
Package ‘important’
September 5, 2025

Title Supervised Feature Selection

Version 0.2.0

Description Interfaces for choosing important predictors in supervised
regression, classification, and censored regression models. Permuted
importance scores (Biecek and Burzykowski (2021)
<doi:10.1201/9780429027192>) can be computed for 'tidymodels' model
fits.

License MIT + file LICENSE

URL https://important.tidymodels.org/,

https://github.com/tidymodels/important

BugReports https://github.com/tidymodels/important/issues

Depends R (>= 4.1.0), recipes (>= 1.1.0)

Imports cli, desirability2 (>= 0.2.0), dplyr, filtro (>= 0.2.0),
generics, ggplot2, hardhat (>= 1.4.1), purrr, rlang (>= 1.1.0),
S7, tibble, tidyr, tune, vctrs, withr, workflows

Suggests censored, future, future.apply, mirai, modeldata, parsnip,
ranger, spelling, survival, testthat (>= 3.0.0), yardstick

Config/Needs/website tidyverse/tidytemplate, tidymodels

Config/testthat/edition 3

Config/usethis/last-upkeep 2025-06-09

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

NeedsCompilation no

Author Max Kuhn [aut, cre] (ORCID: <https://orcid.org/0000-0003-2402-136X>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Max Kuhn <max@posit.co>

Repository CRAN

Date/Publication 2025-09-05 18:30:02 UTC

1

https://doi.org/10.1201/9780429027192
https://important.tidymodels.org/
https://github.com/tidymodels/important
https://github.com/tidymodels/important/issues
https://orcid.org/0000-0003-2402-136X
https://ror.org/03wc8by49

2 autoplot.importance_perm

Contents
autoplot.importance_perm . 2
importance_perm . 3
step_predictor_best . 6
step_predictor_desirability . 9
step_predictor_retain . 13

Index 17

autoplot.importance_perm

Visualize importance scores

Description

Visualize importance scores

Usage

S3 method for class 'importance_perm'
autoplot(
object,
top = Inf,
metric = NULL,
eval_time = NULL,
type = "importance",
std_errs = stats::qnorm(0.95),
...

)

Arguments

object A tibble of results from importance_perm().

top An integer for how many terms to show. To define importance when there are
multiple metrics, the rankings of predictors are computed across metrics and the
average rank is used. In the case of tied rankings, all the ties are included.

metric A character vector or NULL for which metric to plot. By default, all metrics will
be shown via facets. Possible options are the entries in .metric column of the
object.

eval_time For censored regression models, a vector of time points at which the survival
probability is estimated.

type A character value. The default is "importance" which shows the overall signal-
to-noise ration (i.e., mean divided by standard error). Alternatively, "difference"
shows the mean difference value with standard error bounds.

std_errs The number of standard errors to plot (when type = "difference").

... Not used.

importance_perm 3

Value

A ggplot2 object.

Examples

Pre-computed results. See code at
system.file("make_imp_example.R", package = "important")

Load the results
load(system.file("imp_examples.RData", package = "important"))

A classification model with two classes and highly correlated predictors.
To preprocess them, PCA feature extraction is used.
#
Let’s first view the importance in terms of the original predictor set
using 50 permutations:

imp_orig

autoplot(imp_orig, top = 10)

Now assess the importance in terms of the PCA components

imp_derv

autoplot(imp_derv)
autoplot(imp_derv, metric = "brier_class", type = "difference")

importance_perm Compute permutation-based predictor importance

Description

importance_perm() computes model-agnostic variable importance scores by permuting individual
predictors (one at a time) and measuring how worse model performance becomes.

Usage

importance_perm(
wflow,
data,
metrics = NULL,
type = "original",
size = 500,
times = 10,
eval_time = NULL,
event_level = "first"

)

4 importance_perm

Arguments

wflow A fitted workflows::workflow().

data A data frame of the data passed to workflows::fit.workflow(), including the
outcome and case weights (if any).

metrics A yardstick::metric_set() or NULL.

type A character string for which level of predictors to compute. A value of "original"
(default) will return values in the same representation of data. Using "derived"
will compute them for any derived features/predictors, such as dummy indicator
columns, etc.

size How many data points to predict for each permutation iteration.

times How many iterations to repeat the calculations.

eval_time For censored regression models, a vector of time points at which the survival
probability is estimated. This is only needed if a dynamic metric is used, such
as the Brier score or the area under the ROC curve.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary".

Details

The function can compute importance at two different levels.

• The "original" predictors are the unaltered columns in the source data set. For example, for a
categorical predictor used with linear regression, the original predictor is the factor column.

