Package 'guidedPLS'

May 12, 2023
Type PackageTitle Supervised Dimensional Reduction by Guided Partial Least Squares
Version 1.0.0
Depends R (>= 3.4.0)
Imports irlba
Suggests fields, knitr, rmarkdown, testhat
Description Guided partial least squares (guided-
PLS) is the combination of partial least squares by singular value decomposition (PLS-
SVD) and guided principal component analysis (guided-
PCA). For the details of the methods, see the reference section of GitHub README.md https://github.com/rikenbit/guidedPLS.
License MIT + file LICENSE
URL https://github.com/rikenbit/guidedPLS
VignetteBuilder knitr
NeedsCompilation no
Author Koki Tsuyuzaki [aut, cre]
Maintainer Koki Tsuyuzaki k.t.the-answer@hotmail.co.jp
Repository CRAN
Date/Publication 2023-05-12 03:30:02 UTC
R topics documented:
guidedPLS-package 2
dummyMatrix 3
guidedPLS 4
PLSSVD 5
softThr 6
sPLSDA 7
toyModel 8
Index 9

Description

Guided partial least squares (guided-PLS) is the combination of partial least squares by singular value decomposition (PLS-SVD) and guided principal component analysis (guided-PCA). For the details of the methods, see the reference section of GitHub README.md https://github.com/rikenbit/guidedPLS.

Details

The DESCRIPTION file:

Package:	guidedPLS
Type:	Package
Title:	Supervised Dimensional Reduction by Guided Partial Least Squares
Version:	1.0 .0
Authors@R:	c(person("Koki", "Tsuyuzaki", role = c("aut", "cre"), email = "k.t.the-answer@ hotmail.co.jp"))
Depends:	R (>= 3.4.0)
Imports:	irlba
Suggests:	fields, knitr, rmarkdown, testthat
Description:	Guided partial least squares (guided-PLS) is the combination of partial least squares by singular value decc
License:	MIT + file LICENSE
URL:	https://github.com/rikenbit/guidedPLS
VignetteBuilder:	knitr
Author:	Koki Tsuyuzaki [aut, cre]
Maintainer:	Koki Tsuyuzaki k.t.the-answer@hotmail.co.jp

Index of help topics:

dummyMatrix	Toy model data for using dNMF, dSVD, dsiNMF, djNMF, dPLS, dNTF, and dNTD
guidedPLS	Guided Partial Least Squares (guied-PLS) guidedPLS-package Supervised Dimensional Reduction by Guided Partial Least Squares
softThr	Partial Least Squares by Singular Value Decomposition (PLS-SVD)
sPLSDA	Soft-thresholding to make a sparse vector sparse Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) Toy model data for using PLSSVD, sPLSDA, and guidedPLS

Author(s)

NA
Maintainer: NA

References

Le Cao, et al. (2008). A Sparse PLS for Variable Selection when Integrating Omics Data. Statistical Applications in Genetics and Molecular Biology, 7(1)
Reese S E, et al. (2013). A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis. Bioinformatics, 29(22), 2877-2883

See Also

toyModel,PLSSVD,sPLSDA,guidedPLS

Examples

ls("package:guidedPLS")
dummyMatrix Toy model data for using $d N M F, d S V D, d s i N M F, \operatorname{djNMF}, d P L S, d N T F$, and dNTD

Description

A label vector is converted to a dummy matrix.

Usage

dummyMatrix(y, center=TRUE)

Arguments

y A label vector to specify the group of data.
center An option to center the rows of matrix (Default: TRUE).

Value

A matrix is generated. The number of row is equal to the length of y and the number of columns is the number of unique elements of y.

Author(s)

Koki Tsuyuzaki

Examples

$y<-c(1,3,2,1,4,2)$
dummyMatrix(y)

```
guidedPLS Guided Partial Least Squares (guied-PLS)
```


Description

Four matrices X1, X2, Y1, and Y2 are required. X1 and Y1 are supposed to share the rows, X2 and Y2 are supposed to share the rows, and Y1 and Y2 are supposed to share the columns.

