Solves a least squares system Ax~=b (dim(A)=(m,n) with m >= n) with a precondition matrix B: BAx=Bb (dim(B)=(n,m)). Implemented method is based on GMRES (Saad, Youcef; Schultz, Martin H. (1986). "GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems" <doi:10.1137/0907058>) with callback functions, i.e. no explicit A, B or b are required.
Version: | 0.2.3 |
Suggests: | RUnit |
Published: | 2025-01-17 |
DOI: | 10.32614/CRAN.package.gmresls |
Author: | Serguei Sokol [aut, cre] |
Maintainer: | Serguei Sokol <sokol at insa-toulouse.fr> |
BugReports: | https://forgemia.inra.fr/mathscell/gmresls/-/issues |
License: | GPL (≥ 3) |
Copyright: | see file COPYRIGHTS |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | gmresls results |
Reference manual: | gmresls.pdf |
Package source: | gmresls_0.2.3.tar.gz |
Windows binaries: | r-devel: gmresls_0.2.3.zip, r-release: gmresls_0.2.3.zip, r-oldrel: gmresls_0.2.3.zip |
macOS binaries: | r-release (arm64): gmresls_0.2.3.tgz, r-oldrel (arm64): gmresls_0.2.2.tgz, r-release (x86_64): gmresls_0.2.3.tgz, r-oldrel (x86_64): gmresls_0.2.2.tgz |
Old sources: | gmresls archive |
Please use the canonical form https://CRAN.R-project.org/package=gmresls to link to this page.