dabestr: Data Analysis using Bootstrap-Coupled Estimation

Data Analysis using Bootstrap-Coupled ESTimation. Estimation statistics is a simple framework that avoids the pitfalls of significance testing. It uses familiar statistical concepts: means, mean differences, and error bars. More importantly, it focuses on the effect size of one's experiment/intervention, as opposed to a false dichotomy engendered by P values. An estimation plot has two key features: 1. It presents all datapoints as a swarmplot, which orders each point to display the underlying distribution. 2. It presents the effect size as a bootstrap 95% confidence interval on a separate but aligned axes. Estimation plots are introduced in Ho et al., Nature Methods 2019, 1548-7105. <doi:10.1038/s41592-019-0470-3>. The free-to-view PDF is located at <https://www.nature.com/articles/s41592-019-0470-3.epdf?author_access_token=Euy6APITxsYA3huBKOFBvNRgN0jAjWel9jnR3ZoTv0Pr6zJiJ3AA5aH4989gOJS_dajtNr1Wt17D0fh-t4GFcvqwMYN03qb8C33na_UrCUcGrt-Z0J9aPL6TPSbOxIC-pbHWKUDo2XsUOr3hQmlRew%3D%3D>.

Version: 2023.9.12
Depends: R (≥ 2.10)
Imports: ggplot2, cowplot, tidyr, dplyr, tibble, rlang, magrittr, ggbeeswarm, effsize, grid, scales, ggsci, cli, boot, stats, stringr, brunnermunzel, methods
Suggests: testthat (≥ 3.0.0), vdiffr, knitr, rmarkdown, kableExtra
Published: 2023-10-13
DOI: 10.32614/CRAN.package.dabestr
Author: Joses W. Ho ORCID iD [aut] (<https://orcid.org/0000-0002-9186-6322>), Kah Seng Lian [aut], Zhuoyu Wang [aut], Jun Yang Liao [aut], Felicia Low [aut], Tayfun Tumkaya ORCID iD [aut] (<https://orcid.org/0000-0001-8425-3360>), Yishan Mai ORCID iD [cre, ctb] (<https://orcid.org/0000-0002-7199-380X>), Sangyu Xu ORCID iD [ctb] (<https://orcid.org/0000-0002-4927-9204>), Hyungwon Choi ORCID iD [ctb] (<https://orcid.org/0000-0002-6687-3088>), Adam Claridge-Chang ORCID iD [ctb] (<https://orcid.org/0000-0002-4583-3650>), ACCLAB [cph, fnd]
Maintainer: Yishan Mai <maiyishan at u.duke.nus.edu>
License: Apache License (≥ 2)
URL: https://github.com/ACCLAB/dabestr, https://acclab.github.io/dabestr/
NeedsCompilation: no
Citation: dabestr citation info
Materials: README NEWS
CRAN checks: dabestr results

Documentation:

Reference manual: dabestr.pdf
Vignettes: Sample Datasets
Controlling Plot Aesthetics
Tutorial: Basics
Tutorial: Delta-Delta
Tutorial: Mini-Meta Delta
Tutorial: Proportion Plots
Tutorial: Repeated Measures

Downloads:

Package source: dabestr_2023.9.12.tar.gz
Windows binaries: r-devel: dabestr_2023.9.12.zip, r-release: dabestr_2023.9.12.zip, r-oldrel: dabestr_2023.9.12.zip
macOS binaries: r-release (arm64): dabestr_2023.9.12.tgz, r-oldrel (arm64): dabestr_2023.9.12.tgz, r-release (x86_64): dabestr_2023.9.12.tgz, r-oldrel (x86_64): dabestr_2023.9.12.tgz
Old sources: dabestr archive

Reverse dependencies:

Reverse imports: permubiome

Linking:

Please use the canonical form https://CRAN.R-project.org/package=dabestr to link to this page.