• "Derived" predictors are the final versions given to the model. For the categorical predic-
tor example, the derived versions are the binary indicator variables produced from the factor
version.

This can make a difference when pre-processing/feature engineering is used. This can help us
understand how a predictor can be important

Importance scores are computed for each predictor (at the specified level) and each performance
metric. If no metric is specified, defaults are used:

• Classification: yardstick::brier_class(), yardstick::roc_auc(), and yardstick::accuracy().

• Regression: yardstick::rmse() and yardstick::rsq().

• Censored regression: yardstick::brier_survival()

For censored data, importance is computed for each evaluation time (when a dynamic metric is
specified).

By default, no parallelism is used to process models in tune; you have to opt-in.

Using future to parallel process:
You should install the package and choose your flavor of parallelism using the plan function. This
allows you to specify the number of worker processes and the specific technology to use.
For example, you can use:

importance_perm 5

library(future)
plan(multisession, workers = 4)

and work will be conducted simultaneously (unless there is an exception; see the section below).
See future::plan() for possible options other than multisession.

Using mirai to parallel process:
To configure parallel processing with mirai, use the mirai::daemons() function. The first ar-
gument, n, determines the number of parallel workers. Using daemons(0) reverts to sequential
processing.
The arguments url and remote are used to set up and launch parallel processes over the network
for distributed computing. See mirai::daemons() documentation for more details.

Value

A tibble with extra classes "importance_perm" and either "original_importance_perm" or "derived_importance_perm".
The columns are:

• .metric the name of the performance metric:

• predictor: the predictor

• n: the number of usable results (should be the same as times)

• mean: the average of the differences in performance. For each metric, larger values indicate
worse performance (i.e., higher importance).

• std_err: the standard error of the differences.

• importance: the mean divided by the standard error.

• For censored regression models, an additional .eval_time column may also be included (de-
pending on the metric requested).

Examples

if (rlang::is_installed(c("modeldata", "recipes", "workflows", "parsnip"))) {
library(modeldata)
library(recipes)
library(workflows)
library(dplyr)
library(parsnip)

set.seed(12)
dat_tr <-
sim_logistic(250, ~ .1 + 2 * A - 3 * B + 1 * A *B, corr = .7) |>
dplyr::bind_cols(sim_noise(250, num_vars = 10))

rec <-
recipe(class ~ ., data = dat_tr) |>
step_interact(~ A:B) |>
step_normalize(all_numeric_predictors()) |>
step_pca(contains("noise"), num_comp = 5)

lr_wflow <- workflow(rec, logistic_reg())

6 step_predictor_best

lr_fit <- fit(lr_wflow, dat_tr)

set.seed(39)
orig_res <- importance_perm(lr_fit, data = dat_tr, type = "original",

size = 100, times = 3)
orig_res

set.seed(39)
deriv_res <- importance_perm(lr_fit, data = dat_tr, type = "derived",

size = 100, times = 3)
deriv_res

}

step_predictor_best Supervised Feature Selection via Choosing the Top Predictors

Description

step_predictor_best() creates a specification of a recipe step that uses a single scoring function
to measure how much each predictor is related to the outcome value. This step retains a proportion
of the most important predictors, and this proportion can be tuned.

Usage

step_predictor_best(
recipe,
...,
score,
role = NA,
trained = FALSE,
prop_terms = 0.5,
update_prop = TRUE,
results = NULL,
removals = NULL,
skip = FALSE,
id = rand_id("predictor_best")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

score The name of a single score function from the filtro package, such as "imp_rf"
(for filtro::score_imp_rf()), etc. See the Details and Examples sections
below. This argument should be named when used.

step_predictor_best 7

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

prop_terms The proportion of predictors that should be retained when ordered by overall
desirability. A value of hardhat::tune() can also be used.

update_prop A logical: should prop_terms be updated so that at least one predictor will be
retained?

results A data frame of score and desirability values for each predictor evaluated. These
values are not determined until recipes::prep() is called.

removals A character string that contains the names of predictors that should be removed.
These values are not determined until recipes::prep() is called.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Scoring Functions:
As of version 0.2.0 of the filtro package, the following score functions are available:

• aov_fstat (documentation)
• aov_pval (documentation)
• cor_pearson (documentation)
• cor_spearman (documentation)
• gain_ratio (documentation)
• imp_rf (documentation)
• imp_rf_conditional (documentation)
• imp_rf_oblique (documentation)
• info_gain (documentation)
• roc_auc (documentation)
• sym_uncert (documentation)
• xtab_pval_chisq (documentation)
• xtab_pval_fisher (documentation)

Some important notes:

• Scores that are p-values are automatically transformed by filtro to be in the format -log10(pvalue)
so that a p-value of 0.1 is converted to 1.0. For these, use the maximize() goal.