Usage

guidedPLS(X1, X2, Y1, Y2, k=.minDim(X1, X2, Y1, Y2), cortest=FALSE, fullrank=TRUE, verbose=FALSE)

Arguments

X1 The input matrix which has N -rows and M-columns.
Y1 The input matrix which has N-rows and L-columns.
X2 The input matrix which has O-rows and P-columns.
Y2 The input matrix which has O-rows and L-columns.
 Y2))
cortest If cortest is set as TRUE, t-test of correlation coefficient is performed (Default: FALSE)
fullrank If fullrank is set as TRUE, irlba is used, otherwise fullrank SVD is used (Default: TRUE)
verbose \quad Verbose option (Default: FALSE)

Value

res: object of $\operatorname{svd}()$ loading YX1: Loading vector to project X1 to lower dimension via Y1 (M times k). loadingYX2: Loading vector to project X2 to lower dimension via Y2 (P times k). scoreX1: Projected X1 (N times k) score X2: Projected X2 (O times k) scoreYX1: Projected YX1 (L times k) scoreYX2: Projected YX2 (L times k) corYX1: Correlation Coefficient (Default: NULL) corYX2: Correlation Coefficient (Default: NULL) pvalYX1: P-value vector of corYX1 (Default: NULL) pvalYX2: P-value vector of corYX2 (Default: NULL) qvalYX1: Q-value vector of BH method against pvalYX1 (Default: NULL) qvalYX2: Q-value vector of BH method against pvalYX2 (Default: NULL)

Author(s)

Koki Tsuyuzaki

References

Le Cao, et al. (2008). A Sparse PLS for Variable Selection when Integrating Omics Data. Statistical Applications in Genetics and Molecular Biology, 7(1)
Reese S E, et al. (2013). A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis. Bioinformatics, 29(22), 2877-2883

Examples

```
# Test data
data <- toyModel()
# Simple usage
out <- guidedPLS(X1=data$X1, X2=data$X2, Y1=data$Y1, Y2=data$Y2, k=4)
```


PLSSVD

Partial Least Squares by Singular Value Decomposition (PLS-SVD)

Description

Two matrices X and Y sharing a row are required

Usage

PLSSVD(X, Y, k=.minDim(X, Y), cortest=FALSE, deflation=FALSE, fullrank=TRUE, verbose=FALSE)

Arguments

X	The input matrix which has N-rows and M-columns.
Y	The input matrix which has N-rows and L-columns.
k	The number of low-dimension $(\mathrm{k}<\mathrm{N}, \mathrm{M}, \mathrm{L}$, Default: .minDim(X, Y))
cortest	If cortest is set as TRUE, t-test of correlation coefficient is performed (Default:
deflation	FALSE) If deflation is set as TRUE, the score vectors are made orthogonal, otherwise the loading vectors are made orthogonal (Default: FALSE)
fullrank	If fullrank is set as TRUE, irlba is used, otherwise fullrank SVD is used (Default: verbose
	TRUE)
Verbose option (Default: FALSE)	

Value

scoreX : Score matrix which has M-rows and K-columns. loadingX : Loading matrix which has Nrows and K-columns. scoreY : Score matrix which has L-rows and K-columns. loadingY : Loading matrix which has N-rows and K-columns. d : K-length singular value vector of the cross-product matrix X'Y. corX: Correlation Coefficient (Default: NULL) corY: Correlation Coefficient (Default: NULL) pvalX: P-value vector of corX (Default: NULL) pvalY: P-value vector of corY (Default: NULL) qvalX: Q-value vector of BH method against pvalX (Default: NULL) qvalY: Q-value vector of BH method against pvalY (Default: NULL)

Author(s)

Koki Tsuyuzaki

References

Le Cao, et al. (2008). A Sparse PLS for Variable Selection when Integrating Omics Data. Statistical Applications in Genetics and Molecular Biology, 7(1)

Examples

```
# Test data
    data <- toyModel()
    # Simple usage
    out <- PLSSVD(X=data$X1, Y=data$Y1, k=4)
```

softThr Soft-thresholding to make a sparse vector sparse

Description

The degree of the sparseness of vector is controlled by the lambda parameter.

