Simple Principal Components Analysis (PCA) and (Multiple)
Correspondence Analysis (CA) based on the Singular Value Decomposition
(SVD). This package provides S4 classes and methods to compute,
extract, summarize and visualize results of multivariate data
analysis. It also includes methods for partial bootstrap validation
described in Greenacre (1984, ISBN: 978-0-12-299050-2) and Lebart et
al. (2006, ISBN: 978-2-10-049616-7).
Version: |
0.11.0 |
Depends: |
R (≥ 3.5) |
Imports: |
arkhe (≥ 1.9.0), graphics, grDevices, khroma (≥ 1.14.0), methods, utils |
Suggests: |
knitr, markdown, rsvg, svglite, tinysnapshot, tinytest |
Published: |
2025-01-09 |
DOI: |
10.32614/CRAN.package.dimensio |
Author: |
Nicolas Frerebeau
[aut, cre] (<https://orcid.org/0000-0001-5759-4944>),
Jean-Baptiste Fourvel
[ctb]
(<https://orcid.org/0000-0002-1061-4642>),
Brice Lebrun
[ctb] (<https://orcid.org/0000-0001-7503-8685>, Logo designer),
Université Bordeaux Montaigne [fnd],
CNRS [fnd] |
Maintainer: |
Nicolas Frerebeau <nicolas.frerebeau at u-bordeaux-montaigne.fr> |
BugReports: |
https://github.com/tesselle/dimensio/issues |
License: |
GPL (≥ 3) |
URL: |
https://packages.tesselle.org/dimensio/,
https://github.com/tesselle/dimensio |
NeedsCompilation: |
no |
Citation: |
dimensio citation info |
Materials: |
README NEWS |
CRAN checks: |
dimensio results |