This vignette focuses on what git2rdata
does to make
storing dataframes under version control more efficient and convenient.
vignette("plain_text", package = "git2rdata")
describes all
details on the actual file format. Hence we will not discuss the
optimize
and na
arguments to the
write_vc()
function.
We will not illustrate the efficiency of write_vc()
and
read_vc()
.
vignette("efficiency", package = "git2rdata")
covers those
topics.
# Create a directory in tempdir
root <- tempfile(pattern = "git2r-")
dir.create(root)
# Create dummy data
set.seed(20190222)
x <- data.frame(
x = sample(LETTERS),
y = factor(
sample(c("a", "b", NA), 26, replace = TRUE),
levels = c("a", "b", "c")
),
z = c(NA, 1:25),
abc = c(rnorm(25), NA),
def = sample(c(TRUE, FALSE, NA), 26, replace = TRUE),
timestamp = seq(
as.POSIXct("2018-01-01"),
as.POSIXct("2019-01-01"),
length = 26
),
stringsAsFactors = FALSE
)
str(x)
#> 'data.frame': 26 obs. of 6 variables:
#> $ x : chr "V" "U" "Z" "W" ...
#> $ y : Factor w/ 3 levels "a","b","c": 1 2 NA NA 1 NA 2 1 NA 1 ...
#> $ z : int NA 1 2 3 4 5 6 7 8 9 ...
#> $ abc : num -0.382 -0.42 -0.917 0.387 -0.992 ...
#> $ def : logi TRUE FALSE NA FALSE NA NA ...
#> $ timestamp: POSIXct, format: "2018-01-01 00:00:00" "2018-01-15 14:24:00" ...
A critical assumption made by git2rdata
is that the
dataframe itself contains all information. Each row is an observation,
each column is a variable. The dataframe has colnames
but
no rownames
. This implies that two observations switching
place does not alter the information content. Nor does switching two
variables.
Version control systems like git,
subversion or mercurial focus on accurately
keeping track of any change in the files. Two observations
switching place in a plain text file is a change, although the
information content1 doesn’t change. git2rdata
helps the user to prepare the plain text files in such a way that any
change in the version history is an actual change in the information
content.
Version control systems often track changes in plain text files based on row based differences. In layman’s terms they record lines removed from and inserted in the file at what location. Changing an existing line implies removing the old version and inserting the new one. The minimal example below illustrates this.
Original version
A,B
1,10
2,11
3,12
Altered version. The row containing 1, 10
moves to the
last line. The row containing 3,12
changed to
3,0
.
A,B
2,11
3,0
1,10
Diff between original and altered version. Notice than we have a deletion of two lines and two insertions.
Ensuring that the observations are always sorted in the same way thus helps minimizing the diff. The sorted version of the same altered version looks like the example below.
A,B
1,10
2,11
3,0
Diff between original and the sorted alternate version. Notice that all changes revert to actual changes in the information content. Another benefit is that changes are easily spotted in the diff. A deletion without insertion on the next line is a removed observation. An insertion without preceding deletion is a new observation. A deletion followed by an insertion is an updated observation.
This is where the sorting
argument comes into play. If
this argument is not provided when writing a file for the first time, it
will yield a warning about the lack of sorting. write_vc()
then writes the observations in their current order. New versions of the
file will not apply any sorting either, leaving this burden to the user.
The changed hash for the data file illustrates this in the example
below. The metadata hash remains the same.
library(git2rdata)
write_vc(x, file = "row_order", root = root)
#> Warning in meta.data.frame(x, optimize = optimize, na = na, sorting = sorting, :
#> `digits` was not set. Setting is automatically to 6. See ?meta
#> Warning: No sorting applied.
#> Sorting is strongly recommended in combination with version control.
#> 2b0ac8243ca27ed3d983ba8fc27a3bca7ca8f39d 79e04b2ecff2c1eac8ededc69ba09311f38f74da
#> "row_order.tsv" "row_order.yml"
write_vc(x[sample(nrow(x)), ], file = "row_order", root = root)
#> Warning: No sorting applied.
#> Sorting is strongly recommended in combination with version control.
#> 8b6ba8f35315ad27871c5e4725d2430089ba0942 79e04b2ecff2c1eac8ededc69ba09311f38f74da
#> "row_order.tsv" "row_order.yml"
sorting
should contain a vector of variable names. The
observations are automatically sorted along these variables. Now we get
an error because the set of sorting variables has changed. The metadata
stores the set of sorting variables. Changing the sorting can
potentially lead to large diffs, which git2rdata
tries to
avoid as much as possible.
From this moment on we will store the output of
write_vc()
in an object reduce output.
fn <- write_vc(x, "row_order", root, sorting = "y")
#> Warning: Sorting on 'y' results in ties.
