

##

$thr

[1] 0.3380209 0.3480209 0.3580209 0.3680209 0.3780209 0.3880209 0.3980209

[8] 0.4080209 0.4180209 0.4280209 0.4380209 0.4480209 0.4580209 0.4680209

[15] 0.4780209 0.4880209 0.4980209 0.5080209 0.5180209 0.5280209 0.5380209

[22] 0.5480209 0.5580209 0.5680209 0.5780209 0.5880209 0.5980209 0.6080209

[29] 0.6180209 0.6280209 0.6380209 0.6480209 0.6580209 0.6680209 0.6780209

[36] 0.6880209 0.6980209 0.7080209 0.7180209 0.7280209 0.7380209 0.7480209

[43] 0.7580209 0.7680209 0.7780209 0.7880209 0.7980209 0.8080209 0.8180209

[50] 0.8280209 0.8380209 0.8480209 0.8580209 0.8680209 0.8780209 0.8880209

[57] 0.8980209 0.9080209

##

$ov.pts

[1] 18

[26] 18

[51] 1 1 1 1 1 1 0 0

##

$best.fit

class : SpatialPolygons

features : 1

extent : -83.85417, -72.0625, -4.5625, 11.14583 (xmin, xmax, ymin, ymax)

crs : +proj=longlat +datum=WGS84 +no_defs

##

$best.fit.ind

[1] 50

Ratio overlap

The function ratioOverlap allows changeRangeR users to calculate the proportion overlap of a species’ range
with other features, for example different land cover classes, habitat types, or ecoregions, different types
of threats (any user-defined georeferenced polygon). In this example, we calculate the proportion of the
Olinguito distribution that overlaps with protected areas in Colombia. NOTE: the protected areas can be
separated by any fields’ categories in a shapefile’s attribute table. NOTE: When overlapping a species’s
range with another raster they must be on the same reasolution before performing the overlap.

Current

r <- raster(paste0(system.file(package="changeRangeR"), "/extdata/DemoData/SDM/Forest_suitable_projected_coarse.tif"

shp <- readRDS(file.path(system.file(package="changeRangeR"), "extdata/DemoData/shapefiles", "WDPA_COL_olinguito_simp.rds"

9

set the projections to match

shp <- spTransform(shp, CRSobj = crs(r))

View the fields

colnames(shp@data)

[1] "NAME" "ORIG_NAME" "DESIG" "DESIG_ENG" "DESIG_TYPE"

Pick the field you are interested in

field <- "DESIG_ENG"

category <- unique(shp$DESIG_ENG)

ratio.Overlap <- ratioOverlap(r = r, shp = shp, field = field, category = category, subfield = F)

Look at the range that is protected

plot(ratio.Overlap$maskedRange[[1]])

−5e+05 0e+00 5e+05 1e+06

96
00

00
0

10
20

00
00

10
80

00
00

0.990

0.995

1.000

1.005

1.010

The proportion of the range that is protected

ratio.Overlap$ratio

[1] "Percentage of range within Specially Protected Area (Cartagena Convention), World Heritage Site (natural

Future

For users that have information on past environmental conditions or future scenarios, they can calculate
changes in metrics over time and view a line graph of those changes. For example, the change in percentage
of forest within species’ range over time.

10

Load shapefile

PA <- readRDS(file.path(system.file(package="changeRangeR"), "extdata/DemoData/shapefiles/vn", "VN_NRs_simp.rds"

load raster

r <- stack(list.files(path = paste0(system.file(package="changeRangeR"), "/extdata/DemoData/SDM/franLang"

Assume PA's will not change, so make list of current protectes areas

futures <- list(PA, PA)

create list of rasters for example

r <- raster::unstack(r)

supply names for r and futures

r.names <- c("BCC.2040.ssp2", "BCC.2060.ssp2")

futures.names <- c("PA1", "PA2")

Define shapefile field and category

field <- "DESIG_ENG"

category <- "All"

Calculate the overlap for each time period

future.ratios <- futureOverlap(r = r, futures = futures, field = field, category = category, futures.names

Plot

Create list of years from which landcover comes

years <- c(2040, 2060)

Plot

plot(x = years, y = future.ratios[,2], type = "b", main = "Percent of SDM predicted to be protected")

2040 2045 2050 2055 2060

1.
7

1.
9

2.
1

2.
3

Percent of SDM predicted to be protected

years

fu
tu

re
.r

at
io

s[
, 2

]

11

Environmental Change Through Time

To see how SDM range size can change with suitable forest cover through time, supply environmental
rasters and a suitability threshold as well as a binary SDM. The environmental rasters must be in the same
coordinate reference system at the SDM.

binaryRange <- raster::raster(paste0(system.file(package="changeRangeR"), "/extdata/DemoData/SDM/Climatically_suitable_projected_coarse.tif"

rStack <- raster::stack(list.files(path = paste0(system.file(package="changeRangeR"), "/extdata/DemoData/MODIS"

rStack <- raster::projectRaster(rStack, binaryRange, method = "bilinear")

threshold <- 50.086735

SDM.time <- envChange(rStack = rStack, binaryRange = binaryRange, threshold = threshold, bound = "lower")

years <- c("2005", "2006", "2008", "2009")

SDM.time$Area

Area

X2005_olinguito_Modis_coarse 49212417

X2006_olinguito_Modis_coarse 30135108

X2008_olinguito_Modis_coarse 12627891

X2009_olinguito_Modis_coarse 24672208

plot(y = SDM.time$Area, x = years, main = "SDM area change", ylab = "area (square m)")

lines(y = SDM.time$Area, x = years)

2005 2006 2007 2008 2009

2e
+

07
3e

+
07

4e
+

07
5e

+
07

SDM area change

years

ar
ea

 (
sq

ua
re

 m
)

12

	Single species range change metrics
	Range size
	EOO
	EOO Occurrences
	EOO SDM

	AOO
	AOO occurrence points
	AOO pre-masked SDM
	AOO masked SDM

	Optimized Model Threshold
	Ratio overlap
	Current
	Future
	Environmental Change Through Time

