doFuture: Use Foreach to Parallelize via the Future Framework

The 'future' package provides a unifying parallelization framework for R that supports many parallel and distributed backends. The 'foreach' package provides a powerful API for iterating over an R expression in parallel. The 'doFuture' package brings the best of the two together. There are two alternative ways to use this package. The recommended approach is to use 'y <- foreach(...) %dofuture% { ... }', which does not require using 'registerDoFuture()' and has many advantages over '%dopar%'. The alternative is the traditional 'foreach' approach by registering the 'foreach' adapter 'registerDoFuture()' and so that 'y <- foreach(...) %dopar% { ... }' runs in parallelizes with the 'future' framework.

Version: 1.0.1
Depends: foreach (≥ 1.5.0), future (≥ 1.32.0)
Imports: future.apply, globals, iterators, parallel, utils
Suggests: doRNG (≥ 1.8.2), markdown, R.rsp
Published: 2023-12-20
DOI: 10.32614/CRAN.package.doFuture
Author: Henrik Bengtsson ORCID iD [aut, cre, cph]
Maintainer: Henrik Bengtsson <henrikb at braju.com>
BugReports: https://github.com/HenrikBengtsson/doFuture/issues
License: LGPL-2.1 | LGPL-3 [expanded from: LGPL (≥ 2.1)]
URL: https://doFuture.futureverse.org, https://github.com/HenrikBengtsson/doFuture
NeedsCompilation: no
Citation: doFuture citation info
Materials: NEWS
In views: HighPerformanceComputing
CRAN checks: doFuture results

Documentation:

Reference manual: doFuture.pdf
Vignettes: doFuture: An Overview on using Foreach to Parallelize via the Future Framework
Foreach Iteration using Futures via %dopar%
Foreach Iteration using Futures via %dofuture%

Downloads:

Package source: doFuture_1.0.1.tar.gz
Windows binaries: r-devel: doFuture_1.0.1.zip, r-release: doFuture_1.0.1.zip, r-oldrel: doFuture_1.0.1.zip
macOS binaries: r-release (arm64): doFuture_1.0.1.tgz, r-oldrel (arm64): doFuture_1.0.1.tgz, r-release (x86_64): doFuture_1.0.1.tgz, r-oldrel (x86_64): doFuture_1.0.1.tgz
Old sources: doFuture archive

Reverse dependencies:

Reverse depends: distantia
Reverse imports: antaresEditObject, baskexact, basksim, envi, fastml, flexFitR, funGp, futureverse, fxTWAPLS, GeDS, GeoModels, hwep, kergp, latentcor, LWFBrook90R, multilevelcoda, nebula, parseRPDR, pliman, rechaRge, remiod, rpm, segtest, SharkDemography, simtrial, skpr, sparrpowR, sphunif, stacks, survstan, TAD, tglkmeans, tune, updog, vmeasur, WARDEN, WeightedCluster
Reverse suggests: bhmbasket, ISAnalytics, kernelshap, ldsr, mikropml, momentuHMM, MOODE, mslp, oncomsm, progressr, projpred, robust2sls, SCdeconR, semPower, sRACIPE, ssdtools

Linking:

Please use the canonical form https://CRAN.R-project.org/package=doFuture to link to this page.