#> Add extra sorting variables to ensure small diffs.
#> Error: The data was not overwritten because of the issues below.
#> See vignette('version_control', package = 'git2rdata') for more information.
#>
#> - The sorting variables changed.
#> - Sorting for the new data: 'y'.
#> - Sorting for the old data: .
Using strict = FALSE
turns such errors into warnings and
allows to update the file. Notice that we get a new warning: the
variable we used for sorting resulted in ties, thus the order of the
observations is not guaranteed to be stable. The solution is to use more
or different variables. We’ll need strict = FALSE
again to
override the change in sorting variables.
fn <- write_vc(x, "row_order", root, sorting = "y", strict = FALSE)
#> Warning: Sorting on 'y' results in ties.
#> Add extra sorting variables to ensure small diffs.
#> Warning: Changes in the metadata may lead to unnecessarily large diffs.
#> See vignette('version_control', package = 'git2rdata') for more information.
#>
#> - The sorting variables changed.
#> - Sorting for the new data: 'y'.
#> - Sorting for the old data: .
fn <- write_vc(x, "row_order", root, sorting = c("y", "x"), strict = FALSE)
#> Warning: Changes in the metadata may lead to unnecessarily large diffs.
#> See vignette('version_control', package = 'git2rdata') for more information.
#>
#> - The sorting variables changed.
#> - Sorting for the new data: 'y', 'x'.
#> - Sorting for the old data: 'y'.
Once we have defined the sorting, we may omit the
sorting
argument when writing new versions.
write_vc
uses the sorting as defined in the existing
metadata. It checks for potential ties. Ties results in a warning.
print_file <- function(file, root, n = -1) {
fn <- file.path(root, file)
data <- readLines(fn, n = n)
cat(data, sep = "\n")
}
print_file("row_order.yml", root, 7)
#> ..generic:
#> git2rdata: 0.5.0
#> optimize: yes
#> NA string: NA
#> sorting:
#> - 'y'
#> - x
fn <- write_vc(x[sample(nrow(x)), ], "row_order", root)
fn <- write_vc(x[sample(nrow(x)), ], "row_order", root, sorting = c("y", "x"))
fn <- write_vc(x[sample(nrow(x), replace = TRUE), ], "row_order", root)
#> Warning: Sorting on 'y', 'x' results in ties.
#> Add extra sorting variables to ensure small diffs.
The order of the variables (columns) has an even bigger impact on a
row based diff. Let’s revisit our minimal example. Suppose that we swap
A
and B
from our original example. The new data looks as
below.
B,A
10,1
11,2
13,3
The resulting diff is maximal because every single row changed. Yet
none of the information changed. Hence, maintaining column order is
crucial when storing dataframes as plain text files under version
control. The vignette("efficiency", package = "git2rdata")
vignette illustrates this on a more realistic data set.
When write_vc()
writes a dataframe for the first time,
it stores the original order of the columns in the metadata. From that
moment on, write_vc()
uses the order stored in the
metadata. The example below writes the same data set twice. The second
version contains identical information but randomizes the order of the
observations and the columns. The sorting by the internals of
write_vc()
will undo this randomization, resulting in an
unchanged file.
write_vc(x, "column_order", root, sorting = c("x", "abc"))
#> Warning in meta.data.frame(x, optimize = optimize, na = na, sorting = sorting, :
#> `digits` was not set. Setting is automatically to 6. See ?meta
#> a9dcf3e5c2c2b820683c66de8e97c70826218670 0d8985d9b4bb134b5381581f854c51447f8c9300
#> "column_order.tsv" "column_order.yml"
print_file("column_order.tsv", root, n = 5)
#> x y z abc def timestamp
#> A 1 18 0.572193 0 1537470720
#> B 2 14 -1.64221 0 1532424960
#> C NA 5 0.0228714 NA 1521072000
#> D 2 20 -0.683184 NA 1539993600
write_vc(x[sample(nrow(x)), sample(ncol(x))], "column_order", root)
#> a9dcf3e5c2c2b820683c66de8e97c70826218670 0d8985d9b4bb134b5381581f854c51447f8c9300
#> "column_order.tsv" "column_order.yml"
print_file("column_order.tsv", root, n = 5)
#> x y z abc def timestamp
#> A 1 18 0.572193 0 1537470720
#> B 2 14 -1.64221 0 1532424960
#> C NA 5 0.0228714 NA 1521072000
#> D 2 20 -0.683184 NA 1539993600
vignette("plain_text", package = "git2rdata")
and
vignette("efficiency", package = "git2rdata")
illustrate
how we can store a factor more efficiently when storing their index in
the data file and the indices and labels in the metadata. We take this
even a bit further: what happens if new data arrives and we need an
extra factor level?
