deforestable: Classify RGB Images into Forest or Non-Forest
Implements two out-of box classifiers presented in <doi:10.48550/arXiv.2112.01063> for
distinguishing forest and non-forest terrain images. Under these algorithms, there are
frequentist approaches: one parametric, using stable distributions, and another one-
non-parametric, using the squared Mahalanobis distance. The package also contains functions for
data handling and building of new classifiers as well as some test data set.
Version: |
3.1.1 |
Depends: |
R (≥ 4.1.0) |
Imports: |
terra, jpeg, plyr, StableEstim, Rcpp (≥ 1.0.9) |
LinkingTo: |
Rcpp, RcppArmadillo |
Suggests: |
testthat (≥ 3.0.0) |
Published: |
2022-10-15 |
DOI: |
10.32614/CRAN.package.deforestable |
Author: |
Jesper Muren
[aut] (<https://orcid.org/0000-0002-9208-5325>),
Dmitry Otryakhin
[aut, cre] (<https://orcid.org/0000-0002-4700-7221>) |
Maintainer: |
Dmitry Otryakhin <d.otryakhin.acad at protonmail.ch> |
License: |
GPL-3 |
NeedsCompilation: |
yes |
SystemRequirements: |
C++11, GDAL (>= 2.2.3), GEOS (>= 3.4.0), PROJ (>=
4.9.3), sqlite3 |
CRAN checks: |
deforestable results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=deforestable
to link to this page.