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The Package

The “An Overview of glmnetr” vignette shows how to run the main package function nested.glmnetr() and
how to summarize model performances. If one identifies a well performing model according to the metrics in
this summary, e.g. concordance, correlation, deviance ratio, linear calibration, one may want to do further
evaluation in terms of calibration. The strongest calibration and validation will involve calibration with new,
independent datasets. Frequently one will not have immediate access to such new data sets, or one may want
first to do an internal validation before subjecting a model to an external validation. Here we consider an
internal validation approach using cross validation or bootstrap re-sampling, similar to how we numerically
assessed model performance.

An example analysis

To explore calibration we first consider the nested.glmnetr() call from the “An Overview of glmnetr” vignette
which fit machine learning models to survival data with family=“cox”, i.e.

set.seed(465783345)
nested.cox.fit = nested.glmnetr(xs, NULL, yt, event, family="cox",

dolasso=1, dostep=1, steps_n=40, folds_n=10, track=1)

Linear calibration

Using either print() or summary() on the output object nested.cox.fit one gets, amongst other information,
summaries for the linear calibration slopes and intercepts as in

summary( nested.cox.fit )

## Sample information including number of records, events, number of columns in
## design (predictor, X) matrix, and df (rank) of design matrix:
## family n nevent
## cox 1000 698
## xs.columns xs.df null.dev/nevent
## 100 94 12.43
## null.m2LogLik/nevent sat.m2LogLik/nevent
## 12.43 0
##
## For LASSO, and Stepwise regression tuned by df and p, average (Ave) model
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## performance measures from the 10-fold (NESTED) Cross Validation are given together
## with naive summaries calculated using all data without cross validation
##
## Ave DevRat Ave Slope Ave Concordance Ave Non Zero
## LASSO min 0.2446 1.0742 0.8705 45.4
## LASSO minR 0.2434 0.9790 0.8701 17.6
## LASSO minR.G0 0.2410 0.9320 0.8691 16.2
## Ridge 0.2244 1.2850 0.8626 99.0
## Naive DevRat Naive Concordance Non Zero
## LASSO min 0.1696 0.8794 42
## LASSO minR 0.1720 0.8793 22
## LASSO minR.G0 0.1728 0.8796 20
## Ridge 0.1718 0.8822 99
##
## Ave DevRat Ave Slope Ave Concordance Ave Non Zero
## Stepwise df tuned 0.2501 0.9590 0.8738 14.7
## Stepwise p tuned 0.2527 0.9677 0.8747 14.8
## Naive DevRat Naive Concordance Non Zero
## Stepwise df tuned 0.1711 0.8785 15
## Stepwise p tuned 0.1711 0.8785 15

Here we see that for many of the models the linear calibration slope term is near 1, the ideal for perfect
calibration. For the Cox model any intercept term can be absorbed into the baseline survival function and
there is no pertinent intercept term for calibration.

A first visual

An initial calibration consideration was made in the overview vignette by regressing observed outcomes on
the predicteds from the final model based upon the relaxed lasso. This regression was made using splines,
in particular the pspline() function from within a coxph() call, as in

# Get predicteds from CV relaxed lasso model embedded in nested CV outputs & Plot
xb.hat = predict( object=nested.cox.fit , xs_new=xs, lam=NULL, gam=NULL, comment=FALSE)
# Fit a spline to xb.hat uisng coxph, and plot
#library( survival ) ## load survival package for Cox model fits
fit1 = coxph(Surv(yt, event) ~ pspline(xb.hat))

summary(fit1)

## Call:
## coxph(formula = Surv(yt, event) ~ pspline(xb.hat))
##
## n= 1000, number of events= 698
##
## coef se(coef) se2 Chisq DF p
## pspline(xb.hat), linear 1.068 0.03323 0.03323 1033.02 1.00 1.2e-226
## pspline(xb.hat), nonlin 4.62 3.04 2.1e-01
##
## exp(coef) exp(-coef) lower .95 upper .95
## ps(xb.hat)3 7.032e+00 1.422e-01 6.919e-01 7.148e+01
## ps(xb.hat)4 4.946e+01 2.022e-02 7.686e-01 3.182e+03
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## ps(xb.hat)5 3.476e+02 2.877e-03 1.408e+00 8.582e+04
## ps(xb.hat)6 2.401e+03 4.165e-04 4.617e+00 1.249e+06
## ps(xb.hat)7 1.477e+04 6.772e-05 2.429e+01 8.978e+06
## ps(xb.hat)8 9.365e+04 1.068e-05 1.611e+02 5.446e+07
## ps(xb.hat)9 8.562e+05 1.168e-06 1.465e+03 5.003e+08
## ps(xb.hat)10 4.690e+06 2.132e-07 7.977e+03 2.758e+09
## ps(xb.hat)11 2.593e+07 3.857e-08 4.369e+04 1.538e+10
## ps(xb.hat)12 2.464e+08 4.059e-09 3.956e+05 1.535e+11
## ps(xb.hat)13 2.639e+09 3.789e-10 3.593e+06 1.938e+12
## ps(xb.hat)14 2.889e+10 3.461e-11 2.522e+07 3.311e+13
##
## Iterations: 4 outer, 16 Newton-Raphson
## Theta= 0.7408233
## Degrees of freedom for terms= 4
## Concordance= 0.879 (se = 0.005 )
## Likelihood ratio test= 1504 on 4.04 df, p=<2e-16