• Other scores are also transformed in the data. For example, the correlation scores given to
the recipe step are in absolute value format. See the filtro documentation for each score.

• You can use some in-line functions using base R functions. For example, maximize(max(score_cor_spearman)).
• If a predictor cannot be computed for all scores, it is given a "fallback value" that will prevent

it from being excluded for this reason.

8 step_predictor_best

This step can potentially remove columns from the data set. This may cause issues for subsequent
steps in your recipe if the missing columns are specifically referenced by name. To avoid this, see
the advice in the Tips for saving recipes and filtering columns section of recipes::selections.

Ties:
Note that dplyr::slice_max() with the argument with_ties = TRUE is used to select predic-
tors. If there are many ties in overall desirability, the proportion selected can be larger than the
value given to prep_terms().

Case Weights:
Case weights can be used by some scoring functions. To learn more, load the filtro package
and check the case_weights property of the score object (see Examples below). For a recipe,
use one of the tidymodels case weight functions such as hardhat::importance_weights() or
hardhat::frequency_weights, to assign the correct data type to the vector of case weights. A recipe
will then interpret that class to be a case weight (and no other role). A full example is below.

Tidy method:
For a trained recipe, the tidy() method will return a tibble with columns terms (the predictor
names), id, and columns for the estimated scores. The score columns are the raw values, before
being filled with "safe values" or transformed.
There is an additional local column called removed that notes whether the predictor failed the
filter and was removed after this step is executed.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.
When you tidy() this step, a tibble::tibble is returned with columns terms and id:

terms character, the selectors or variables selected to be removed

id character, id of this step

Once trained, additional columns are included (see Details section).

Examples

library(recipes)

rec <- recipe(mpg ~ ., data = mtcars) |>
step_predictor_best(

all_predictors(),
score = "cor_spearman"

)

prepped <- prep(rec)

bake(prepped, mtcars)

tidy(prepped, 1)

step_predictor_desirability 9

step_predictor_desirability

Supervised Multivariate Feature Selection via Desirability Functions

Description

step_predictor_desirability() creates a specification of a recipe step that uses one or more
"score" functions to measure how much each predictor is related to the outcome value. These scores
are combined into a composite value using user-specified desirability functions and a proportion of
the most desirable predictors are retained.

Usage

step_predictor_desirability(
recipe,
...,
score,
role = NA,
trained = FALSE,
prop_terms = 0.5,
update_prop = TRUE,
results = NULL,
removals = NULL,
skip = FALSE,
id = rand_id("predictor_desirability")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

score An object produced by desirability2::desirability() that uses one or
more score functions from the filtro package. See the Details and Examples
sections below. This argument should be named when used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

prop_terms The proportion of predictors that should be retained when ordered by overall
desirability. A value of hardhat::tune() can also be used.

update_prop A logical: should prop_terms be updated so that at least one predictor will be
retained?

results A data frame of score and desirability values for each predictor evaluated. These
values are not determined until recipes::prep() is called.

10 step_predictor_desirability

removals A character string that contains the names of predictors that should be removed.
These values are not determined until recipes::prep() is called.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

This recipe step can compute one or more scores and conduct a simultaneous selection of the top
predictors using desirability functions. These are functions that, for some type of goal, trans-
late the score’s values to a scale of [0, 1], where 1.0 is the best result and 0.0 is unaccept-
able. Once we have these for each score, the overall desirability is computed using the geomet-
ric mean of the individual desirabilities. See the examples in desirability2::d_overall() and
desirability2::d_max().

To define desirabilities, use desirability2::desirability() function to define goals for each
score and pass that to the recipe in the score argument.

Scoring Functions:
As of version 0.2.0 of the filtro package, the following score functions are available:

• aov_fstat (documentation)
• aov_pval (documentation)
• cor_pearson (documentation)
• cor_spearman (documentation)
• gain_ratio (documentation)
• imp_rf (documentation)
• imp_rf_conditional (documentation)
• imp_rf_oblique (documentation)
• info_gain (documentation)
• roc_auc (documentation)
• sym_uncert (documentation)
• xtab_pval_chisq (documentation)
• xtab_pval_fisher (documentation)

Some important notes:

• Scores that are p-values are automatically transformed by filtro to be in the format -log10(pvalue)
so that a p-value of 0.1 is converted to 1.0. For these, use the maximize() goal.

• Other scores are also transformed in the data. For example, the correlation scores given to
the recipe step are in absolute value format. See the filtro documentation for each score.