old <- data.frame(color = c("red", "blue"), stringsAsFactors = TRUE)
write_vc(old, "factor", root, sorting = "color")
#> ade0e1d70155140e5115f71efae4b15b27287b37 03c3898451e17cf436da59dd0e712606ea63a838
#> "factor.tsv" "factor.yml"
print_file("factor.yml", root)
#> ..generic:
#> git2rdata: 0.5.0
#> optimize: yes
#> NA string: NA
#> sorting: color
#> hash: 03c3898451e17cf436da59dd0e712606ea63a838
#> data_hash: ade0e1d70155140e5115f71efae4b15b27287b37
#> color:
#> class: factor
#> labels:
#> - blue
#> - red
#> index:
#> - 1
#> - 2
#> ordered: no
Let’s add an observation with a new factor level. If we store the
updated dataframe in a new file, we see that the indices are different.
The factor level "blue"
remains unchanged, but
"red"
becomes the third level and get index 3
instead of index 2
. This could lead to a large diff whereas
the potential semantics (and thus the information content) are not
changed.
updated <- data.frame(
color = c("red", "green", "blue"),
stringsAsFactors = TRUE
)
write_vc(updated, "factor2", root, sorting = "color")
#> 74f0f3c72a5041344924bed321efedf45f5c5250 f2cc274714fef0b55e17ae432e99b73e5c880e2d
#> "factor2.tsv" "factor2.yml"
print_file("factor2.yml", root)
#> ..generic:
#> git2rdata: 0.5.0
#> optimize: yes
#> NA string: NA
#> sorting: color
#> hash: f2cc274714fef0b55e17ae432e99b73e5c880e2d
#> data_hash: 74f0f3c72a5041344924bed321efedf45f5c5250
#> color:
#> class: factor
#> labels:
#> - blue
#> - green
#> - red
#> index:
#> - 1
#> - 2
#> - 3
#> ordered: no
When we try to overwrite the original data with the updated version,
we get an error because there is a change in factor levels and / or
indices. In this specific case, we decided that the change is OK and
force the writing by setting strict = FALSE
. Notice that
the original labels ("blue"
and "red"
) keep
their index, the new level ("green"
) gets the first
available index number.
write_vc(updated, "factor", root)
#> Error: The data was not overwritten because of the issues below.
#> See vignette('version_control', package = 'git2rdata') for more information.
#>
#> - New factor labels for 'color'.
#> - New indices for 'color'.
fn <- write_vc(updated, "factor", root, strict = FALSE)
#> Warning: Changes in the metadata may lead to unnecessarily large diffs.
#> See vignette('version_control', package = 'git2rdata') for more information.
#>
#> - New factor labels for 'color'.
#> - New indices for 'color'.
print_file("factor.yml", root)
#> ..generic:
#> git2rdata: 0.5.0
#> optimize: yes
#> NA string: NA
#> sorting: color
#> hash: e0ed4c773b2179346042fef6f8c22c42c22a7c00
#> data_hash: bf0c9f17b88b2e8768abc914349bb32e86503654
#> color:
#> class: factor
#> labels:
#> - blue
#> - green
#> - red
#> index:
#> - 1
#> - 3
#> - 2
#> ordered: no
The next example removes the "blue"
level and switches
the order of the remaining levels. Notice that the meta data retains the
existing indices. The order of the labels and indices reflects their new
ordering.
deleted <- data.frame(
color = factor(c("red", "green"), levels = c("red", "green"))
)
write_vc(deleted, "factor", root, sorting = "color", strict = FALSE)
#> Warning: Changes in the metadata may lead to unnecessarily large diffs.
#> See vignette('version_control', package = 'git2rdata') for more information.
#>
#> - New factor labels for 'color'.
#> - New indices for 'color'.
#> 1d15f9b5c154535e2e7d2d5cb5619af7da41a066 3cadfe4021fe5e2990d0bb057100c608e3b602fa
#> "factor.tsv" "factor.yml"
print_file("factor.yml", root)
#> ..generic:
#> git2rdata: 0.5.0
#> optimize: yes
#> NA string: NA
#> sorting: color
#> hash: 3cadfe4021fe5e2990d0bb057100c608e3b602fa
#> data_hash: 1d15f9b5c154535e2e7d2d5cb5619af7da41a066
#> color:
#> class: factor
#> labels:
#> - red
#> - green
#> index:
#> - 2
#> - 3
#> ordered: no
Changing a factor to an ordered factor or vice versa will also keep existing level indices.
ordered <- data.frame(
color = factor(c("red", "green"), levels = c("red", "green"), ordered = TRUE)
)
write_vc(ordered, "factor", root, sorting = "color", strict = FALSE)
#> Warning: Changes in the metadata may lead to unnecessarily large diffs.