followed by plotting with

termplot(fit1,term=1,se=TRUE, rug=TRUE)
abline(a=0,b=1,lty=3)
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The spline fits may help to understand potential nonlinearities in the model. Here we see, a clibration line
which is not far from linear. Still, as noted in the “An Overview of glmnetr” vignette, because the same
data are used for model evaluation as well as model derivation, it is hard to put much confidence in such a
calibration plot because of potential bias which may suggest a better fit than can be expected for new data.
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Calibration using spline fits and resampling

For each of the models fit, nested.glmnetr() saves the X* Beta’s from the final model. The nested.glmentr()
function also calculates the X* Betas’s for the hold out data for each partitioning, i.e. each hold out fold of
the outer loop of nested cross validation or the out-of-bag items not selected by the sample whit replacement
of the bootstrap sample. In this manner there are multiple subsets, e.g. k from the k-fold nested CV, or
calculation of X*Betas based upon independent observations, and each of these subsets can contribute to
calibrate the final model. While each of these calibrations will individually have limited information, when
combined following the principles of cross validation for boostrap sampling, they will collectively provide a
more meaningful evaluation. This is done by the calplot() function as in

calplot(nested.cox.fit, wbeta=5)

lassoR.min log(HR) (Nested CV)
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Here we see a smooth, nearly linear predicted log hazard ratio as a function of the model X* Beta from
the relaxed lasso model. The bounding lines in red depict the average +/- 2 standard errors (SE) to
assist in assessing meaningfulness in any deviation from the ideal identity line, and non linearities. In
these curves the central region with solid lines denotes the region within the range of all the calibration
spline fit, i.e. spline fits from all the different leave-out folds of the CV overlap without extrapolation. The
dashed lines depict areas out of range for at least one of the leave out folds. Because spline fits can be
rather uncertain when extrapolating beyond the data range, one should be more cautious in making strong
conclusions in the dashed regions of these plots.

In this figure we see two rugs, one below and one above the plotted region. The rug below depicts the model
X* Beta’s which are not associated with an event and the rug above depicts X* Beta’s which are associated
with events. When there are lots of data points it can be hard to read these rugs. One can use the vref
option in calplot to draw two vertical lines where the first separates the smaller vref% of the X* Beta’s form
the rest, and a second which separates the larger vref% of the data. To depict the hazard ratios (HR) instead
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of the X*Beta for the Cox model one can use the option plothr, where one assigns a numerical value for the
product between tick marks, e.g. exp(1) or 10. Combining these two options we have the example

calplot(nested.cox.fit, wbeta=5, vref=1, plothr=100)

lassoR.min HR (Nested CV)

C
al

ib
ra

te
d 

H
R

0

0.01

1

100

0 0.01 1 100

The user can also use different colors for the lines with the options col.term, col.se. One can also specify
xlim and ylim in case a few data points cause an excessive amount of white space or odd aspect ratio in the
plots.

To view the calibration plots form the individual leave out cross validation folds, one may specify foldplot=
1. In that this generates many figures, we omit in this vignette actually producing plots using this option
specification, and instead assign plotfold=1 which overlays the individual calibration curves, albeit without
the +/- 2 SE limits for the individual CV folds. The overall calibration (average of the individual CV fold
calibrations) and overall +/- 2 SE limits though are maintained.
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calplot(nested.cox.fit, 5, plotfold=1)

lassoR.min log(HR) (Nested CV)
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As we see from the above calls the first term in the calplot() function call is an output object form a
nested.glmnetr() call. The second term, wbeta, specifies “which beta” or model is to be used for deriving
the model X*Beta’s. Here, as we see in the figure x-axis label, the 5 determines the relaxed lasso model.
Instead of making a hard to remember key the user can leave this term unspecified and a key will be
directed to the R console. The actual numbers for the different models will depend on which models are fit
and so this key is dynamic.

calplot(nested.cox.fit)

## specify num for wbeta =
## Var num
## null 0.000000 1
## Lasso.1se 3.924673 2
## lasso.min 5.284658 3
## lassoR.1se 4.752238 4
## lassoR.min 6.308573 5
## lassoR0.1se 5.399642 6
## lassoR0.min 6.939080 7
## ridge 3.316922 8
## Lasso.1se cal 6.476655 9
## lasso.min cal 7.333156 10
## lassoR.1se cal 6.365883 11
## lassoR.min cal 6.960332 12
## lassoR0.1se cal 5.399642 13
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## lassoR0.min cal 6.939080 14
## ridge cal 7.550848 15
## step.df 7.694102 16
## step.p 7.692468 17

