The goal of fftab is to make working with fft’s in R
easier and more consistent. It follows the tidy philosophy by working
with tabular data rather than lists, vectors, and so on. Typical signal
processing operations can thus often be accomplished in a single
dplyr::mutate
call or by a call to similar functions. Some
examples are shown here.
You can install the development version of fftab from GitHub with:
# install.packages("pak")
::pak("thk686/fftab") pak
Using fftab with ggplot.
fftab(sunspot.month, norm = TRUE) |>
to_rect(.keep = "all") |>
to_polr(.keep = "all") |>
print(n = 5) ->
ssm.fft#> # A tibble: 3,177 × 6
#> .dim_1 fx re im mod arg
#> <dbl> <cpl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 51.96+0.00i 52.0 0 52.0 0
#> 2 0.00378 4.37+4.99i 4.37 4.99 6.63 0.852
#> 3 0.00755 -0.86+5.08i -0.860 5.08 5.15 1.74
#> 4 0.0113 -2.65-5.70i -2.65 -5.70 6.29 -2.01
#> 5 0.0151 -4.64-0.59i -4.64 -0.586 4.68 -3.02
#> # ℹ 3,172 more rows
ggplot(fortify(sunspot.month)) +
geom_line(aes(x = Index, y = Data)) +
ylab("Sunspot count") +
xlab("Year") +
theme_bw() ->
p1
<- c(1, 0.1, 0.01)
xlocs <- c("1", "10", "100")
xlabs
|>
ssm.fft ::filter(.dim_1 > 0) |>
dplyrggplot() +
geom_point(aes(x = .dim_1, y = mod)) +
geom_smooth(aes(x = .dim_1, y = mod)) +
scale_y_continuous(trans = "log", labels = function(y) signif(y, 1)) +
scale_x_continuous(trans = "log", breaks = xlocs, labels = xlabs) +
xlab("Cycle duration (years)") +
ylab("Mean amplitude") +
theme_bw() ->
p2
print(p1 / p2)