Data Analysis using Bootstrap-Coupled ESTimation. Estimation statistics is a simple framework that avoids the pitfalls of significance testing. It uses familiar statistical concepts: means, mean differences, and error bars. More importantly, it focuses on the effect size of one's experiment/intervention, as opposed to a false dichotomy engendered by P values. An estimation plot has two key features: 1. It presents all datapoints as a swarmplot, which orders each point to display the underlying distribution. 2. It presents the effect size as a bootstrap 95% confidence interval on a separate but aligned axes. Estimation plots are introduced in Ho et al., Nature Methods 2019, 1548-7105. <doi:10.1038/s41592-019-0470-3>. The free-to-view PDF is located at <https://www.nature.com/articles/s41592-019-0470-3.epdf?author_access_token=Euy6APITxsYA3huBKOFBvNRgN0jAjWel9jnR3ZoTv0Pr6zJiJ3AA5aH4989gOJS_dajtNr1Wt17D0fh-t4GFcvqwMYN03qb8C33na_UrCUcGrt-Z0J9aPL6TPSbOxIC-pbHWKUDo2XsUOr3hQmlRew%3D%3D>.
Version: | 2023.9.12 |
Depends: | R (≥ 2.10) |
Imports: | ggplot2, cowplot, tidyr, dplyr, tibble, rlang, magrittr, ggbeeswarm, effsize, grid, scales, ggsci, cli, boot, stats, stringr, brunnermunzel, methods |
Suggests: | testthat (≥ 3.0.0), vdiffr, knitr, rmarkdown, kableExtra |
Published: | 2023-10-13 |
DOI: | 10.32614/CRAN.package.dabestr |
Author: | Joses W. Ho [aut] (<https://orcid.org/0000-0002-9186-6322>), Kah Seng Lian [aut], Zhuoyu Wang [aut], Jun Yang Liao [aut], Felicia Low [aut], Tayfun Tumkaya [aut] (<https://orcid.org/0000-0001-8425-3360>), Yishan Mai [cre, ctb] (<https://orcid.org/0000-0002-7199-380X>), Sangyu Xu [ctb] (<https://orcid.org/0000-0002-4927-9204>), Hyungwon Choi [ctb] (<https://orcid.org/0000-0002-6687-3088>), Adam Claridge-Chang [ctb] (<https://orcid.org/0000-0002-4583-3650>), ACCLAB [cph, fnd] |
Maintainer: | Yishan Mai <maiyishan at u.duke.nus.edu> |
License: | Apache License (≥ 2) |
URL: | https://github.com/ACCLAB/dabestr, https://acclab.github.io/dabestr/ |
NeedsCompilation: | no |
Citation: | dabestr citation info |
Materials: | README NEWS |
CRAN checks: | dabestr results |
Package source: | dabestr_2023.9.12.tar.gz |
Windows binaries: | r-devel: dabestr_2023.9.12.zip, r-release: dabestr_2023.9.12.zip, r-oldrel: dabestr_2023.9.12.zip |
macOS binaries: | r-release (arm64): dabestr_2023.9.12.tgz, r-oldrel (arm64): dabestr_2023.9.12.tgz, r-release (x86_64): dabestr_2023.9.12.tgz, r-oldrel (x86_64): dabestr_2023.9.12.tgz |
Old sources: | dabestr archive |
Reverse imports: | permubiome |
Please use the canonical form https://CRAN.R-project.org/package=dabestr to link to this page.