From this key we read of the numers corresponding to the respective models. The variance in X*beta for the
“null” model is 0 as the intercept for the Cox model is arbitrarily assinged the value of 0 for each resample
model fit. From this key we see we can produce a calibration plot for the ridge regression model by setting
wbeta = 8 (wbeta for “which beta”), as in

calplot(nested.cox.fit, 8)

ridge log(HR) (Nested CV)
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Here we see the model is not ideally calibrated as the calibration curve largely does not include the identity
line, and it requires a correction to achieve an un (less) biased estimation of the hazard ratio. Inspecting
the calibration curve for a step wise regression model
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calplot(nested.cox.fit, 16)

step.df log(HR) (Nested CV)
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we see that the response is roughly linear but numerically at least there seems to be some correction for
over fitting.

To obtain the numerical values used to construct these calibration plots one may specify plot=0 (or plot=2
to plot and obtain the numerical data) in list format as in

tmp = calplot(nested.cox.fit, 5, plot=0)
str(tmp)

## List of 5
## $ estimates : num [1:101, 1:5] -9.33 -9.15 -8.97 -8.79 -8.61 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:101] "1" "2" "3" "4" ...
## .. ..$ : chr [1:5] "plotxb" "est" "se" "lower" ...
## $ est.resample : num [1:10, 1:101] -12.01 -8.88 -9.77 -11.33 -5.74 ...
## $ se.resample : num [1:10, 1:101] 5.08 4.26 5.28 4.36 3.69 ...
## $ lower.resample: num [1:10, 1:101] -22.2 -17.4 -20.3 -20.1 -13.1 ...
## $ upper.resample: num [1:10, 1:101] -1.855 -0.366 0.79 -2.606 1.631 ...

These data may be further processed by the user.
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A Binomial Model

For nested.glmnetr() analyses with family = “binomial” with the call

yb = simdata$yb
nested.bin.fit = nested.glmnetr(xs,NULL,yb,NULL,family="binomial",

dolasso=1, doxgb=list(nrounds=250), dorf=1, doorf=1, doann=1,
folds_n=10, seed=219301029, track=1)

an example calibration plot is

calplot(nested.bin.fit, 5, plotfold=0)

lassoR.min X*Beta (Nested CV)
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Since these data were generated with probabilities exp(Xbeta)/(1+exp(Xbeta)) we want expect that the
medal would calibrate linearly. Next we look at the “fully” relaxed model where an unpenalized model is
fit based upon the non-zero terms in the fully penalized lasso model.

calplot(nested.bin.fit, 7, plotfold=0)
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lassoR0.min X*Beta (Nested CV)
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This may calibrate slightly better but is not as linear as we might expect.

A Binomial Model Calibrated using Bootstrap

Considering this we next fit models using bootstrap, that is fit models based upon random samples from the
original sample (with replacement) of size the same as the original sample. Then we fit calibration curves
for the out-of-bag sample units for each bootstrap sample, that is the elements of the original sample that
are not selected by the bootstrap sample. This is done by specifying the number of bootstrap samples for
calculation with the bootstrap option in the calplot() call. First we perform the bootstrap model generation
and Out Of Bag (OOB) performance calculations using the nested.glmnetr() function with the boostrap
option,

yb = simdata$yb
nested.bin.boot.fit = nested.glmnetr(xs,NULL,yb,NULL,family="binomial",

dolasso=1, doorf=1,
folds_n=10, seed=219301029, track=1, bootstrap=20)

with resulting plot

calplot(nested.bin.boot.fit, 5, plotfold=0)
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predminR X*Beta (Bootstrap)
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Here we see a similar yet slightly different characteristics between the (nested) cross validation and bootstrap
calibration plots. While technically the bootstrap might seem more accurate due to the confidence interval
containing the ideal line (which we know applies due ot the way we simulated the data), this may as well be
due to the random nature of the re-sample selection process. For the bootstrap one can run a larger number
of re-samples to minimize this effect. For the cross validation one may repeat the whole process many times
(see the glmnet package vignettes) and then average, but we have not done this here.

A Normal (Gaussian errors) Model

First calculating the numerical summaries of prediction performance

nested.gau.fit = nested.glmnetr(xs,NULL,y_,NULL,family="gaussian",
dolasso=1, doxgb=list(nrounds=250), dorf=1, doorf=1, doann=list(bestof=10),
folds_n=10, seed=219301029, track=1)

and then plotting

calplot(nested.gau.fit, wbeta=7)
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lassoR0.min X*Beta (Nested CV)
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we see a small but probably not significant deviation from the ideal calibration line, the identity function.

Perspective

The summary and calibration plot functions used here do not address all needed for model validation and
calibration but do allow a meaningful and un (or minimally) biased summary of model fits.
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