Usage

softThr (y, lambda=1)

Arguments

y A numerical vector.
lambda Threshold value to convert a value 0. If the absolute value of an element of vector is less than lambda, the value is converted to 0 (Default: 1).

Value

A numerical vector, whose length is the same as that of y.

Author(s)

Koki Tsuyuzaki

Examples

```
y <- seq(-2, 2, 0.1)
softThr(y)
```


Description

Two matrices X and Y sharing a row are required

Usage

sPLSDA(X, Y, k=.minDim(X, Y), cortest=FALSE, lambda=1, thr=1e-10, fullrank=TRUE, num.iter=10, verbose=FALSE)

Arguments

X
$Y \quad$ The input matrix which has N-rows and L-columns.
k
cortest If cortest is set as TRUE, t-test of correlation coefficient is performed (Default: FALSE)
lambda Penalty parameter to control the sparseness of u and v. The larger the value, the sparser the solution (Default: 1).
thr \quad Threshold to stop the iteration (Default: 1e-10).
fullrank If fullrank is set as TRUE, irlba is used, otherwise fullrank SVD is used (Default: TRUE)
num.iter The number of iterations in each rank (Default: 10)
verbose Verbose option (Default: FALSE)

Value

score X : Score matrix which has M-rows and K-columns. loadingX : Loading matrix which has Nrows and K-columns. scoreY : Score matrix which has L-rows and K-columns. loadingY : Loading matrix which has N-rows and K-columns. d : K-length singular value vector of the cross-product matrix X'Y. corX: Correlation Coefficient (Default: NULL) corY: Correlation Coefficient (Default: NULL) pvalX: P-value vector of corX (Default: NULL) pvalY: P-value vector of corY (Default: NULL) qvalX: Q-value vector of BH method against pvalX (Default: NULL) qvalY: Q-value vector of BH method against pvalY (Default: NULL)

Author(s)

Koki Tsuyuzaki

References

Le Cao, et al. (2008). A Sparse PLS for Variable Selection when Integrating Omics Data. Statistical Applications in Genetics and Molecular Biology, 7(1)

Examples

```
# Test data
data <- toyModel()
    # Simple usage
    out <- sPLSDA(X=data$X1, Y=data$Y1, k=4)
```

 toyModel Toy model data for using PLSSVD, sPLSDA, and guidedPLS

Description

The data is used for confirming the algorithm are properly working.

Usage

toyModel(model="Easy", seeds=123)

Arguments

model "Easy" and "Hard" are available (Default: "Easy").
seeds Random number for setting set.seeds in the function (Default: 123).

Value

A list object containing a set of matrices $\mathrm{X} 1, \mathrm{X} 2, \mathrm{Y} 1, \mathrm{Y} 1 _$dummy, $\mathrm{Y} 2, \mathrm{Y} 1 _$dummy.

Author(s)

Koki Tsuyuzaki

See Also

PLSSVD,sPLSDA,guidedPLS

Examples

```
data <- toyModel(seeds=123)
```


Index

```
* methods
    dummyMatrix, 3
    guidedPLS,4
    PLSSVD,5
    softThr,6
    sPLSDA, }
    toyModel, }
* package
    guidedPLS-package, 2
dummyMatrix, 3
guidedPLS, 3, 4, 8
guidedPLS-package, 2
PLSSVD, 3, 5, 8
softThr, 6
sPLSDA, 3, 7, 8
toyModel, 3,8
```