#> See vignette('version_control', package = 'git2rdata') for more information.
#>
#> - 'color' changes from nominal to ordinal.
#> 1d15f9b5c154535e2e7d2d5cb5619af7da41a066 57ff604596058d60e97fbb9c93ee6869f32c1850
#> "factor.tsv" "factor.yml"
print_file("factor.yml", root)
#> ..generic:
#> git2rdata: 0.5.0
#> optimize: yes
#> NA string: NA
#> sorting: color
#> hash: 57ff604596058d60e97fbb9c93ee6869f32c1850
#> data_hash: 1d15f9b5c154535e2e7d2d5cb5619af7da41a066
#> color:
#> class: factor
#> labels:
#> - red
#> - green
#> index:
#> - 2
#> - 3
#> ordered: yes
The example below will store a dataframe, relabel the factor levels
and store it again using write_vc()
. Notice the update of
both the labels and the indices. Hence creating a large diff, where
updating the labels would do.
write_vc(old, "write_vc", root, sorting = "color")
#> ade0e1d70155140e5115f71efae4b15b27287b37 03c3898451e17cf436da59dd0e712606ea63a838
#> "write_vc.tsv" "write_vc.yml"
print_file("write_vc.yml", root)
#> ..generic:
#> git2rdata: 0.5.0
#> optimize: yes
#> NA string: NA
#> sorting: color
#> hash: 03c3898451e17cf436da59dd0e712606ea63a838
#> data_hash: ade0e1d70155140e5115f71efae4b15b27287b37
#> color:
#> class: factor
#> labels:
#> - blue
#> - red
#> index:
#> - 1
#> - 2
#> ordered: no
relabeled <- old
# translate the color names to Dutch
levels(relabeled$color) <- c("blauw", "rood")
write_vc(relabeled, "write_vc", root, strict = FALSE)
#> Warning: Changes in the metadata may lead to unnecessarily large diffs.
#> See vignette('version_control', package = 'git2rdata') for more information.
#>
#> - New factor labels for 'color'.
#> - New indices for 'color'.
#> bcf85634c3b33377842b37e4d21c3546f7572055 f6730454185caeb173c6883ce56200c376975567
#> "write_vc.tsv" "write_vc.yml"
print_file("write_vc.yml", root)
#> ..generic:
#> git2rdata: 0.5.0
#> optimize: yes
#> NA string: NA
#> sorting: color
#> hash: f6730454185caeb173c6883ce56200c376975567
#> data_hash: bcf85634c3b33377842b37e4d21c3546f7572055
#> color:
#> class: factor
#> labels:
#> - blauw
#> - rood
#> index:
#> - 3
#> - 4
#> ordered: no
We created relabel()
, which changes the labels in the
meta data while maintaining their indices. It takes three arguments: the
name of the data file, the root and the change. change
accepts two formats, a list or a dataframe. The name of the list must
match with the variable name of a factor in the data. Each element of
the list must be a named vector, the name being the existing label and
the value the new label. The dataframe format requires a
factor
, old
and new
variable with
one row for each change in label.
write_vc(old, "relabel", root, sorting = "color")
#> ade0e1d70155140e5115f71efae4b15b27287b37 03c3898451e17cf436da59dd0e712606ea63a838
#> "relabel.tsv" "relabel.yml"
relabel("relabel", root, change = list(color = c(red = "rood", blue = "blauw")))
print_file("relabel.yml", root)
#> ..generic:
#> git2rdata: 0.5.0
#> optimize: yes
#> NA string: NA
#> sorting: color
#> hash: bb25c6cc455f6d8e52b7daeb176adf83d8c5b0f9
#> data_hash: ade0e1d70155140e5115f71efae4b15b27287b37
#> color:
#> class: factor
#> labels:
#> - blauw
#> - rood
#> index:
#> - 1
#> - 2
#> ordered: no
relabel(
"relabel", root,
change = data.frame(
factor = "color", old = "blauw", new = "blue", stringsAsFactors = TRUE
)
)
print_file("relabel.yml", root)
#> ..generic:
#> git2rdata: 0.5.0
#> optimize: yes
#> NA string: NA
#> sorting: color
#> hash: a4050f89a749abce203ae6e1fe6b41483d385c2d
#> data_hash: ade0e1d70155140e5115f71efae4b15b27287b37
#> color:
#> class: factor
#> labels:
#> - blue
#> - rood
#> index:
#> - 1
#> - 2
#> ordered: no
A caveat: relabel()
does not make sense when
the data file uses verbose storage. The verbose mode stores the factor
labels and not their indices, in which case relabelling a label will
always yield a large diff. Hence, relabel()
requires the
optimized storage.
sensu
git2rdata
↩︎