• You can use some in-line functions using base R functions. For example, maximize(max(cor_spearman)).
• If a predictor cannot be computed for all scores, it is given a "fallback value" that will prevent

it from being excluded for this reason.

step_predictor_desirability 11

This step can potentially remove columns from the data set. This may cause issues for subsequent
steps in your recipe if the missing columns are specifically referenced by name. To avoid this, see
the advice in the Tips for saving recipes and filtering columns section of recipes::selections.

Ties:
Note that dplyr::slice_max() with the argument with_ties = TRUE is used to select predic-
tors. If there are many ties in overall desirability, the proportion selected can be larger than the
value given to prep_terms().

Case Weights:
Case weights can be used by some scoring functions. To learn more, load the filtro package
and check the case_weights property of the score object (see Examples below). For a recipe,
use one of the tidymodels case weight functions such as hardhat::importance_weights() or
hardhat::frequency_weights, to assign the correct data type to the vector of case weights. A recipe
will then interpret that class to be a case weight (and no other role). A full example is below.

Tidy method:
For a trained recipe, the tidy() method will return a tibble with columns terms (the predictor
names), id, columns for the estimated scores, and the desirability results. The score columns are
the raw values, before being filled with "safe values" or transformed.
The desirability columns will have the same name as the scores with an additional prefix of .d_.
The overall desirability column is called .d_overall.
There is an additional local column called removed that notes whether the predictor failed the
filter and was removed after this step is executed.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.
When you tidy() this step, a tibble::tibble is returned with columns terms and id:

terms character, the selectors or variables selected to be removed

id character, id of this step

Once trained, additional columns are included (see Details section).

References

Derringer, G. and Suich, R. (1980), Simultaneous Optimization of Several Response Variables.
Journal of Quality Technology, 12, 214-219.

https://desirability2.tidymodels.org/reference/inline_desirability.html

See Also

desirability2::desirability()

https://desirability2.tidymodels.org/reference/inline_desirability.html

12 step_predictor_desirability

Examples

library(recipes)
library(desirability2)

if (rlang::is_installed("modeldata")) {
The `ad_data` has a binary outcome column ("Class") and mostly numeric
predictors. For these, we score the predictors using an analysis of
variance model where the predicor is the outcome and the outcome class
defines the groups.
There is also a single factor predictor ("Genotype") and we'll use
Fisher's Exact test to score it. NOTE that for scores using hypothesis
tests, the -log10(pvalue) is returned so that larger values are more
important.

The score_* objects here are from the filtro package. See Details above.
goals <-
desirability(
maximize(xtab_pval_fisher),
maximize(aov_pval)
)

example_data <- modeldata::ad_data
rec <-
recipe(Class ~ ., data = example_data) |>
step_predictor_desirability(
all_predictors(),
score = goals,
prop_terms = 1 / 2
)
rec

Now evaluate the predictors and rank them via desirability:
prepped <- prep(rec)
prepped

Use the tidy() method to get the results:
predictor_scores <- tidy(prepped, number = 1)
mean(predictor_scores$removed)
predictor_scores

--

Case-weight example: use the hardhat package to create the appropriate type
of case weights. Here, we'll increase the weights for the minority class and
add them to the data frame.

library(hardhat)

example_weights <- example_data
weights <- ifelse(example_data$Class == "Impaired", 5, 1)
example_weights$weights <- importance_weights(weights)

step_predictor_retain 13

To see if the scores can use case weights, load the filtro package and
check the `case_weights` property:

library(filtro)

score_xtab_pval_fisher@case_weights
score_aov_pval@case_weights

The recipe will automatically find the case weights and will
not treat them as predictors.
rec_wts <-
recipe(Class ~ ., data = example_weights) |>
step_predictor_desirability(
all_predictors(),
score = goals,
prop_terms = 1 / 2
) |>
prep()
rec_wts

predictor_scores_wts <-
tidy(rec_wts, number = 1) |>
select(terms, .d_overall_weighted = .d_overall)

library(dplyr)
library(ggplot2)

The selection did not substantially change with these case weights
full_join(predictor_scores, predictor_scores_wts, by = "terms") |>
ggplot(aes(.d_overall, .d_overall_weighted)) +
geom_abline(col = "darkgreen", lty = 2) +
geom_point(alpha = 1 / 2) +
coord_fixed(ratio = 1) +
labs(x = "Unweighted", y = "Class Weighted")
}

step_predictor_retain Supervised Feature Selection via A Single Filter

Description

step_predictor_retain() creates a specification of a recipe step that uses a logical statement
that includes one or more scoring functions to measure how much each predictor is related to the
outcome value. This step retains the predictors that pass the logical statement.

Usage

step_predictor_retain(
recipe,

14 step_predictor_retain

...,
score,
role = NA,
trained = FALSE,
results = NULL,
removals = NULL,
skip = FALSE,
id = rand_id("predictor_retain")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

score A valid R expression that produces a logical result. The equation can con-
tain the names of one or more score functions from the filtro package, such
as filtro::score_imp_rf(), filtro:: score_roc_auc(). See the Details
and Examples sections below. This argument should be named when used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

results A data frame of score and desirability values for each predictor evaluated. These
values are not determined until recipes::prep() is called.

removals A character string that contains the names of predictors that should be removed.
These values are not determined until recipes::prep() is called.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The score should be valid R syntax that produces a logical result and should not use external data.
The list of variables that can be used is in the section below.

Scoring Functions:
As of version 0.2.0 of the filtro package, the following score functions are available:

• aov_fstat (documentation)
• aov_pval (documentation)
• cor_pearson (documentation)
• cor_spearman (documentation)
• gain_ratio (documentation)
• imp_rf (documentation)

step_predictor_retain 15

• imp_rf_conditional (documentation)

• imp_rf_oblique (documentation)

• info_gain (documentation)

• roc_auc (documentation)

• sym_uncert (documentation)

• xtab_pval_chisq (documentation)

• xtab_pval_fisher (documentation)

Some important notes:

• Scores that are p-values are automatically transformed by filtro to be in the format -log10(pvalue)
so that a p-value of 0.1 is converted to 1.0. For these, use the maximize() goal.

• Other scores are also transformed in the data. For example, the correlation scores given to
the recipe step are in absolute value format. See the filtro documentation for each score.

• You can use some in-line functions using base R functions. For example, maximize(max(score_cor_spearman)).

• If a predictor cannot be computed for all scores, it is given a "fallback value" that will prevent
it from being excluded for this reason.

This step can potentially remove columns from the data set. This may cause issues for subsequent
steps in your recipe if the missing columns are specifically referenced by name. To avoid this, see
the advice in the Tips for saving recipes and filtering columns section of recipes::selections.

Case Weights:
Case weights can be used by some scoring functions. To learn more, load the filtro package
and check the case_weights property of the score object (see Examples below). For a recipe,
use one of the tidymodels case weight functions such as hardhat::importance_weights() or
hardhat::frequency_weights, to assign the correct data type to the vector of case weights. A recipe
will then interpret that class to be a case weight (and no other role). A full example is below.

Tidy method:
For a trained recipe, the tidy() method will return a tibble with columns terms (the predictor
names), id, and columns for the estimated scores. The score columns are the raw values, before
being filled with "safe values" or transformed.

There is an additional local column called removed that notes whether the predictor failed the
filter and was removed after this step is executed.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.
When you tidy() this step, a tibble::tibble is returned with columns terms and id:

terms character, the selectors or variables selected to be removed

id character, id of this step

Once trained, additional columns are included (see Details section).

16 step_predictor_retain

Examples

library(recipes)

rec <- recipe(mpg ~ ., data = mtcars) |>
step_predictor_retain(
all_predictors(),
score = cor_pearson >= 0.75 | cor_spearman >= 0.75

)

prepped <- prep(rec)

bake(prepped, mtcars)

tidy(prepped, 1)

Index

autoplot.importance_perm, 2

bake(), 7, 10, 14

desirability2::d_max(), 10
desirability2::d_overall(), 10
desirability2::desirability(), 9–11
documentation, 7, 10, 14, 15
dplyr::slice_max(), 8, 11

filtro::score_imp_rf(), 6, 14
future::plan(), 5

hardhat::frequency_weights, 8, 11, 15
hardhat::importance_weights(), 8, 11, 15
hardhat::tune(), 7, 9

importance_perm, 3
importance_perm(), 2, 3

mirai::daemons(), 5

plan, 4
prep(), 7, 10, 14

recipes::prep(), 7, 9, 10, 14
recipes::selections, 8, 11, 15

selections(), 6, 9, 14
step_predictor_best, 6
step_predictor_desirability, 9
step_predictor_retain, 13

tidy(), 8, 11, 15

workflows::fit.workflow(), 4
workflows::workflow(), 4

yardstick::accuracy(), 4
yardstick::brier_class(), 4
yardstick::brier_survival(), 4
yardstick::metric_set(), 4

yardstick::rmse(), 4
yardstick::roc_auc(), 4
yardstick::rsq(), 4

17

	autoplot.importance_perm
	importance_perm
	step_predictor_best
	step_predictor_desirability
	step_predictor_retain
	Index

